Supplementary Material for Gaussian-Smoothed Optimal Transport: Metric Structure and Statistical Efficiency

A Non-Uniform Results

Figure 2 shows results for a non-uniform μ, specifically for μ an isotropic $d=100$ Gaussian. Note that the behavior is qualitatively the same as the results for uniform μ in the main text.

Figure 2: Non-uniform experiment. Convergence of $\mathrm{W}_{1}^{(\sigma)}\left(\hat{\mu}_{n}, \mu\right)$ as a function of n for various values of σ, shown in $\log -\log$ space. The measure μ is the d dimensional standard normal distribution, where $d=$ 100. The $\sigma=0$ case corresponds to the vanilla 1-Wasserstein distance, which converges slower than GOT (note the difference in slopes).

B Proof of Lemma 2

Recall that $g_{\sigma}(t)=\prod_{j=1}^{d} \tilde{g}_{\sigma}\left(t_{j}\right)$, where \tilde{g}_{σ} is σ subgaussian, zero mean, bounded, and monotonically decreasing as t_{j} moves away from zero. We first analyze the one-dimensional densities \tilde{g}_{σ}, and show that there exists a constant $c>0$, such that

$$
\begin{equation*}
\tilde{g}_{\sigma}(t) \leq c e^{2 \delta|t|-\delta^{2}-\log \delta} \tilde{\varphi}_{\sigma}(t), \quad \forall t \in \mathbb{R} \tag{28}
\end{equation*}
$$

which by [31] yields

$$
\begin{equation*}
\mathbb{P}_{\tilde{g}_{\sigma}}((-\infty, t) \cup(t, \infty)) \leq \exp \left(1-t^{2} /\left(2 \sigma^{2}\right)\right)=c^{\prime} \tilde{\varphi}_{\sigma}(t) \tag{30}
\end{equation*}
$$

where $\tilde{\varphi}_{\sigma}$ is a scalar Gaussian density (zero mean and σ^{2} variance). We prove (28) for $t>0$; the $t<0$ case is identical.

Note that the σ-subgaussianity of \tilde{g}_{σ} (Def. 3) implies that

$$
\begin{equation*}
\mathbb{E}_{\tilde{g}_{\sigma}}\left[e^{\alpha X}\right] \leq e^{\frac{1}{2} \sigma^{2} \alpha^{2}}, \quad \forall \alpha \in \mathbb{R}, \tag{29}
\end{equation*}
$$

where $c^{\prime}=\sqrt{2 \pi \sigma^{2} e^{2}}$. Consequently, for any t^{\star},

$$
\begin{align*}
\mathbb{P}_{\tilde{g}_{\sigma}}\left(\left(t^{\star}-\delta, t^{\star}\right]\right) & \leq \mathbb{P}_{\tilde{g}_{\sigma}}\left(\left(t^{\star}-\delta, \infty\right)\right) \\
& \leq c^{\prime} \tilde{\varphi}_{\sigma}\left(t^{\star}-\delta\right) \\
& =c^{\prime} e^{\left(t^{\star}\right)^{2}-\left(t^{\star}-\delta\right)^{2}} \tilde{\varphi}_{\sigma}\left(t^{\star}\right) \\
& =c^{\prime} e^{2 \delta t^{\star}-\delta^{2}} \tilde{\varphi}_{\sigma}\left(t^{\star}\right) \tag{31}
\end{align*}
$$

Now, since $\tilde{g}_{\sigma}(t)$ monotonically decreases as t moves away from zero, for any $t^{\star} \geq \delta$ we have $\mathbb{P}_{\tilde{g}_{\sigma}}\left(\left(t^{\star}-\right.\right.$ $\left.\left.\delta, t^{\star}\right]\right) \geq \delta \tilde{g}_{\sigma}\left(t^{\star}\right)$. Substituting this into (31), we have for all $t^{\star} \geq \delta$ that

$$
\begin{aligned}
\delta \tilde{g}_{\sigma}\left(t^{\star}\right) & \leq c^{\prime} e^{2 \delta t^{\star}-\delta^{2}} \tilde{\varphi}_{\sigma}\left(t^{\star}\right) \\
\tilde{g}_{\sigma}\left(t^{\star}\right) & \leq c^{\prime} e^{2 \delta t^{\star}-\delta^{2}-\log \delta} \tilde{\varphi}_{\sigma}\left(t^{\star}\right)
\end{aligned}
$$

Repeating the argument for $t<0$ then yields

$$
\tilde{g}_{\sigma}(t) \leq c^{\prime} e^{2 \delta|t|-\delta^{2}-\log \delta} \tilde{\varphi}_{\sigma}(t)
$$

for all $|t| \geq \delta$. Since \tilde{g}_{σ} is bounded, $\sup _{|t| \leq \delta} \tilde{g}_{\sigma}(t)\left(e^{2 \delta t-\delta^{2}-\log \delta} \tilde{\varphi}_{\sigma}(t)\right)^{-1}$ exists, and hence (28) holds (for all $t \in \mathbb{R}$) with

$$
c=\max \left[c^{\prime}, \sup _{|t| \leq \delta} \tilde{g}_{\sigma}(t)\left(e^{2 \delta t-\delta^{2}-\log \delta} \tilde{\varphi}_{\sigma}(t)\right)^{-1}\right]
$$

Extending to the full d-dimensional distribution, note that since $t^{2}+1>|t|$ for all t, we have that $\tilde{g}_{\sigma}(t) \leq$ $c e^{2 \delta t^{2}+2 \delta-\delta^{2}-\log \delta} \tilde{\varphi}_{\sigma}(t)$ for all t. We can then write

$$
\begin{equation*}
g_{\sigma}(t) \leq\left(c^{\prime}\right)^{d} e^{2 \delta\|t\|^{2}+2 d \delta-d \delta^{2}-d \log \delta} \varphi_{\sigma}(t) \tag{32}
\end{equation*}
$$

which establishes the lemma after collecting terms.

