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A Non-Uniform Results

Figure 2 shows results for a non-uniform g, specifically
for p an isotropic d = 100 Gaussian. Note that the
behavior is qualitatively the same as the results for
uniform g in the main text.
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Figure 2: Non-uniform experiment. Convergence of
Wﬁa)(ﬂn, w) as a function of n for various values of
o, shown in log-log space. The measure p is the d-
dimensional standard normal distribution, where d =
100. The o0 = 0 case corresponds to the vanilla
1-Wasserstein distance, which converges slower than

GOT (note the difference in slopes).

B Proof of Lemma 2

Recall that g.,(t) = H?:I go(tj), where g, is o-
subgaussian, zero mean, bounded, and monotonically
decreasing as t; moves away from zero. We first ana-
lyze the one-dimensional densities g,, and show that
there exists a constant ¢ > 0, such that

Go(t) < ce@ltl=0"—logd 5 (1) vt ¢ R, (28)

which by [31] yields

P, ((—o0,t) U (t,00)) < exp(l — t2/(202)) = ¢4 (1),

(30)
where @, is a scalar Gaussian density (zero mean and
o? variance). We prove (28) for ¢ > 0; the t < 0 case
is identical.

Note that the o-subgaussianity of g, (Def. 3) implies

that
By, [e*¥] <e37 " VaeR, (29)

where ¢’ = v/2ro2e2. Consequently, for any t*,
Py, ((t* = 6,t%]) < Py, ((t* — 6,00))

< po(t* —0)

— c’e(t*)2_(t*_5)2¢g(t*)

= e =05 (). (31)
Now, since g, (t) monotonically decreases as t moves
away from zero, for any t* > § we have Pj, ((t* —
8,t*]) > 6go(t*). Substituting this into (31), we have
for all t* > § that

5§o(t*) < 61625?762@0@*)7

ﬁg(t*) < cle2ét*—62—log 6950(15*).
Repeating the argument for ¢t < 0 then yields
gg(t) < 6/626\t|—62—10g6¢0(t)

for all |t > 4.

supjyj<s o (1) (€205 10805, (1))
(28) holds (for all ¢ € R) with

Since g, is bounded,

1
exists, and hence

-1
¢ = max [c', sup go(t) (ewt*ﬁ%log‘sgbg(t)) ] .
[t]<é

Extending to the full d-dimensional distribution, note
that since t2 4+ 1 > [t| for all ¢, we have that g, (t) <
ce20t°+20-8"~logd 5 (1) for all t. We can then write

2 2
gg(t) < (C/)deQ(SHtH +2d5—d§ —dlogé(pg(t), (32)

which establishes the lemma after collecting terms.



