
Grzegorz Głuch, Rüdiger Urbanke

A Hard distribution for randomized
smoothing described in (3)

Consider the following data distribution. For ε that
will be fixed later, let Sε(0) ⊆ Rd be a sphere of
radius ε around 0 and N ⊆ Sε(0) be a set of car-
dinality e0.118d such that for all x, y ∈ N, x 6= y we
have ||x− y||2 ≥ 1.2ε. One can show that such a set
exists using bounds for the surface area of spherical
caps in high dimension (see Blum et al. (2015)).

Let the binary classification task be as follows. Let
the distribution D+1 for class +1 be such that
supp(D+1) = (N ∪ {0}) + B0.01ε (where the + de-
notes the Minkowski sum). The density function
on B0.01ε(0) is e0.108d times larger than the one on
B0.01ε(u) for every u ∈ N . Now let D−1 be such that
supp(D−1)∩supp(D+1) = ∅ and each class has prob-
ability 1/2. Now assume that the points that clas-
sifier f misclassifies are exactly points in B0.01ε(0).
Then the standard error of f is at most e−0.01d. Now
let ε :=

√
(dσ)/10. One can verify that when g is

computed according to (1) then for all x ∈ N+B0.01ε

we have g(x) = −1, which means that g misclassifies
all points from N +B0.01ε. So the standard error of
g is at least 25%. This means that the error of g is
eΘ(d) times larger than the error of f !

Remark 2. One might argue that this example was
crafted artificially and that in the “real world” we
can choose σ depending on the data. However it is
possible to construct examples such that for any rea-
sonable choice of σ a dynamic similar to the one
presented above occurs. The idea is to put a col-
lection of the above configurations at different scales
and far from each other.

B Generalization of definitions to
nonseparable learning tasks

Definition 2a. For a binary classification task and
a classifier f : Rd −→ {−1, 1} we define Risk as

R(f) :=

∫
pX(x)

∑
y∈{−1,1}

PY |X(y|x)1{f(x)=y}dx.

Definition 3a. For a binary classification task, a
classifier f : Rd −→ {−1, 1}, and ε ≥ 0 we define
Adversarial Risk as

AR(f, ε) :=

∫
pX(x)g(f, x, ε)dx,

where

g(f, x, ε) :=


PY |X(−1 | x), Bε(x) ⊆M1(f),

PY |X(1 | x), Bε(x) ⊆M−1(f),

1, otherwise,

where My = f−1({y}), y ∈ {−1, 1}. We also intro-
duce the notation:

AR(ε) := inf
f
AR(f, ε),

to denote the optimal classification error for that
classification task with a given ε.

Note that this definition assumes that the adversary,
apart from x, has also access to the label y. In other
words, we prove bounds with respect to a strong
adversary.
Definition 4a (Separation function). For a bi-
nary classification task we define the separation
function S(ε) as follows:

S(ε) := inf
E−1,E1⊆Rd

d(Rd\E−1,Rd\E1)≥ε

∑
y∈{−1,1}

∫
x∈Ey

pX(x)PY |X(y | x)dx.

For a given ε > 0 this function returns the minimum
probability mass that needs to be removed so that
the classes are separated by an ε-margin.

Lemma 7. For all binary classification tasks and
all ε ≥ 0 we have that:

AR(ε) = S(2ε).

Proof. First we prove that AR(ε) ≤ S(2ε). Let E−1

and E1 be the minimizer sets from the definition of
S(2ε). Let f(x) := −1 if d(x,Rd \ E−1) ≤ ε and
f(x) := 1 otherwise. Then observe that for all x ∈
(Rd\E−1), Bε(x) ⊆M−1(f) and for all x ∈ (Rd\E1),
Bε(x) ⊆M1(f). Hence AR(ε) ≤ S(2ε).

Now we prove that AR(ε) ≥ S(2ε). Let f be a clas-
sifier with AR(f, ε) = r. Let E−1 be the set of all
points x ∈ Rd so that Bε(x) 6⊆M−1(f) and let E1 be
the set of all points x ∈ Rd so that Bε(x) 6⊆ M1(f).
It follows that

d(Rd \ E−1,Rd \ E1) ≥ 2ε. (13)

But now note that for this choice of sets E−1 and
E1,∑
y∈{−1,1}

∫
x∈Ey

pX(x)PY |X(y | x)dx = r = AR(f, ε).

Hence, for S(2ε), being defined as the infimum over
all choices of sets E−1 and E1 which fulfill (13), we
have S(2ε) ≤ r = AR(f, ε).

Constructing a provably adversarially-robust classifier from a high accuracy one

C Running time discussion

Let us now analyze the running times of Algorithm 1
as a function of the used partition as well as the
method of estimating g. In the stated bounds we
will assume that each evaluation of f takes time t.

C.0.1 Cube partition

Scheme B: First let’s analyze the performance of
Cube partitions together with assumption (9). To
evaluate ĝ(x) we need to locate a cube to which x
belongs to and smooth f over that cube. Smoothing
is approximated by a sample mean and as argued
before O(log(Q)) samples suffice. So in the end the
running time per query is O(t · log(Q)). If we store
(using hashing techniques) previous function evalu-
ations then the query time drops to O(1) for queries
from cubes that were already queried before.

Scheme A: If we use (4) instead of (9) then we first
perform a preprocessing step in which we sample a
set U of unlabeled samples of size (6). Then using
standard hashing techniques we can create a data
structure of size (6) that for a point x ∈ Rd will
provide access to U ∩π(x) in O(1) time per accessed
element. Having that query time is O(t · log(Q))
because, as argued before, for each cube it’s enough
to consider only that many samples to compute a
good estimator. Similarly as in the previous case for
repeated queries time drops to O(1).

C.0.2 Ball carving partition

Scheme B: Now let’s analyze Ball carving parti-
tions with assumption (9). The situation here is
much more complicated and the implementation is
much more involved. To compute g we need access
to an ε/4-net N that covers supp(D). We create N
on the fly. I.e., we start with N = ∅ and when a
query q ∈ supp(D) arrives then if q 6∈

⋃
u∈N Bε/4(u)

we add q to N . Whenever we add a vertex to N
we sample a new permutation σ on N , which corre-
sponds to a new partition. This means that when a
point is added to N then g can change. But once
the construction process stabilizes then g remains
fixed. Using Chebyshev’s inequality one can verify
that if for O(1/R(f)) consecutive queries we don’t
add new vertices to N then

⋃
u∈N Bε/4(u) contains

1 − O(R(f)) probability mass of D with probabil-
ity 1 − R(f). When this event occurs we can stop
changing N as the probability mass not covered by
N is O(R(f)) with high probability. Finally observe

that:

|N | ≤ max
N′⊆supp(D):

N ′ is ε/4−net

|N ′|

≤ min
N′⊆supp(D):

N ′eq is ε/8−net

|N ′| =: Qmax.

Now let’s analyze the running time. Consider a
query q ∈ Rd. To compute g(q) we must first check
if q should be added to N and this can be done in
O(|N |) time. Then we choose a random permuta-
tion and locate the set π(q) to which q belongs (also
in O(|N |) time).

After locating u ∈ N such that q ∈ BR(u) \⋃
w:σ(w)<σ(u)BR(w) = π(q) we need to sample

points uniformly at random from π(q) to compute
sample mean to estimate g(q). One way to do that
is to use Hit-and-Run sampling. To generate a uni-
formly random point from π(q) we generate a se-
quence {xi} ⊆ π(q) according to the following rule:

• x0 = q,

• to generate xi+1 from xi we first pick a ran-
dom direction v. We find minimal and maximal
values such that xi + θ · v ∈ π(q). We pick θ∗
uniformly from the interval [θmin, θmax] and we
set xi+1 := xi + θ∗ · v.

After generating some number of points we declare
the last point as a point drawn from U(π(q)). The
time needed to generate one sample is k · O(|N |),
where k is the number of iterations we perform.

To get an algorithm with a theoretical guarantee on
the running time for sampling points one can resort
to an algorithm from Dyer et al. (1991). That al-
gorithm implicitly, in polynomial in d time, sam-
ples a point uniformly at random from a convex
body. It is possible to adapt the algorithm to
the case of non-convex bodies (as our set π(q) is
not necessarily convex). We can think that π(q)
is "close" to being convex as it is defined by a
carving process with balls of equal radii. Recall
from previous discussion that it’s enough to have
O(log(Q)) samples per set. So in the end if we use
this algorithm then the running time for computing
g(p) will be O (poly(d) · log(Q) · |N |+ t log(Q)) =
O (poly(d) ·Qmax log(Qmax) + t log(Qmax)).

Scheme A: If we use (4) instead of (9) then we
first perform a preprocessing step in which we sam-
ple a set U of unlabeled samples of size (6) (with
Q set to Qmax). Then we use a greedy algorithm

Grzegorz Głuch, Rüdiger Urbanke

to find a maximal subset N ⊆ U such that for ev-
ery u,w ∈ N, u 6= w we have ||u−w||2 ≥ ε/4. Using
Chebyshev’s inequality one can argue that with high
probability

⋃
u∈N Bε/4(u) contains 1−O(R(f)) mass

of D. We then perform the ball carving partition us-
ingN . Then in time Õ(Q2

max) we create a data struc-
ture of size (6) that for a point u ∈ N will provide
access to U ∩ (BR(u) \

⋃
w:σ(w)<σ(u)BR(w)) in O(1)

time per accessed element. Then for a query q we
need to first locate u ∈ N such that q ∈ π(u), which
takes O(Qmax) time and then we compute sample
mean in O(t · log(Qmax)) time. So in the end the
running time per query is O(t · log(Qmax)). If there
is a repeated query for the same set then we can
answer it in O(Qmax) time.

The O(Qmax) factor in both approaches is far from
perfect. However there might be hope to decreasing
this factor to 2O(dd(supp(M),ε)) using locality sensitive
hashing techniques (Gionis et al. (1999)) as in princi-
ple we only need to check points in the neighborhood
of q to determine π(q) and in this neighborhood we
have only 2O(dd(supp(M),ε)) of them. It might also be
possible to reduce the running time further which
might be an interesting research direction.

Remark 3. Assume that the data is supported on
a lower dimensional manifold of dimension d′ and
satisfies the assumptions from Theorem 3. Then ro-
bustness guarantees of our algorithms improve auto-
matically with d′. That is we don’t need to provide
d′ as the input to our algorithms.

D Omitted proofs

D.1 Proofs of Section 3

Lemma 1. For all separable binary classification
tasks and all ε ∈ R≥0 we have that:

AR(ε) = S(2ε).

Proof. First we prove that AR(ε) ≤ S(2ε). Let E
be the minimizer set from the definition of S(2ε).
Let f(x) := −1 if d(x,M− \ E) ≤ ε and f(x) := +1
otherwise. Then observe that for all x ∈ (M− \
E) ∪ (M+ \ E) there does not exist an η so that
f(x+ η) 6= h(x). Hence AR(ε) ≤ S(2ε).

Now we prove that AR(ε) ≥ S(2ε). Let f be a classi-
fier with AR(f, ε) = r. That means that there exists
A ⊆ Rd such that

• PX(X ∈ A) ≥ 1− r,

• for all x ∈ A we have ∀ η ∈ Bε f(x+ η) = h(x).

This means that Rd \ A is a 2ε-separator for that
binary task, so in turn S(2ε) ≤ r = AR(f, ε).

D.2 Proofs of Section 4

Fact 2. dd((Rd, `2)) ≤ 3d

Proof. Let Bε(0) ⊆ Rd be a ball of radius ε for some
ε > 0. Let N be an ε/2-net of Bε(0). Notice that
all balls in {Bε/4(u) : u ∈ N} are pairwise disjoint
and that

⋃
u∈N Bε/4(u) ⊆ B5ε/4(0). Hence |N | ≤

vol(B5ε/4)

vol(Be/4) = 5d.

Lemma 2. Let (M,d) be a metric space with ε-
doubling dimension dd. If all pairwise distances in
N ⊆M are at least r then for any point x ∈M and
radius r ≤ t ≤ ε we have |Bt(x) ∩N | ≤ 2dddlog 2t

r e.

Proof. As t ≤ ε we can use the definition of ε-
doubling dimension and get that Bt(x) can be cov-
ered with 2dd balls of radius t/2. Iterating that ar-
gument, we conclude that Bt(x) can be covered by
2dddlog 2t

r e balls of radius r/2. But every such ball can
contain at most one point from N so |Bt(x) ∩N | is
also upper bounded by 2dddlog 2t

r e.

D.3 Proofs of Section 5

Corollary 1. Let Π ∼ P be an (ε, β, δ)-padded ran-
dom partition of a metric space (M,d). Then for
every distribution D we have that:

EΠ∼P [PX∼D[Bε/β(X) 6⊆ Π(X)]] ≤ δ.

Proof.

EΠ∼P [PX∼D[Bε/β(X) 6⊆ Π(X)]]

= EΠ∼P [EX∼D[1{Bε/β(X)6⊆Π(X)}]]

= EX∼D[EΠ∼P [1{Bε/β(X)6⊆Π(X)}]]

= EX∼D
[
PΠ∼P [Bε/β(X) 6⊆ Π(X)]

]
≤ δ.

Lemma 3. Let Π be a Cube partition with parame-
ter ε. Then for every β > 2

√
d it is

(
ε, β, O(d1.5)

β

)
-

padded.

Proof. For all x ∈ Rd, diam(Π(x)) = ε by construc-

tion. Let A =
[
0, ε√

d

]d
. This is the set of all points

of one fundamental cube. Let G =
[
ε
β ,

ε√
d
− ε

β

]d
and note that d

(
G,Rd \A

)
= ε

β . G represents the
set of all good points inside A, in the sense that if we

Constructing a provably adversarially-robust classifier from a high accuracy one

center a sphere of radius ε/β at one of those points
the whole sphere stays contained inside A. Now ob-
serve that

vol(G)

vol (A)
=

(
1− 2

√
d

β

)d
≥ 1− 2 · d1.5

β
. (14)

Let v be the shift that generates the partition π.
Consider the set I(v) :=

⋃
z∈v+ ε√

d
·Zd(G+ z). Using

(14), we conclude by noting that for every x ∈ Rd

PΠ∼P [B ε
β

(x) 6⊆ Π(x)] ≤ PV∼U(A)[x 6∈ I(V)] ≤ 2d
3
2

β
.

D.4 Proofs of Section 6

Lemma 5. Let π be an ε-bounded partition. For a
given f let g(x) = sgn(EZ∼D[f(Z)|Z ∈ π(x)]). Then

R(g) ≤ 2S(ε) + 2R(f).

Proof. Let us first prove the weaker bound R(g) ≤
3S(ε) + 2R(f). Let E be the minimizer set from
the definition of S(ε) and M− = h−1({−1}),M+ =
h−1({1}). Then we know that d(M−\E,M+\E) ≥ ε
and PX∼D(X ∈ E) ≤ S(ε). Let Q ⊆ M− ∪M+ be
the set of missclassified points of f in M− ∪ M+.
Observe that

R(g) ≤ S(ε) +
∑

u∈N,Π̂(u)∩M− 6=∅,g(Π̂(u))=+1

µ(Π̂(u))

+
∑

u∈N,Π̂(u)∩M+ 6=∅,g(Π̂(u))=−1

µ(Π̂(u))

≤ S(ε) +
∑

u∈N,Π̂(u)∩M−6=∅,

g(Π̂(u))=+1

2µ(Π̂(u) ∩ (Q ∪ E))

+
∑

u∈N,Π̂(u)∩M+ 6=∅,

g(Π̂(u))=−1

2µ(Π̂(u) ∩ (Q ∪ E))

≤ S(ε) + 2(µ(Q) + µ(E))

≤ 3S(ε) + 2R(f).

To see that the claimed stronger bound is valid note
the following. Every point in E will appear either in
exactly one of the two sums or it will be counted by
the term S(E). In the first two cases it is weighted
by a factor 2 and in the second case it is weighted by
a factor 1. This gives rise to the term 3S(E). But
no point of E appears in both of those cases. We
can therefore tighten this term to 2S(E).

Lemma 6. For all ε > 0 and any binary classifi-
cation task with underlying distribution D if there
exists an (εβ, β, δ)-padded random partition Π of
supp(D) then the following conditions hold. There
exists a randomized algorithm ALG that given black-
box access to classifier f produces a classifier g such
that in expectation over the random choices of ALG:

AR(g, ε) ≤ 2S(εβ) + 2R(f) + δ

and if AR(ε) > 0 then:

AR(g, ε) ≤ 2S(εβ)

S(2ε)
AR(ε) + 2R(f) + δ.

Proof. We will prove that Algorithm 1 invoked with
f and Π ∼ P satisfies the statement of the Lemma.
By Fact 1

AR(g, ε)≤R(g)+PX∼D[g ¬ constant on Bε(X)].
(15)

By Lemma 5 we have:

R(g) ≤ 2S(εβ) + 2R(f). (16)

Moreover, by Corollary 1 we have that:

EΠ∼P [PX∼D[Bε(X) 6⊆ Π(X)]] ≤ δ. (17)

But we also know from the definition of g that

PX∼D[g is not constant on Bε(X)] ≤
PX∼D[Bε(X) 6⊆ Π(X)]. (18)

Combining (15),(16),(17) and (18) we get that in ex-
pectation over the random choices of the algorithm

AR(g, ε) ≤ 2S(εβ) + 2R(f) + δ

=
2S(εβ)

S(2ε)
AR(ε) + 2R(f) + δ,

where in the last equality we used Lemma 1. Note
that the last inequality is only valid if AR(ε) > 0.

E Oblivious adversary

Let’s consider the model where the adversary has
full knowledge of the base classifier f and the code
of the algorithm ALG that produces g but doesn’t
have access to random bits used by ALG. Then the
following is true:
Theorem 5. For every separable binary classifica-
tion task in Rd and for every ε ∈ R+ there exists
a randomized algorithm ALG that, given black-box
access to f : Rd −→ {−1, 1}, provides query access to
a function g : Rd −→ {−1, 1} such that:

Grzegorz Głuch, Rüdiger Urbanke

• R(g) ≤ 2S(ε) + 2R(f),

• For every x, x′ ∈ Rd we have that:

PALG[g(x) 6= g(x′)] ≤ O

(
‖x− x′‖2 ·

√
d

ε

)
.

Proof. The proof of this theorem is an adaptation
of a random partition technique from Charikar et al.
(1998). This paper presents an algorithm that cre-
ates a random partition that is (ε, O(

√
d))−Lipshitz

(a notion similar to padded partitions), that is a
random partition that is ε-bounded and for every
x, x′ ∈ Rd:

P[Π(x) 6= Π(x′)] ≤ O

(
‖x− x′‖2 ·

√
d

ε

)
.

Using this partition ALG creates g using the frame-
work from Algorithm 1. One can verify that this g
satisfies the statements of the theorem.

Remark 4. We note that the Algorithm from
Charikar et al. (1998) is very similar to the ran-
dom partition from Definition 9 as it also performs
a version of ball carving. Based on this similarity, it
is tempting to conjecture that the ball carving parti-
tion from Definition 9 is

(
ε, O(

√
d)
)
−Lipshitz also.

We leave this as an interesting open question. More-
over, we note that the Algorithm from Charikar et al.
(1998) can be easily adapted to any `p norm achiev-
ing

(
ε, O(d1/2p)

)
− Lipshitz partition for 1 ≤ p ≤ 2

and
(
ε, O(d1−1/p)

)
− Lipshitz partition for p > 2.

This means that using this technique one can get ad-
versarial robustness guarantees for any `p norm for
p ≥ 1.

Now observe that Theorem 5 gives us an algorithmA
that is robust against any oblivious adversary. The
algorithm works as follows: for a series of queries
x′1, x

′
2, · · · ∈ Rd (x′i’s are inputs crafted by the adver-

sary), for every i, A using ALG from Theorem 5, re-
computes a new gi to answer query x′i. We know that
R(gi) ≤ 2S(ε) + 2R(f) and moreover for every x, x′

we have PALG[gi(x) 6= gi(x
′)] ≤ O

(
‖x−x′‖2·

√
d

ε

)
.

This means that no matter what the strategy of
the adversary is (this strategy might depend on
g1(x′1), . . . , gi−1(x′i−1)) the probability that the ad-
versary will be able to construct two points such that
‖xi − x′i‖2 ≤ t and gi(xi) 6= gi(x

′
i) is upper bounded

by O
(
t·
√
d

ε

)
.

We summarize: For every i, if Xi ∼ D at the i-th
step and the adversary creates X ′i such that ‖Xi −

X ′i‖2 ≤ ε then for every α:

PXi,A(gi(X
′
i) 6= h(Xi)) ≤

2S

(√
d · ε
α

)
+ 2R(f) +O(α).

Observe the connection to Definition 2 which we re-
state here for convenience:

AR(f, ε) := PX(∃ η ∈ Bε f(X + η) 6= h(X)).

The reason that we were able to gain a factor
√
d in

comparison to Theorem 2 is that we didn’t need to
ensure that a function is constant on a ball B(x, ε).
It was enough to show that it is constant for every
fixed pair of nearby points as the adversary can only
test one point at a time.

This gain comes at a cost as we need to recom-
pute the partition after every query. If one recom-
putes the partition every k queries then by the union
bound the guarantee changes to:

PXi,A(gi(X
′
i) 6= h(Xi)) ≤

2S

(√
d · k · ε
α

)
+ 2R(f) +O(α).

