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Abstract

We study the problem of learning graphi-
cal models with latent variables. We give
the first efficient algorithms for learning: 1)
ferromagnetic Ising models with latent vari-
ables under arbitrary external fields, and 2)
ferromagnetic Potts model with latent vari-
ables under unidirectional non-negative ex-
ternal field. Our algorithms have optimal de-
pendence on the dimension but suffer from
a sub-optimal dependence on the underlying
sparsity of the graph.

Our results rely on two structural properties
of the underlying graphical models. These
in turn allow us to design an influence func-
tion which can be maximized greedily to re-
cover the structure of the underlying graph-
ical model. These structural results may be
of independent interest.

1 Introduction

Graphical models are a popular framework for express-
ing high dimensional distributions by using an un-
derlying graph to represent conditional dependencies
among the variables. Learning the underlying depen-
dency structure of a graphical model using samples
drawn from the distribution is a core problem in un-
derstanding graphical models. Much progress has been
made in the recent years towards developing efficient
algorithms for learning fundamental models such as
Ising model, Potts model and Markov random fields
(MRFs) with near optimal sample and time complexity
under the assumptions of sparsity and/or correlation
decay.

The structure learning problem becomes even more
challenging when the underlying model is allowed to
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have latent (or latent) variables. Compared to fully ob-
served models, latent variable models can induce more
complex dependencies among the observed variables
once the latent variables are marginalized over. In this
work we restrict ourselves to a special class of latent
variable models where the interactions are restricted
to be pairwise only between observed and latent vari-
ables . In this work, we consider both Ising and Potts
models with such latent variables.

In the Ising case, these are known as Restricted Boltz-
mann machines (RBMs). RBMs have been used
for various unsupervised learning tasks (Hinton and
Salakhutdinov, 2006; Larochelle and Bengio, 2008;
Salakhutdinov et al., 2007; Hinton and Salakhutdinov,
2009) since their inception in the early 2000s. A RBM
with latent variables induces a probability distribution
over n observed variables X € {£1}" and m latent
variables Y € {£1}™ as follows,

PriX =z,Y =y] x exp(scTJy +hTz+ gTy) (1)

Here J € R™*"™ ig the interaction matrix, h € R™ g €
R™ are the external fields. Alternatively, a RBM can
be viewed as a bipartite graph between the set of ob-
served and latent variables with edge weights given by
J. Here we use restricted to refer to the bipartite na-
ture of the interaction graph.

Generalizing the above to non-binary state, we say
a g-state Restricted Potts model (RPM) with latent
variables induces a probability distribution over n ob-
served variables X € [¢]" and m latent variables
Y € [¢]"™ with

Pr[X =2,V = y] x exp Z

i€[n],j€[m]

Jijo(xi,y;)

j€[m]

1€[n]

where §(a,b) = 0 if a # b else 0. We restrict the RPM
to have non-negative external field only on state 0.

Recently Bresler et al. (2019) gave the first algorithm
to learn ferromagnetic (J 0) RBMs with non-

>
negative external fields (h,g > 0). They applied the
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famous Griffiths-Hurst-Sherman correlation inequality
(Griffiths et al., 1970; Kelly and Sherman, 1968) to
prove that a certain influence function is submodu-
lar and subsequently used a simple greedy algorithm
to maximize the influence function. Their work relied
heavily on the GHS inequality which requires the ex-
ternal fields to be consistent, that is, have the same
sign. Also, their result does not extent to RPMs, it is
not clear whether the concavity of magnetization holds
in the Potts models.

In this paper we focus on 1) learning ferromagnetic
RBMs with arbitrary external fields, and 2) learning
ferromagnetic RPMs (non-binary) with non-negative
external field supported on one state. We give the
first efficient algorithms for these two settings.

Our Results. The first contribution of our paper is
a key structural property of ferromagnetic RBMs with
arbitrary external fields.

Theorem 1 (Informal version of Theorem 1). In a
ferromagnetic RBM with arbitrary fields, for any pair
of observed nodes u and v that share a common la-
tent neighbor in the underlying graph, the covariance
between u and v is at least some positive constant in-
dependent of n.

The above key property gives us the following struc-
ture learning result for RBMs.

Theorem 2 (Informal version of Theorem 6). Con-
sider a ferromagnetic RBM with arbitrary external
fields such that all non-zero interactions are bounded
below by a and the sum of absolute weights of out-
going edges of every node (plus absolute value of ex-
ternal field) is bounded above by A. Then there is
an algorithm that recovers the markov blanket of each
observed wvariable in time Oy \(n?) and sample com-
plezity Oq x(logn)*.

The second contribution of our paper is a key struc-
tural property of ferromagnetic RPMs with non-
negative external fields on one state.

Theorem 3 (Informal version of Theorem 7). Let u
be an observed node in a ferromagnetic q-state RPM
with non-negative external field on state 0. For any
pair of observed nodes u and v that share a common
latent neighbor in the underlying graph, the probability
of u and v being simultaneously 0 is greater than the
product of the probabilities of each of them being 0 by
at least some positive constant independent of n.

The above key property gives us the following struc-
ture learning result for RPMs.

The sub-script indicates that the dependency on a;, A
is suppressed. Also O hides logarithmic dependencies.

Theorem 4 (Informal version of Theorem 9). Con-
sider a ferromagnetic q-state RPM with non-negative
external field on state 0 such that all non-zero inter-
actions are bounded below by o and the sum of ab-
solute weights of outgoing edges of every node (plus
external field) is bounded above by \. Then there is
an algorithm that recovers the markov blanket of each
observed variable in time Oy \(n?) and sample com-
plexity Oy 1 (logn).

Note that our bounds are similar to those in Bresler
(2015). In both our results, the dependence on 1/«
is exponential and that on A is doubly exponential.
However, we note that for ferromagnetic RBMs with
consistent fields, Bresler et al. (2019) have a singly
exponential dependence on A which is optimal. Note
that once we have learned the underlying structure of
the graphical model, we can use standard techniques to
learn a representation in the form of a Markov Random
Field of the RBM/RPM (see Bresler et al. (2019)).

Our Techniques. For our first key structural result,
we use Percus’s transformation (Percus, 1975) on the
variables that enables us to use symmetry arguments
to prove that the covariance is bounded away from 0.
Similarly, for the second key structural result, we use
the Random Cluster Expansion (Fortuin and Kaste-
leyn, 1972) to lower bound the quantity of interest.
Both results give a stronger version of the FKG based
correlation inequality through a more involved analy-
sis with special care to avoid a dimension dependence.

For learning RBMs/RPMs, in the spirit of the influ-
ence maximization algorithm due to Bresler (2015),
we design a corresponding influence function in both
setups and greedily maximize the same in order to it-
eratively build the neighborhood of each observed ver-
tex. Using an information theoretic argument, we can
show that our iterative algorithm followed by pruning
returns us the exact neighborhood of each vertex.

Related Work. Structure learning for graphical
models is a well studied problem, with major focus on
the fully-observed model. The first algorithms were
proposed by Chow and Liu (1968) for learning undi-
rected graphical models on trees. Subsequently, var-
ious algorithms were proposed for structure learning
under varying assumptions on the underlying model
(Lee et al., 2007; Ravikumar et al., 2010; Yang et al.,
2012; Bresler, 2015; Vuffray et al., 2016; Klivans and
Meka, 2017; Hamilton et al., 2017; Wu et al., 2019).
Bresler (2015) proposed a simple greedy algorithm
based on influence maximization for assumption-free
structure learning of Ising models. His algorithm
achieved optimal sample/time complexity in terms of
the dimension however depended doubly exponentially
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on the degree of the underlying graph. Subsequently
Vuffray et al. (2016) and Klivans and Meka (2017)
proposed alternative techniques to remove the dou-
bly exponential dependence. Klivans and Meka (2017)
were the first to give efficient algorithms for non-binary
models. The dependence on alphabet size was further
improved by Wu et al. (2019).

The problem of structure recovery in the presence of
latent variables is not as well understood as the fully-
observed setting. For locally tree-like models, Anand-
kumar et al. (2013) gave efficient algorithms for re-
covery under correlation decay assumption. Assuming
that the latent variables are distributed according to a
Gaussian distribution, Nussbaum and Giesen (2019)
proposed a likelihood model for sparse + low rank
model for structure learning. The most relevant to our
work is that of Bresler et al. (2019) which proposed the
first algorithm for structure recovery of ferromagnetic
RBMs with non-negative external fields using concav-
ity of magnetization. Unlike their setup, we extend
to larger state space and allow the external fields to
be arbitrary in the case of binary state space at the
cost of a worse dependence on a, A\. The presence of
inconsistent external fields allows for different biases
on different latent nodes. For example, in a social net-
work, if we want to model the distribution of votes for
party A vs party B then it is likely that individuals
have different inherent inclinations (arbitrary external
field) and are subsequently influenced to vote similarly
as their friends (ferromagnetic interactions). These bi-
ases often create conflicts and often make the problem
much more challenging. It is well-known that arbi-
trary external fields can greatly change the complexity
of closely related problems such as approximating the
partition function (Goldberg and Jerrum, 2007).

2 Preliminaries

We consider a binary RBM on underlying bipartite
graph G = ([n],[m], E) over observed variables X
and latent variables Y. Each configuration of ob-
served/latent variables € +1 is assigned probability
according to (1) where J indicates the weighted edges.
We let Z% be the partition function (normalizing con-
stant). Similarly, we consider a g-state RPM where
each configuration of observed/latent variables € [q] is
assigned probability according to (2). We make the
following assumptions,

Minimum ferromagnetic interaction: For all i €
[n],7 € [m], if J;; # 0 then J;; > .

Weight sparsity: For all i € [n], > |Jij[+[hi|< A
and for all j € [m], >, Ji;|+|g;|< A

Additionally, for the g¢-state RPM we assume that

h,g > 0. Note that we do not need this assumption
on external fields for the Ising case.

Remark: For the binary RBM, our model covers a
more general class of locally consistent RBMs where
for each j € [m], J;; > 0 for all ¢ € [n] (ferromagnetic)
or J;; < 0 for all ¢ € [n] (anti-ferromagnetic). This
can be reduced to the ferromagnetic case straightfor-
wardly. If there exists j such that J;; <0 for all ¢ (lo-
cally consistent) then we can map Y; — —Y; without
affecting the marginal on X and the model is ferro-
magnetic at j. The change of variable will reverse the
external field at j however since we do not make any
assumption on the sign of the external field, our model
assumptions still hold. We can repeat this for all such
j and the model can therefore be made ferromagnetic.

Learning task. Define N(u) := {j : J,; # 0}
to be the graph-theoretic neighborhood of observed
node u and define No(u) = {i : 3 j,Ji5,Ju; # 0}
to be the two-hop graph-theoretic neighborhood. We
also define N3"**(v) to be the two-hop Markov neigh-
borhood, that is, the smallest set S C [n]\{u} such
that X, is conditionally independent of X, for all
v € [n\(S U {u}). Our objective is to recover the
two-hop Markov neighborhood of each observed vari-
able. In both our setting, this will correspond exactly
to the two-hop graph-theoretic neighborhood of each
observed variables.

3 Binary RBMs

In this section we will first present our structural result
for binary RBMs and subsequently show how to use
the result to obtain a learning algorithm.

3.1 Key Property: Conditional Covariance

We show that for two observed nodes sharing a com-
mon latent neighbor, the covariance is positive and
bounded away from 0. The main motivation to be-
lieve that such a structural result holds is the famous
FKG inequality Percus (1975); Sylvester (1976) which
states that for ferromagnetic Ising models with arbi-
trary external field the covariance of any two nodes is
non-negative. We extend this result to show that if
the interactions are large, then this covariance is in-
deed bounded away from 0.

Let us define the conditional covariance for observed
nodes u,v € [n] and a subset of observed nodes S C
[n]\{u, v} with configuration xg as follows,

Cov(u,v|Xg = zg) := E[ X, X,|Xs = zs]
_E[X.|Xs = 5] E[X,|Xs = z].
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Here Xg denotes the subset of coordinates of X se-
lected by S.

We also define the notion of average conditional covari-
ance as follows, Covayg(u,v]S) = Ey¢[Cov(u,v|Xg =
xg)]. We will prove the following property of the con-
ditional covariance:

Theorem 5. Under our assumptions, for fized node
u and any fived subset of observed nodes S C [n]\{u}
with configuration xg, then for all v € Nao(u)\S,

Cov(u,v|Xg = r5) > a? - exp(—12)).

Proof. Observe that we can restrict to proving the
above result for S = () since conditioning over a set of
observed variables (Xg = zg)) will give us a new bi-
nary RBM which satisfies our assumptions. Moreover,
the edges between the the remaining nodes remain the
same with the same edge weights.

Percus’s Transformation. We will utilize the
transformation proposed by Percus Percus (1975). It
uses a simple idea of making two copies of the under-
lying graph and using the symmetry of this transfor-
mation to prove useful properties. The probability of
a configuration under this new distribution D is

PI‘[X = ZL’,Y = va/ = x/aY/ = y/]
ocexp(zl Jy +hTx + gly + x’TJy’ +n"a +g"y)

Observe that Pr[X = 2,V =y, X' = 2/)Y' = /] =

Pr[X:x’,Y:y’,X’—x,Y’—y] Pr[X Y =
Y PHX =2, Y = ).

_ Xi—X] v _ YoV - _ XitX]
DeﬁneXifT,XZ 7 d X = ==,

_ Yit+y!
Yi = Lt

=—5" Then we have

PrX =2, =y, X' = 2/, Y — ]
ocexp(z? Jy +hTx + gy + 27Ty + BT+ gty
= exp (ETJy + QTJQ +V2nTT + \/igTy) .

Thus under this transformation, we can rewrite the
covariance in the following way,

COV(U,7 U) = ]E[XuXU] - E[XUNE[XU}

= %(ED[XuXU] —Ep[X, X))
+ %(IED (X, X,] —Ep[X, X,])

. %ED[(XU — X)Xy = V)]

= E'D[KUX’U]

The above follows from the independence of (X,Y)
and (X’)Y’) and the symmetry of the Percus trans-
formation.

Positivity of Covariance. First we will show that
the covariance is positive. Let k be the common neigh-
bor of u and v, that is, Jug, Jur # 0. There must be
such a k since v € Na(u). We will define the following
useful terms, y(z, y) = exp(gTJg—guJukgk —ngvkgk)
and A(Z,7) = exp(ZL Jg + V2hTT + v/2¢77). Using
these, we have,

1
Ep[X, X,] = (Z15)2 Z Loy Ly eXp(th]?-ﬁ-&TJy
z,x’ Y,y
+ \@hTf + \/ﬁng)
1
~ 752 >z, exp((@, Juk
zz,y,y’

+ 2, Jok)y, )V (2, ) AT, 7)

Z Juk +£0Jvk)iyi
B3 S ()

z,x’,y,y" 1=0

X v(x y)A(Z,7)

ZIS Z ZZﬂ( )szm Tow Jﬁﬁlﬂ;ﬂ jyk

z,x’,y,y" 1=0 j=0

x v(z,y) A7, 7)

3)

The following lemma shows that each term in the sum-
mation is non-negative.

Lemma 1. For all A € Z{,B € Z"} and function f
over T,y such that f >0,

> I =i I wrr@w =0

z,2',y,y" a €[n] b €[m]

Proof. Observe that for any i € [n], exchanging z; <
x} does not change the summation, however it changes
z; — —z; while leaving Z; — T; unchanged. Thus, if
A; is odd, then the summation will be 0. Therefore,
for the term to be non-zero, for all ¢ € [n], A; must
be even. Similarly, for all j € [m], B; must be even.
Now since f > 0 and there are only even powers, the
summation must be positive. O

It is easy to see that y(z,y) can be expanded as a mul-
tivariate polynomial over z,y with non-negative coef-
ficients (since J > 0)2.
we have for all ¢ > j,

Therefore, applying Lemma 1,

S aalt iyl (2, ) A@,7) > 0.

’ ’
T,T,Y,Y

2Since ~ is an exponential function of a polynomial with
non-negative coefficients, using taylor expansion of e, we
will overall get a polynomial with all non-negative coeffi-
cients.
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This implies that the covariance is indeed mnon-
negative.

Lower Bound on Covariance. We will show that
in fact the covariance is at least a constant independent
of n. Since all terms are non-negative, we can lower
bound the expression by the term corresponding to
1 =2 and j = 1. This yields only squares of Loy Ty Y,
as follows,

)27 Z Jukakziﬁyiv(L Y)A(T,7)
> Y. 22a?yly(z,y)AFT).
z,x’ Y,y

Here the second inequality follows from noting that
by our assumption Jyk, Jyr 7 0 and hence must be at
least a. The last obstacle is to bound the remaining
expression independent of n. We use the following
lemma to bound the same.

Lemma 2. We have,

le >z

z,x’ Y,y

z,Y) AT, 7) > exp(—12)).

The proof requires a very careful analysis to avoid the
naive dimension dependence. Now, using Lemma 2
gives us the desired result. O

Corollary 1. For u # v € [n] such that there ex-
ists w € [m] with (u,k),(v,k) € E and a subset
of observed nodes S C [n]\{u,v}, Covayg(u,v|Xg) >
a? - exp(—12)).

Proof. Since for any Xg = zg, by Lemma 1, the co-
variance is bounded below by a? exp(—12)), hence the
expectation is also bounded by the same quantity. [

Remark 1. Observe that the above lemma also shows
that Na(u) C NI*V(u). It is not hard to see that
N3kv(4) C© No(u) by the structure of the RBM there-
fore No(u) = NI (u).

Remark 2. The key structural result can be extended
to the setting in which there are edges between latent
and observed variables using the same techniques, how-
ever now the bound will be exponentially worse in terms
of the length of the shortest path connecting two o0b-
served nodes similar to Bresler et al. (2019).

3.2 Algorithm: Greedy Maximization

In this section we present the main algorithm (Algo-
rithm 1) and a proof of its correctness. Our algo-
rithm and analysis is similar to the influence max-
imization algorithms for learning Ising models as in

Bresler (2015). Our algorithm exploits the key prop-
erty to maximize conditional covariance to greedily
build the two-hop neighborhood.

Let us define the empirical conditional covariance com-
puted using a sample S = { X1, XY of size M
by C/o\va\,g(-7 :|-). For a given threshold 7 > 0, our algo-
rithm is as follows:

Algorithm 1 LEARNRBMNBHD(u)
1: Set S :=¢
2: Let i* = argmax,cp,)\ sufu} CoVavg(u,v|S), and

n* = max, Covayg(u,v|S)
if n* > 7 then
S=5SuU{i*}
else
Go to Step 8
Go to Step 2 -
(Pruning:) For each v € S, if Covayg(u,v|S\{v}) <
T, remove v
9: Return S

Theorem 6. For 7 = «a?exp(—12)\)/2 and
0 = exp(—N)/2, with probability 1 — (,
LEARNRBMNBHD(u) outputs exactly the two-hop
neighborhood of observed variable u for

. 22T* . ]
M >Q <(10g(1/<) + T log(n)) T%QT> for T* = ot
The algorithm runs in time O(T*Mn) for node u.

Proof. The proof follows along the same lines as
Bresler (2015). We will first show that our estimates
of conditional covariance are close to the true values
given M samples. We will then show that after T’
iterations, set S contains a superset of the two-hop
neighbors. Lastly we will show that our refining step
removes all nodes except the two-hop neighbors.

Closeness of Estimates Denote by A(l,¢) the
event such that for all u,v and S with |S|< [, simul-

taneously, aavg(u,ﬂS) - Covavg(u,v|S)‘ <e

Lemma 3. For fized l,e,( > 0, if the number

of samples is ((log(l/() + llog(n)) %) then
Pr[A(l,e)] > 1 (.

We defer the proof of the above lemma
to the appendix. Choosing M =
Q ((log(l/cj) + T*log(n)) 7222—;2,), we have

A:= A(T*,7/2) holds for T* = 8/7% with probability
1 —¢. From now on we assume A holds.
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Entropy Gain. We will show that the conditional
mutual information is bounded below by a function
of the average conditional covariance thus at each it-
eration of the algorithm we are increasing the overall
entropy of X,,.

Lemma 4. For u # v € [n] and a subset of observed
nodes S C [n]\{u,v} with configuration xg,

V2I(Xy; Xo|Xg) > Covayg(u,v]S)

Upper Bound on Size of S. We will show that
|S|< T* before pruning. Let the sequence of added
nodes be iy,... i for some T and S; = {i1,...,4}
fi)r\lglgT. For each ;7 € T, we have
Covavg(u;i5|Xs;) > 7 (by Step 3). If "> T*, then
we have Covag(u;ij|Xs;) > 7/2 for all j < T* +1
(since A holds). Thus we have,

1> H(X,) > (X, Xs)

T +1
8

T2

= ZI(Xu;Xi_ASj—l) >

j=1

Here the inequalities follow from standard properties
of entropy and mutual information. This leads to a
contradiction since T™ = %. Thus, we have T" < T™.
Observe that each iteration requires O(Mn) time and
at most T iterations take place prior to pruning. Also
pruning takes O(Mn) time, giving us a total runtime
of O(T*Mn).

Recovery of Two-hop Neighborhood. We will
show that Na(u) C S. Suppose Na(u) € S, then
there exists v € Na(u). By Lemma 5, we know that
CoVayg(u,v| Xs) > a?exp(—12)) = 27. Since A holds
and |S|< 8/7%, we have Ec;/avg(u,ﬂXs) > 37/2, thus
the algorithm would not have terminated. This is a
contradiction, thus Na(u) C S before pruning.

Now if v ¢ N,(S) then Cov(u,v|Xg\(vy) = 0 since
conditional on the 2-hop neighborhood, X, and X, are
independent, therefore they will be removed. Whereas,
by Lemma 5, if v € N, (S) then Cov(u,v|Xg\v}) > 27
and our test will not remove it (estimates of covariance
are correct withing «/2). Thus we will exactly obtain
the neighborhood at the end of the algorithm. O

Remark 3. Bresler et al. (2019) showed a hardness
result for structure learning of RBMs by reduction from
learning sparse parities with noise over the uniform
distribution. Under our assumption of J > 0, this
construction is not achievable. We refer the reader to
the supplementary for more details.

4 Non-binary RPMs

In this section we will first present our structural result
for g-state RPMs and subsequently show how to use
the result to obtain a learning algorithm similar to the
binary case.

4.1 Key Property: Conditional Influence

We define the following conditional influence function
for observed nodes u,v € [n] and a subset of observed
nodes S C [n]\{u,v} as follows,

inf(u,v|S) = Pr[X, = 0| Xs = 0%, X, = 0]
— Pr[X, = 0|Xg = 0°].

We will prove the following useful property of inf,

Theorem 7. Under our assumptions, for fized node
u and any fixed subset of observed nodes S C [n]\{u},
for all v € Na(u)\S,

-1 o2 exp(—3\)
q (exp(A) +¢ —1)3"

inf(u,v|S) > a

Proof. To prove the theorem, we can assume that
S = ) since our assumptions are still satisfied for this
model. Our proof will use the Fortuin-Kasteleyn Ran-
dom Cluster (RC) Fortuin and Kasteleyn (1972) ex-
pansion of Potts models.

Random Cluster Model. We give a brief overview
of the random cluster model and useful properties for
our analysis. We refer the reader to Fortuin and Kaste-
leyn (1972); Cioletti and Vila (2016) for a more de-
tailed exposition.

For the graph G corresponding to the Potts model in
(2), let A(x,y) denote the probability measure. The
Random Cluster (RC) model is introduced by ran-
domly choosing a set of edges from E which are said to
be occupied. Let w € {0,1}¥ be the indicator for the
occupied edges, then the random cluster probability
measure ¢ is defined as follows,

1

P(w) = ZRC B(w) - H (exp (H(c)) +q—1)

ceC(w)

where C'(w) is the set of clusters (connected compo-
nents containing observed and latent variables) into
which V' = [n] U [m] is partitioned by w and H(c) =
Eiecobs hi + Eje%t g; With cops (c1q¢)) being the ob-
served (latent) nodes in ¢. B is defined as follows,

B(w) = H Pij - H (1= piz)

wiJZI wij:O
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where p;; =1 — exp(—J;;). Here ZEC is the partition
function (normalizing factor). The RC model has been
shown to satisfy the FKG property under our setting.
More formally,

Theorem 8 (Fortuin and Kasteleyn (1972); Cioletti
and Vila (2016)3). For non-decreasing functions f,g
over the standard partial order on w, Ey[f-g] > Eg[f]-

Eglg]-

There is a nice coupling between the Potts model and
the RC expansion defined by the Edwards-Sokal (ES)
model Edwards and Sokal (1988). On the graph G, it
is a coupled distribution over [¢]V x {0,1}¥. A pair
of configurations (z,y) and w are compatible if w;; =
1 = z; =y, for all (¢,j) € E. Denote A(z,y,w)
to be the indicator for this condition. Then the joint
distribution between (z,y) and w is as follows,

1
V(l‘,y7UJ) = ﬁ B(W) 'A(l‘,y,W)

- exp Z hid(x;,0) + Z 9;6(y;,0)
jelm]

i€[n]

where ZFS is the partition function for the above. The

ES coupling relates to the Potts and RC model as fol-
lows,

Lemma 5 (Edwards and Sokal (1988); Cioletti and
Vila (2016)). Marginals of ES match exactly the Potts
and RC model, that is,

Z v(z,y,w) = Az,y) and Z v(z,y,w) = p(w).

we{0,1}7 z€lq]”

yelq™

Relating Influence to Connectivity. Using the
ES coupling and FKG property of RC, we will show
that we can lower bound the influence function to a
weighted connectivity in the RC model.

Lemma 6. For any u,v € [n], we have,
AMXy =X, =0) = AXy=0)-\X, =0) >

e (H(Cuw) |
(exp (H(Cu(w))) +q - 1)7

Ey |L[u > v] -

where u <+ v denoted that u is in the same connected
component for given w and C,(w) denotes the cluster
containing u in C(w).

3The FKG property for the RC was first studied by
Fortuin and Kasteleyn (1972) under zero external field. For
the setting of one-directional non-negative external field,
this property was proven by Cioletti and Vila (2016). We
refer the reader to Cioletti and Vila (2016) for the most
general setup where this holds.

The intuition behind the relation to connectivity is
that in the ES coupling, the vertices in the same clus-
ter have the same state, hence if the probability of
the nodes being connected is high, they are likely to
have the same state. Following a careful analysis, the
weighted expectation can be lower bounded indepen-
dent of dimension n using the following lemma.

Lemma 7. For any u,v € [n], we have

exp (H(Cu(w)))
(exp (H(Cy(w))) + g — 1)
S 4= 1 o2 exp(—3X)
g (exp(A) + ¢ — 1)

Ey |1[u > v] -

Note that inf(u,v|0) = )‘(i\(&;ﬁ’gm - XX, =0) >
AMXy = X, = 0) = A(Xu = 0)-A(X, = 0) since A(X, =

0) < 1. Now using Lemma 7 gives us the desired result.

O

4.2 Algorithm: Greedy Maximization

Similar to the binary RBM setup, we iteratively build
the neighborhood by maximizing the conditional in-
fluence. The algorithm essentially remains the same
as Algorithm 1 replacing Cov,yg by inf. Our algorithm
gives us the following guarantee,

Theorem 9. For 7 = % ca? - % and
0 = exp(—X\)/q, with probability 1 — ¢, our algorithm
outputs exactly the two-hop neighborhood of observed

variable u for

The algorithm runs in time O(T*Mn) for each node
u.

The proof follows from essentially the same arguments
as the RBM case with a simpler argument on the
bound of set S. We refer the reader to the supple-
mentary for explicit details. Note that the dependence
on ¢ is exponential. To improve this is an interesting
open question.

5 Experimental Evaluations

Synthetic experiments. For our synthetic experi-
ments, we sample exactly from a binary RBM. Due to
high cost of sampling data from an RBM (state space
is exponential in the dimension of observed variables),
we restrict to low dimensions of the observed variables
<= 15. We consider a bipartite graphs with the same
number of hidden and observed nodes (n = m) and
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Figure 1: Fraction of runs for which the two-hop neigh-
borhood was exactly recovered with varying sample
size. The underlying graph has edge weights 1. The
two plots are have different magnitudes of external
fields on the hidden nodes.

Figure 2: Heat-maps representing frequency of node
to be in a two-hop neighborhood of another node for
binarized MNIST.

constant bounded degree (d = 2). The edges are se-
lected so as observed node 7 is connected to latent node
i and (i+1)%n (cyclically to the corresponding hidden
node and the next node with edge weight 1. The exter-
nal field is randomly selected with value £0.2 (Figure
1 - top) and + 0.4 (Figure 1 - bottom) on each latent
variable. We set 7 = 0.02 for the experiment. Under
this setup, we vary the input dimension as well as the
number of samples and plot the fraction of runs (out
of 10) in which we were able to recover the graph ex-
actly. This is consistent with our analysis. The choice
of parameters is arbitrary and we observed similar per-
formance up to tuning 7.

MNIST experiments. The bottleneck for running
on synthetic data was the data generation step and
not the algorithm. Therefore, we also run our algo-

0 o o 0
B s s B
10 1 10 10
5 5 5 5
n 2 2 )
= = 5 =
0 5 B o1 om = o s m o3 m o 5 m 1 W o 5 B 15 oW =m

Figure 3: Visualizing learned neighborhoods for digit 0
data for selected nodes. Here the pixel in white repre-
sents the selected node and the ones in red denote the
neighborhood. Observe that the neighborhood learned
does not exactly match the geometric neighborhood.

rithm on binarized MNIST (pixels set to 0 and 1 with
threshold at 0.5). Here n = 784 and number of sam-
ples per digit is M =~ 5000. For each digit class, we run
our algorithm to recover a bounded size neighborhood
(set to 8). We plot a heat-map corresponding to the
frequency of a node appearing in the two-hop neigh-
borhood of another node (see Figure 2). Note that
background pixels do not appear in any neighborhoods
since they are always 0 in our data and hence have no
positive correlation with other pixels. This heat-map
is able to identify the relevant structure of the digit
and importance of nodes. We observe that the algo-
rithm recovers a subset of the geometric neighborhood
along with some other positively correlated pixels (see
Figure 3). This learned structure can be incorporated
in to downstream tasks such as classification.

6 Conclusions and Open Problems

In this work we present key structural properties of fer-
romagnetic binary RBMs with arbitrary external fields
and ferromagnetic ¢-state RPMs with non-negative
field on a fixed state. Subsequently we show how to use
these properties to iteratively build the two-hop neigh-
borhood of each node. Our algorithms run in optimal
time and sample complexity in terms of the dimension
however pay doubly exponentially in the upper bound
on the weights and exponentially in the number of
states. This seems to be an artifact of the approach
of maximizing influence in general whereas algorithms
using convex optimization are able to avoid this depen-
dence for fully-observed graphical models. A natural
open question is to improve this dependency. Alter-
natively, proving a stronger structural result such as
weak-submodularity could lead to better dependence.
More broadly, understanding the most expressive class
of RBMs that allow efficient structure learning is a
worthwhile future direction to pursue. Further under-
standing non-binary RPMs with external field on more
than one states is an interesting direction however even
the FKG condition is not known to be satisfied for the
corresponding RC model.
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