Supplementary Material
 Integrals over Gaussians under Linear Domain Constraints

A ALGORITHMS

```
Algorithm 2 Elliptical slice sampling for a linearly constrained standard normal distribution
    procedure \(\operatorname{LiNESS}\left(\mathbf{A}, \mathbf{b}, N, \mathbf{x}_{0}\right)\)
        ensure \(\operatorname{all}\left(\mathbf{a}_{m}^{\top} \mathbf{x}_{0}+b_{m}>0 \forall m\right) \quad / /\) initial vector needs to be in domain
        \(\mathbf{X}=[] \quad / /\) initialize sample array
        for \(\mathrm{n}=1, \ldots, \mathrm{~N}\) do
            \(\nu \sim \mathcal{N}(0, \mathbf{1})\)
            \(\mathbf{x}(\theta)=\mathbf{x}_{0} \cos \theta+\nu \sin \theta \quad / /\) construct ellipse
            \(\boldsymbol{\theta} \leftarrow \operatorname{sort}\left(\left\{\theta_{j, 1 / 2}\right\}_{j=1}^{M}\right)\) s.t. \(\mathbf{a}_{j}^{\boldsymbol{\top}}\left(\mathbf{x}_{0} \cos \theta_{j, 1 / 2}+\boldsymbol{\nu} \sin \theta_{j, 1 / 2}\right)=0 \quad / / 2 M\) intersections, Eq. (2)
            \(\boldsymbol{\theta}_{\text {act }} \leftarrow\left\{\left[\theta_{l}^{\min } \theta_{l}^{\max }\right]\right\}_{l=1}^{L}\) s.t. \(\left.\ell\left(x\left(\theta_{l}^{\min }\right\rangle \max +d \theta\right)\right)-\ell\left(x\left(\theta_{l}^{\min / \max }-d \theta\right)\right)= \pm 1 \quad / /\) Set brackets
            \(u \sim[0,1] \cdot \sum_{l}^{L}\left(\theta_{l}^{\max }-\theta_{l}^{\min }\right)\)
            \(\theta_{u} \leftarrow\) transform \(u\) to angle in bracket
            \(\mathbf{X}[n] \leftarrow \mathbf{x}\left(\theta_{u}\right) \quad\) // update sample array
            \(\mathbf{x}_{0} \leftarrow \mathbf{x}\left(\theta_{u}\right) \quad / /\) set new initial vector
        end for
        return \(X\)
    end procedure
```

```
Algorithm 3 Subset simulation for linear constraints
    procedure \(\operatorname{SubSEtSim}\left(\mathbf{A}, \mathbf{b}, N, \rho=\frac{1}{2}\right)\)
        \(\mathbf{X} \sim \mathcal{N}(0, \mathbf{1}) \quad / / N\) initial samples
        \(\gamma, \hat{\rho}=\operatorname{FindShift}(\rho, \mathbf{X}, \mathbf{A}, \mathbf{b}) \quad / /\) find new shift value
        \(\log Z=\log \hat{\rho} \quad / /\) record the integral
        while \(\gamma>0\) do
            \(\mathbf{X} \leftarrow \operatorname{LinESS}\left(\mathbf{A}, \mathbf{b}+\gamma, N, \mathbf{x}_{0}\right) \quad / /\) draw new samples from new constrained domain
            \(\gamma, \hat{\rho} \leftarrow \operatorname{FindShift}(\rho, \mathbf{X}, \mathbf{A}, \mathbf{b}) \quad / /\) find new shift value
            \(\log Z \leftarrow \log Z+\log \hat{\rho} \quad / /\) Update integral with new conditional probability
        end while
        return \(\log Z\), shift sequence
    end procedure
    function \(\operatorname{FindShift}(\rho, \mathbf{X}, \mathbf{A}, \mathbf{b}) \quad / /\) find shift s.t. a fraction \(\rho\) of \(\mathbf{X}\) fall into the resulting domain.
        \(\gamma \leftarrow \operatorname{sORT}\left(-\min _{m}\left(\mathbf{a}_{m}^{\top} \mathbf{x}_{n}+b_{m}\right)_{n=1}^{N}\right) \quad / /\) sort shifts in ascending order
        \(\gamma \leftarrow(\gamma[\lfloor\rho N\rfloor]+\gamma[\lfloor\rho N\rfloor+1]) / 2 \quad / /\) Find shift s.t. \(\rho N\) samples lie in the domain
        \(\hat{\rho} \leftarrow(\# \mathbf{X}\) inside \() / N \quad / /\) true fraction could deviate from \(\rho\)
        return \(\gamma, \hat{\rho}\)
    end function
```


B DETAILS ON EXPERIMENTS

B. 1 Synthetic experiments

1000-d integrals We further consider three similar synthetic integrals over orthants of $1000-\mathrm{d}$ correlated Gaussians with a fixed mean and a randomly drawn covariance matrix. Table 1 shows the mean and std. dev. of the binary logarithm of the integral estimator averaged over five runs of HDR using 2^{8} samples per nesting for integration, as well as the average CPU time ${ }^{1}$.

Table 1: Integrals of Gaussian orthants in 1000-d

$\#$	$\left\langle\log _{2} \hat{Z}\right\rangle$	std. dev.	$t_{\mathrm{CPU}}\left[10^{3} \mathrm{~s}\right]$
1	-162.35	4.27	8.86
2	-160.54	2.09	7.40
3	-157.62	3.19	7.64

B. 2 Bayesian optimization

Probability of minimum After having chosen N_{R} representer points, the approximate probability for $\mathbf{x}_{i}, i=1, \ldots, N_{R}$ to be the minimum, Eq. (6) can be rephrased in terms of Eq. (1) by writing the $N_{R}-1$ linear constraints in matrix form. This $\left(N_{R}-1\right) \times N_{R}$ matrix is a $\left(N_{R}-1\right) \times\left(N_{R}-1\right)$ identity matrix with a vector of $\mathbf{- 1}$ added in the $\mathrm{i}^{\text {th }}$ column,

$$
\mathbf{M}=\left[\begin{array}{ccc}
\mathbf{1}_{(i-1) \times(i-1)} & -\mathbf{1}_{i-1} & \mathbf{0}_{(i-1) \times\left(N_{R}-i\right)} \\
\mathbf{0}_{\left(N_{R}-i\right) \times(i-1)} & -\mathbf{1}_{N_{R}-i} & \mathbf{1}_{\left(N_{R}-i\right) \times\left(N_{R}-i\right)}
\end{array}\right]
$$

Then the objective Eq. (6) can be written as

$$
\begin{aligned}
\hat{p}_{\min }\left(\mathbf{x}_{i}\right) & =\int \mathcal{N}(\mathbf{f}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) \prod_{j \neq i}^{N_{R}} \Theta\left([\mathbf{M} \mathbf{f}]_{j}\right) d \mathbf{f} \\
& =\int \mathcal{N}(\mathbf{u}, \mathbf{0}, \mathbf{1}) \prod_{j \neq i}^{N_{R}} \Theta\left(\left[\mathbf{M}\left(\boldsymbol{\Sigma}^{1 / 2} \mathbf{u}+\boldsymbol{\mu}\right)\right]_{j}\right) d \mathbf{u}
\end{aligned}
$$

where we have done the substitution $\mathbf{u}=\boldsymbol{\Sigma}^{-1 / 2}(\mathbf{f}-\boldsymbol{\mu})$, and hence $\mathbf{f}=\boldsymbol{\Sigma}^{1 / 2} \mathbf{u}+\boldsymbol{\mu}$. Writing the constraints in matrix form as in Section $2, \mathbf{A}^{\boldsymbol{\top}}=\mathbf{M} \boldsymbol{\Sigma}^{1 / 2}$ and $\mathbf{b}=\mathbf{M} \boldsymbol{\mu}$.

Derivatives In order to compute a first-order approximation to the objective function in entropy search, we need the derivatives of $\hat{p}_{\text {min }}$ w.r.t. the parameters $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$. The algorithm requires the following derivative, where $\lambda=\{\boldsymbol{\mu}, \boldsymbol{\Sigma}\}$,

[^0]\[

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} \lambda} \log p_{\min } \approx \frac{1}{\hat{p}_{\min }} \frac{\mathrm{d} \hat{p}_{\min }}{\mathrm{d} \lambda} \\
& =\frac{1}{\hat{p}_{\min }} \int d \mathbf{f} \frac{\mathrm{~d} \mathcal{N}(\mathbf{f}, \boldsymbol{\mu}, \boldsymbol{\Sigma})}{\mathrm{d} \lambda} \prod_{j \neq i}^{N_{R}} \Theta\left([\mathbf{M}]_{j}\right) \\
& =\frac{1}{\hat{p}_{\text {min }}} \mathbb{E}\left[\frac{\mathrm{d} \log \mathcal{N}(\mathbf{f}, \boldsymbol{\mu}, \boldsymbol{\Sigma})}{\mathrm{d} \lambda}\right]
\end{aligned}
$$
\]

using $\frac{\mathrm{d} \mathcal{N}(\mathbf{f}, \boldsymbol{\mu}, \boldsymbol{\Sigma})}{\mathrm{d} \lambda}=\mathcal{N}(\mathbf{f}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) \frac{\mathrm{d} \log \mathcal{N}(\mathbf{f}, \boldsymbol{\mu}, \boldsymbol{\Sigma})}{\mathrm{d} \lambda}$. Hence all we need is to compute the derivatives of the log normal distribution w.r.t. its parameters, and the expected values thereof w.r.t. the integrand. The required derivatives are

$$
\begin{gathered}
\frac{\mathrm{d} \log \mathcal{N}(\mathbf{f}, \boldsymbol{\mu}, \boldsymbol{\Sigma})}{\mathrm{d} \mu_{i}}=\left[\boldsymbol{\Sigma}^{-1}(\mathbf{f}-\boldsymbol{\mu})\right]_{i} \\
\frac{\mathrm{~d} \log \mathcal{N}(\mathbf{f}, \boldsymbol{\mu}, \boldsymbol{\Sigma})}{\mathrm{d} \boldsymbol{\Sigma}_{i j}}=\frac{1}{2}\left[\boldsymbol{\Sigma}^{-1}(\mathbf{f}-\boldsymbol{\mu})(\mathbf{f}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}-\boldsymbol{\Sigma}^{-1}\right]_{i j}
\end{gathered}
$$

and the second derivative

$$
\begin{aligned}
& \frac{\mathrm{d}^{2} \mathcal{N}(\mathbf{f}, \boldsymbol{\mu}, \boldsymbol{\Sigma})}{\mathrm{d} \mu_{i} \mathrm{~d} \mu_{j}} \\
& =\mathcal{N}(\mathbf{f}, \boldsymbol{\mu}, \boldsymbol{\Sigma})\left(\left[\boldsymbol{\Sigma}^{-1}(\mathbf{f}-\boldsymbol{\mu})(\mathbf{f}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}-\boldsymbol{\Sigma}^{-1}\right]_{i j}\right)
\end{aligned}
$$

Hence we only need $\mathbb{E}_{p_{\text {min }}}[(\mathbf{f}-\boldsymbol{\mu})]$ and $\mathbb{E}_{p_{\text {min }}}[(\mathbf{f}-\boldsymbol{\mu})(\mathbf{f}-$ $\boldsymbol{\mu})^{\top}$] to compute the following gradients,

$$
\begin{gathered}
\quad \frac{\mathrm{d} \log p_{\min }}{\mathrm{d} \mu_{i}} \approx \frac{1}{\hat{p}_{\min }} \mathbb{E}_{\hat{p}_{\text {min }}}\left[\left[\boldsymbol{\Sigma}^{-1}(\mathbf{f}-\boldsymbol{\mu})\right]_{i}\right], \\
\frac{\mathrm{d} \log p_{\min }}{\mathrm{d} \boldsymbol{\Sigma}_{i j}} \approx \\
\frac{1}{\hat{p}_{\min }} \mathbb{E}_{\hat{p}_{\text {min }}}\left[\frac{1}{2}\left[\boldsymbol{\Sigma}^{-1}(\mathbf{f}-\boldsymbol{\mu})(\mathbf{f}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}-\boldsymbol{\Sigma}^{-1}\right]_{i j}\right],
\end{gathered}
$$

and the Hessian w.r.t. $\boldsymbol{\mu}$,

$$
\frac{\mathrm{d}^{2} \log p_{\min }}{\mathrm{d} \mu_{i} \mathrm{~d} \mu_{j}}=2 \frac{\mathrm{~d} \log \hat{p}_{\min }}{\mathrm{d} \boldsymbol{\Sigma}_{i j}}-\frac{\mathrm{d} \log p_{\min }}{\mathrm{d} \mu_{i}} \frac{\mathrm{~d} \log p_{\min }}{\mathrm{d} \mu_{j}} .
$$

[^0]: ${ }^{1}$ On 6 CPus, the wall clock time was ~ 20 min per run.

