
Ziv Goldfeld, Kristjan Greenewald

Supplementary Material for

Gaussian-Smoothed Optimal

Transport: Metric Structure and

Statistical E�ciency

A Non-Uniform Results

Figure 2 shows results for a non-uniform µ, specifically
for µ an isotropic d = 100 Gaussian. Note that the
behavior is qualitatively the same as the results for
uniform µ in the main text.

Figure 2: Non-uniform experiment. Convergence of

W(�)
1 (µ̂n, µ) as a function of n for various values of

�, shown in log-log space. The measure µ is the d-
dimensional standard normal distribution, where d =
100. The � = 0 case corresponds to the vanilla
1-Wasserstein distance, which converges slower than
GOT (note the di↵erence in slopes).

B Proof of Lemma 2
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where '̃� is a scalar Gaussian density (zero mean and
�
2 variance). We prove (28) for t > 0; the t < 0 case

is identical.
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Now, since g̃�(t) monotonically decreases as t moves
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Repeating the argument for t < 0 then yields
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Extending to the full d-dimensional distribution, note
that since t

2 + 1 > |t| for all t, we have that g̃�(t) 
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which establishes the lemma after collecting terms.


