
Gaussian-Smoothed Optimal Transport:

Metric Structure and Statistical E�ciency

Ziv Goldfeld Kristjan Greenewald

Cornell University MIT-IBM Watson AI Lab

Abstract

Optimal transport (OT), in particular the
Wasserstein distance, has seen a surge of
interest and applications in machine learn-
ing. However, empirical approximation un-
der Wasserstein distances su↵ers from a se-
vere curse of dimensionality, rendering them
impractical in high dimensions. As a re-
sult, entropically regularized OT has become
a popular workaround. While it enjoys fast
algorithms and better statistical properties,
it however loses the metric structure that
Wasserstein distances enjoy. This work pro-
poses a novel Gaussian-smoothed OT (GOT)
framework, that achieves the best of both
worlds: preserving the 1-Wasserstein met-
ric structure while alleviating the empirical
approximation curse of dimensionality. Fur-
thermore, as the Gaussian-smoothing param-
eter shrinks to zero, GOT �-converges to-
wards classic OT (with convergence of op-
timizers), thus serving as a natural exten-
sion. An empirical study that supports
the theoretical results is provided, promoting
Gaussian-smoothed OT as a powerful alter-
native to entropic OT.

1 Introduction

In recent years optimal transport (OT) has been ap-
plied to a host of machine learning (ML) tasks as a
powerful means of comparing probability measures.
The Kantorovich OT [Kantorovich, 1942] problem be-
tween two probability measures µ and ⌫ with cost
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c(x, y) is given by

inf
⇡2⇧(µ,⌫)

Z
c(x, y) d⇡(x, y), (1)

where ⇧(µ, ⌫) is the set of transport plans (or cou-
plings) between µ and ⌫. Applications of the Kan-
torovich formulation include data clustering [Ho et al.,
2017], density ratio estimation [Iyer et al., 2014], do-
main adaptation [Courty et al., 2016, Courty et al.,
2014], generative models [Arjovsky et al., 2017, Gul-
rajani et al., 2017], image recognition [Rubner et al.,
2000, Sandler and Lindenbaum, 2011, Li et al., 2013],
word and document embedding [Alvarez-Melis and
Jaakkola, 2018, Yurochkin et al., 2019, Grave et al.,
2019], and many others.

This surge in popularity has been driven by some
highly advantageous properties of OT. Beyond its ro-
bustness to mismatched supports of µ and ⌫ (crucial
for learning generative models), when c(x, y) = kx �
yk, (1) becomes the 1-Wasserstein distance1, which (i)
has the operational interpretation of minimizing work
(or expected cost); (ii) metrizes weak (also known as,
weak*) convergence of probability measures; and (iii)
defines a constant speed geodesic in the space of prob-
ability measures (giving rise to a natural interpolation
between measures). These advantages, however, come
with a price as OT is generally hard to compute and
su↵ers from the so-called curse of dimensionality.

Specifically, suppose we have n independent samples
(Xi)ni=1 from a Borel probability measure µ on Rd.
Consider the fundamental question of how quickly the
empirical measure µ̂n , 1

n

P
n

i=1 �Xi approaches µ in
the 1-Wasserstein distance, i.e., the EW1(µ̂n, µ) rate
of decay. This quantity is at the heart of empirical
approximation under W1 since it controls the error
in various additional approximation setups, such as
E
��W1(µ̂n, ⌫) � W1(µ, ⌫)

�� (one-sample goodness of fit
test), E

��W1(µ̂n, ⌫̂n) � W1(µ, ⌫)
�� (two-sample tests)2,

and others; see [Panaretos and Zemel, 2019] for a

1
Any p-Wasserstein distance has these properties.

2
Note that while Wasserstein-type GANs in practice

typically use the two-sample setup since the generator
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review on statistical applications of the Wasserstein
distance. Since W1 metrizes weak convergence [Vil-
lani, 2008, Cor. 6.18], the Glivenko-Cantelli theo-
rem [Varadarajan, 1958] implies W1(µ̂n, µ) ! 0 as
n ! 1. Unfortunately, the convergence rate in n dras-
tically deteriorates with dimension, scaling at best as
n
� 1

d for any measure µ that is absolutely continuous
with respect to (w.r.t.) the Lebesgue measure [Dud-
ley, 1969]. Note that the n

� 1
d rate is sharp for all

d > 2 (see [Dobrić and Yukich, 1995] for sharper re-
sults). This renders empirical approximation under
the Wasserstein distance infeasible in high dimensions
– a disappointing shortcoming given the dimensional-
ity of data in modern ML tasks.

In light of the above, entropic OT emerged as an ap-
pealing alternative to Kantorovich OT. Its popularity
has been driven both by algorithmic advances [Cuturi,
2013,Altschuler et al., 2017] and some better statistical
properties it possesses [M. et al., 2017,Montavon et al.,
2016, Rigollet and Weed, 2018]. Entropic OT regu-
larizes the expected cost by a Kullback-Leibler (KL)
divergence, forming:

S(✏)
c

(µ, ⌫) , inf
⇡2⇧(µ,⌫)

Z
c(x, y) d⇡(x, y) + ✏D(⇡kµ⇥ ⌫),

where c(x, y) is the cost and D(↵k�) ,
R
log

⇣
d↵
d�

⌘
d↵

if ↵ ⌧ � and +1 otherwise. While the Wasser-
stein distance su↵ers from the curse of dimensional-
ity, [Genevay et al., 2019] showed that if c is Lips-

chitz and infinitely di↵erentiable, then E
��S(✏)c (µ̂n, ⌫̂n)�

S(✏)c (µ, ⌫)
�� 2 O

⇣
n
� 1

2

⌘
in all dimensions (see [Mena

and Niles-Weed, 2019] for sharper results specialized
to quadratic cost). Despite this fast convergence in
the two-sample test, sample complexity bounds in the
(stronger) one-sample regime are not available. More
importantly, the assumptions from [Genevay et al.,
2019] exclude the distance cost c(x, y) = kx � yk,
which is our main interest. Another drawback is that
S(✏)c (µ, ⌫) is not a metric, even when c(x, y) is [Feydy

et al., 2019, Bigot et al., 2019] (e.g, S(✏)c (µ, µ) 6= 0).3

Hence entropic OT retains several gaps in statisti-
cal convergence guarantees, and more importantly, it
surrenders desirable properties of the Wasserstein dis-
tance. We thus seek an alternative OT framework that
enjoys the best of both worlds.

Contributions. This paper proposes a novel OT
framework, termed Gaussian-smoothed OT (GOT)

distribution is intractable to compute, fundamentally the

GAN actually corresponds to a one-sample setup since in-

finite samples can be obtained from the generator network.
3Sc(✏) can be transformed into a Sinkhorn divergence

for which S(✏)
c (µ, µ) = 0), but it still is not a metric [Bigot

et al., 2019] since it lacks the triangle inequality.

that inherits the metric structure of W1 while attain-
ing stronger statistical guarantees than available for
entropic OT. GOT of parameter � � 0 between two d-
dimensional probability measures µ and ⌫ is defined as

W(�)
1 (µ, ⌫) , W1(µ ⇤N�, ⌫ ⇤N�), (2)

where ⇤ stands for convolution and N� , N (0,�2Id)
is the isotropic Gaussian measure of parameter �. In

other words, W(�)
1 (µ, ⌫) is simply the W1 distance be-

tween µ and ⌫ after each is smoothed by an isotropic
Gaussian kernel.

We first show that just as W1, for any fixed � 2
[0,+1), W(�)

1 is a metric on the space of probability
measures that metrizes the weak topology. Namely,
a sequence of probability measures (µk)k2N converges

weakly to µ if and only if W(�)
1 (µk, µ) ! 0. We then

turn to study properties of W(�)
1 (µ, ⌫) as a function

of � for fixed µ and ⌫. We establish continuity and
non-increasing monotonicity. These, in particular, im-
ply convergence of the optimal transportation costs,

i.e., lim�!0 W
(�)
1 (µ, ⌫) = W1(µ, ⌫). Additionally, us-

ing the notion of �-convergence [Maso, 2012], we estab-
lish convergence of optimizing transport plans. Thus,
if (⇡k)k2N is sequence of optimal transport plans for

W(�k)
1 (µ, ⌫), where �k ! 0, then (⇡k)k2N converges

weakly to an optimal plan for W1(µ, ⌫).

Lastly, we explore the one-sample empirical approx-
imation under GOT, i.e., the convergence rate of

EW(�)
1 (µ̂n, µ). It was shown in [Goldfeld et al., 2020]

that Gaussian smoothing alleviates the curse of di-

mensionality, with EW(�)
1 (µ̂n, µ) converging as n

� 1
2

in all dimensions. Although GOT is specialized to
Gaussian noise, we present a generalized empirical ap-
proximation result that accounts for any subgaussian
noise density. This, in turn, implies fast convergence

of E
��W(�)

1 (µ̂n, ⌫) � W(�)
1 (µ, ⌫)

�� and E
��W(�)

1 (µ̂n, ⌫̂n) �
W(�)

1 (µ, ⌫)
�� via the triangle inequality. The expected

value analysis is followed by a high probability claim
derived through McDiarmid’s inequality. Numerical
results that validate these theoretical findings are pro-
vided. We conclude that GOT is an appealing alter-
native to entropic optimal transport, both in terms of
its analytic and its statistical properties.

2 Notation and Preliminaries

Let P(Rd) be the set of Borel probability measures on
Rd, while P1(Rd) ⇢ P(Rd) are those with finite first
moments, i.e.,

R
Rd kxk dµ(x) < 1, where k · k is the

Euclidean norm. We denote by ⇧(µ, ⌫) ⇢ P(Rd) the
set of transport plans (or couplings) between measures
µ, ⌫ 2 P(Rd). Namely, any ⇡ 2 ⇧(µ, ⌫) is a probability
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measure on Rd ⇥Rd whose first and second marginals
are µ and ⌫, respectively.

The n-fold product extension of µ 2 P(Rd) is
µ
⌦n. The probability density function (PDF) of the

isotropic Gaussian measure N� is '�. Given µ, ⌫ 2
P(Rd), their convolution µ⇤⌫ 2 P(Rd) is (µ⇤⌫)(A) =R R

1A(x + y) dµ(x) d⌫(y), where 1A is the indicator
of A. For two independent random variables X ⇠ µ

and Y ⇠ ⌫, we have X + Y ⇠ µ ⇤ ⌫.

We use Eµf for the expectation of a measurable f

w.r.t. µ, sometimes writing Eµf(X) to emphasize
its dependence on X ⇠ µ. When the underlying
probability measure is clear from the context, the
subscript is omitted. Accordingly, the characteristic
function of µ 2 P(Rd) is �µ(t) , Eµ

⇥
e
it

>
X
⇤
. For

any µ, ⌫ 2 P(Rd), we have �µ⇤⌫(t) = �µ(t)�⌫(t); if
µ ⇥ ⌫ 2 P(Rd ⇥ Rd) is the product measure of µ and
⌫, then �µ⇥⌫(t, s) = �µ(t)�⌫(s).

Definition 1 (Weak Topology) The weak topol-
ogy on P(Rd) is induced by integration against the

set C
0
b
(Rd) of bounded and continuous functions. Ac-

cordingly, we say that (µk)k2N ⇢ P(Rd) converges

weakly to µ 2 P(Rd), denoted by µk * µ, ifR
Rd f(x) dµk(x) !

R
Rd f(x) dµ(x), for all f 2 C

0
b
(Rd).

It is a well-known fact that
�
P1(Rd),W1

�
is a metric

space, and that the 1-Wasserstein distance metrizes
the weak topology (cf. [Villani, 2008, Thm. 6.9]). As
shown in the sequel, this statement remains true if the
1-Wasserstein distance is replaced with its Gaussian-
smoothed version, as defined next.

Definition 2 (Gaussian-Smoothed W1) The

Gaussian-smoothed 1-Wasserstein distance between

µ, ⌫ 2 P1(Rd) is W(�)
1 (µ, ⌫) , W1(µ ⇤N�, ⌫ ⇤N�).

Letting X ⇠ µ, Y ⇠ ⌫ and Z,Z
0 ⇠ N� be independent

random variables, W(�)
1 (µ, ⌫) is the 1-Wasserstein dis-

tance between the probability laws of X +Z ⇠ µ ⇤N�

and Y + Z
0 ⇠ ⌫ ⇤N�. Thus, W

(�)
1 (µ, ⌫) can be under-

stood as a ‘smoothed’ version of W1, where ‘smooth-
ing’ is applied to the probability measures via con-
volution with a Gaussian kernel (or, equivalently, via
additive white Gaussian noise).

The theoretical results in this paper are organized as
follows. Section 3 studies the metric properties of

W(�)
1 . Section 4 establishes properties of W(�)

1 as a
function of �. One-sample empirical approximation

rates under W(�)
1 are explored in Section 5.

3 Metrizing the Weak Topology

Clearly, W(�)
1 (µ, ⌫) < +1, for any µ, ⌫ 2 P1(Rd).

Furthermore, similar to the regular 1-Wasserstein dis-

tance, W(�)
1 is a metric on P1(Rd), whose convergence

is equivalent to convergence in the weak topology.

Theorem 1 (GOT Metric) For any � � 0, W(�)
1 :

P1(Rd)⇥ P1(Rd) ! [0,+1) is a metric on P1(Rd).

This result mostly follows from W1 being a metric.
Some work is needed to establish the ‘identity of in-
discernibles’ properties. See Section 7.1 for the proof.

Theorem 2 (Weak Topology Metrization)

Let � � 0, (µk) ⇢ P(Rd) and µ 2 P(Rd). Then

W(�)
1 (µk, µ) ! 0 if and only if (i↵) EµkkXk ! EµkXk

and µk * µ. Consequently, W(�)
1 (µk, µ) ! 0 i↵

W1(µk, µ) ! 0.

Theorem 2 with W1 in place of W(�)
1 is a well-known

result [Villani, 2008, Thm. 6.9]). The above can be
therefore understood as the statement that ‘the 1-
Wasserstein topology is invariant to convolutions with
Gaussian kernels’. See Section 7.2 for the proof.

4 Dependence on Noise Parameter

We study properties on W(�)
1 (µ, ⌫), for fixed µ, ⌫ 2

P1(Rd), as a function of � 2 [0,+1).

Theorem 3 (GOT Dependence on �) Fix µ, ⌫ 2
P1(Rd). The following hold:

i) W(�)
1 (µ, ⌫) is continuous and monotonically non-

increasing in � 2 [0,+1);

ii) lim�!0 W
(�)
1 (µ, ⌫) = W1(µ, ⌫);

iii) lim�!1 W(�)
1 (µ, ⌫) 6= 0, for some µ, ⌫ 2 P1(Rd).

While W(�)
1 (µ, ⌫) is a monotonically non-increasing

function of �, as � ! 1 it is interestingly not true
in general that W1(µ⇤N�, ⌫ ⇤N�) decays to zero. The
proof of Theorem 3 (Section 7.3) shows this via a sim-
ple Dirac measure example.

A key technical tool (that may be of independent in-
terest) for establishing item (i) above is the following
lemma, which ties GOT at di↵erent noise levels to one
another. Its proof (Section 7.4) uses the Kantorovich-
Rubinstein duality.
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Lemma 1 (Stability Across �) Fix µ, ⌫ 2 P1(Rd),
and 0  �1 < �2 < +1. We have

W(�2)
1 (µ, ⌫)W(�1)

1 (µ, ⌫)W(�2)
1 (µ, ⌫)+2

q
d (�2

2��2
1).

Theorem 3 established convergence of transport costs,

i.e., that W(�k)
1 (µ, ⌫) ! W(�)

1 (µ, ⌫) as �k ! �. The
next result shows we also have convergence of opti-
mal plans. Namely, a sequence of optimal couplings

(⇡k)k2N for W(�k)
1 (µ, ⌫) (weakly) approaches an opti-

mal coupling for W(�)
1 (µ, ⌫) as k goes to infinity.

Theorem 4 (Convergence of Optimal Plans)

Fix µ, ⌫ 2 P1(Rd) and let (�k)k2N be a sequence with

�k & � � 0. Let ⇡k 2 ⇧(µ ⇤N�k , ⌫ ⇤N�k), k 2 N, be
an optimal coupling for W(�k)

1 (µ, ⌫). Then there exists

⇡ 2 ⇧(µ ⇤ N�, ⌫ ⇤ N�) such that ⇡k * ⇡ (weakly) as

k ! 1 and ⇡ is optimal for W(�)
1 (µ, ⌫).

The proof of Theorem 4 (Section 7.5) relies on the no-
tion of �-convergence. Convergence of optimal trans-
port plans then follows by standard tightness argu-
ments. In particular, this theorem implies that a se-

quence of optimal transport plans for W(�)
1 (µ, ⌫) con-

verges to an optimal plan for the regular 1-Wasserstein
distance W1(µ, ⌫) as � ! 0.

5 Empirical Approximation

We now explore statistical properties of W(�)
1 . In fact,

our derivation accounts for any isotropic noise distri-
bution G� that along each coordinate is �-subgaussian
with a bounded and monotone (in a proper sense) den-
sity.4 Gaussian noise is captured as a special case.

Consider the fundamental one-sample empirical ap-
proximation, where µ 2 P1(Rd) is approximated by
µ̂n , 1

n

P
n

i=1 �Xi , with (X1, . . . , Xn) ⇠ µ
⌦n and �x

as the Dirac measure centered at x. We study how

fast W(G�)
1 (µ̂n, µ) , W1(µ̂n ⇤ G�, µ ⇤ G�) ! 0 with n.5

In a remarkable contrast to the 1-Wasserstein curse of
dimensionality, we show Eµ⌦nW(�)

1 (µ̂n, µ) 2 O
�
n
� 1

2

�

in all dimensions [Goldfeld et al., 2020], thus attaining
the parametric rate.

To state the results, we first define subgaussianity.

Definition 3 (Subgaussian Measure) A probabil-

ity measure µ 2 P1(Rd) is K-subgaussian, for K > 0,
if for any ↵ 2 Rd

, X ⇠ µ satisfies

Eµ

h
e
↵

T (X�EX)
i
 e

1
2K

2k↵k2

. (3)

4
A further extension to nonisotropic noise is possible

via similar techniques, but we do not delve into it here.

5
Of course, W(N�)

1 (µ, ⌫) = W(�)
1 (µ, ⌫).

We first bound the expected value and then give a
high probability bound. The next theorem generalizes
[Goldfeld et al., 2020, Prop. 1] to non-Gaussian noise.

Theorem 5 (GOT Empirical Approximation)

Fix d � 1, � > 0 and K > 0. Let G� 2 P1(Rd) have

a density g� that decomposes as g�(x) =
Q

d

j=1 g̃�(xj).
Assume that g̃� is �-subgaussian, bounded and mono-

tonically decreases as its argument goes away from

zero in either direction. For any K-subgaussian

µ 2 P1(Rd), we have

Eµ⌦nW(G�)
1 (µ̂n, µ)  c�,d,Kn

� 1
2 , (4)

where c�,d,K = e
O(d)

is given in (20). In particular

W(�)
1 (µ̂n, µ) 2 O

⇣
n
� 1

2

⌘
.

The proof of Theorem 5 is given in Section 7.6.

Corollary 1 (Concentration Inequality)

Under the paradigm of Theorem 5, denote

X , supp(µ) and suppose diam(X ) < 1, where

diam(X ) = supx 6=y2X kx� yk. For any t > 0 we have

Pµ⌦n

⇣���W(G�)
1 (µ̂n, µ)�EW(G�)

1 (µ̂n, µ)
���� t

⌘
 2e

� 2t2n
diam(X)2

(5)
and consequently,

Pµ⌦n

✓
W(G�)

1 (µ̂n, µ) 2 !

✓
log np

n

◆◆
 1

poly(n)
. (6)

The proof Theorem 1 is given in Section 7.7. It uses
the W1 duality and McDiarmid’s inequality.

6 Empirical Results

We turn to some numerical experiments demonstrat-
ing the di↵erence in empirical approximation conver-
gence rates between the regular 1-Wasserstein distance

and GOT. We computeW1(µ̂n, µ) andW(�)
1 (µ̂n, µ), for

µ = Unif
�
[0, 1]d

�
the uniform measure on [0, 1]d, and

µ̂n = 1
n

P
n

i=1 �Xi the empirical measure based on i.i.d.
samples X1, . . . , Xn ⇠ µ. This simple setup also hints
at the breadth of the class of distributions for which
W1(µ̂n, µ) attains the poor convergence rate.

The GOT framework corresponds to the 1-Wasserstein
distance between two continuous (smooth) distribu-
tions. To evaluate this 1-Wasserstein distance we chose
to employ the neural network (NN) based dual opti-
mization approach of [Gulrajani et al., 2017]. This ap-
proach seems to be better suited for continuous prob-
ability measures than, e.g., the Sinkhorm algorithm
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(a) d = 5 (b) d = 10 (c) d = 100

Figure 1: Convergence of W(�)
1 (µ̂n, µ) as a function of the number of samples n for various values of �, shown in

log-log space. The measure µ is the uniform distribution over [0, 1]d. Note that � = 0 corresponds to the vanilla
Wasserstein distance, which converges slower than GOT (note the di↵erence in slopes), especially with larger d.

[Cuturi, 2013]. Starting from Kantorovich-Rubinstein
duality

W1(µ, ⌫) = sup
kfkLip1

Eµf � E⌫f, (7)

the function f is first parametrized by a NN f✓, with
parameter set ✓ 2 ⇥,6 and then the kf✓kLip1 con-
straint is relaxed to a regularization penalty on the
expected gradient of f✓(x) (w.r.t. to x). In sum, as
in [Gulrajani et al., 2017], we use the ADAM stochas-
tic gradient ascent method to optimize

sup
✓2⇥

Eµf✓ � E⌫f✓ + �E⌘

h�
krxf✓k � 1

�2i
, (8)

where ⌘ interpolates between µ and ⌫ in a manner
compatible with the gradient penalty (GP) theoretical
justification [Gulrajani et al., 2017, Prop. 1]. Spe-

cializing to W(�)
1 , µ and ⌫ above are replaced with

µ ⇤ N� and ⌫ ⇤ N�, respectively. To approximate
expectations with empirical sums, we sample from
these Gaussian-smoothed measures by adding (sam-
pled) Gaussian noise to the original samples. This
makes use of the fact that convolution of probability
measures corresponds to sums of independent random
variables.

Figure 1 shows the results for d = 5, d = 10, and
d = 100, with each curve averaged over 10 random tri-
als.7 Note the slower decay of the � = 0 case, which
corresponds to vanilla W1, compared to the approx-

6
We used a fully connected DNN with 3 hidden ReLU

layers, each of 1024 nodes. The network was trained until

convergence of the estimated Wasserstein distance.
7
Error bars were omitted since they were too small, and

for d = 100 we restricted the values of � to alleviate the

computational burden.

imately O(n�1/2) rate of W
(�)
1 for � > 0. In par-

ticular, this divergence of rates increases as the di-
mension increases, as expected. In the d = 10 plot,
the curves slightly accelerate as n increases instead of
staying linear. This seems to originate from a two-
fold imperfection in the NN-based approximation of
the Lipschitz function f . First, the GP regulariza-
tion does not perfectly enforce the Lipschitz constraint
especially in high dimensions. Second, to accurately

evaluate W(�)
1 (µ̂n, µ) the network e↵ectively needs to

overfit µ̂n. As NNs tend to avoid overfitting (especially
once the number of modes n in µ̂n becomes large), ad-
ditional slackness might be introduced.

As expected, the W1(µ̂n, µ) estimate converges signifi-
cantly slower than its Gaussian-smoothed counterpart,
as evident by comparing the slopes of the curves in
log-log space. In particular, the convergence of the
W1(µ̂n, µ) estimate is much slower for d = 10 than

for d = 5 as predicted. The W(�)
1 estimate, on the

other hand, still converges approximately as O(n�1/2)

in both cases. The fact that W(�)
1 is monotonically

decreasing in � can also be seen from the plots. These
results are comparable with the ones from [Genevay
et al., 2019] for two-sample empirical approximation
of entropic OT.

7 Proofs

7.1 Proof of Theorem 1

The fact that W(�)
1 (µ, ⌫) is symmetric, non-negative

and equals zero when µ = ⌫ follows from its definition.

To prove the triangle inequality, i.e., W(�)
1 (µ1, µ3) 
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W(�)
1 (µ1, µ2) + W(�)

1 (µ2, µ3), for any µ1, µ2, µ3 2
P1(Rd), let ⇡12 2 ⇧(µ1 ⇤N�, µ2 ⇤N�) and ⇡23 2 ⇧(µ2 ⇤
N�, µ3 ⇤ N�) be optimal couplings for W(�)

1 (µ1, µ2)

and W(�)
1 (µ2, µ3), respectively. Applying the Gluing

Lemma [Villani, 2008], let ⇡ 2 P1(Rd ⇥ Rd ⇥ Rd)
be a probability measure with ⇡12 and ⇡23 as its
marginals on the corresponding coordinates. Letting
⇡13(A⇥B) , ⇡(A⇥Rd⇥B), we have ⇡13 2 ⇧(µ1, µ3)
and

W(�)
1 (µ1, µ3)  E⇡13kX1 �X3k

 E⇡12kX1 �X2k+ E⇡23kX2 �X3k

= W(�)
1 (µ1, µ2) +W(�)

1 (µ2, µ3). (9)

It remains to show that W(�)
1 (µ, ⌫) = 0 implies that

µ = ⌫. Since W1 is a metric, we know that if

W(�)
1 (µ, ⌫) = 0 then µ ⇤ N� = ⌫ ⇤ N�. This im-

plies pointwise equality between characteristic func-
tions: �µ�N� = �⌫�N� . Since �N� 6= 0 everywhere,
we get �µ = �⌫ pointwise, implying µ = ⌫.

7.2 Proof of Theorem 2

The claim relies on the equivalence between weak con-
vergence and pointwise convergence of characteristic
functions. Since W1 metrizes weak convergence:

W(�)
1 (µk, µ) ! 0

() µk ⇤N� ! µ ⇤N�

() �µk(t)�N� (t) = �µ(t)�N� (t) , 8t 2 Rd

() �µk(t) = �µ(t) , 8t 2 Rd
.

7.3 Proof of Theorem 3

For Claim (ii), the fact that lim�!0 W
(�)
1 (µ, ⌫) =

W1(µ, ⌫) follows from Lemma 1 by taking �1 = 0 and
�2 = � ! 0.

For Claim (i), W(�)
1 (µ, ⌫) being monotonically non-

increasing in � also follows directly from Lemma 1. To
prove continuity at � 2 (0,+1), we consider left- and
right- continuity separately. Let �k % � as k ! 1.
Lemma 1 gives

W(�)
1 (µ, ⌫)  W(�k)

1 (µ, ⌫)  W(�)
1 (µ, ⌫) + 2d

q
�2 � �2

k
,

and left-continuity follows.

To see that W(�)
1 (µ, ⌫) is right-continuous in �, let

�k & � and denote ✏k ,
p
�2
k
� �2. We have

W(�k)
1 (µ, ⌫) = W(✏k)

1 (µ ⇤N�, ⌫ ⇤N�) ����!
k!1

W(�)
1 (µ, ⌫),

where the last step uses W(�)
1 continuity at � = 0.

Moving to Claim (iii), let µ = �x and ⌫ = �y be two
Dirac measures at x 6= y 2 Rd. For any � 2 [0,+1),

W(�)
1 (µ, ⌫) = W1

�
N (x,�2Id),N (y,�2Id)

�

�
���EN (x,�2Id)X � EN (y,�2Id)Y

���

= kx� yk,

where the equality uses Jensen’s inequality and con-
vexity of norms.

7.4 Proof of Lemma 1

The first inequality immediately follows because W1

is non-increasing under convolutions and since N�2 =
N�1 ⇤Np

�2
2��2

1
.

For the second inequality, we use Kantorovich-
Rubinstein duality to write

W(�1)
1 (µ, ⌫) = sup

kf1kLip1
Eµ⇤N�1

f1 � E⌫⇤N�1
f1;

W(�2)
1 (µ, ⌫) = sup

kf2kLip1
Eµ⇤N�2

f2 � E⌫⇤N�2
f2.

Letting f
?
1 be optimal for W(�1)

1 (µ, ⌫), we have

W(�2)
1 (µ, ⌫) � Eµ⇤N�2

f
?

1 � E⌫⇤N�2
f
?

1 . (10)

Set X ⇠ µ, Z1 ⇠ N�1 and Z21 ⇠ Np
�2
2��2

1
as indepen-

dent random variables; clearly, Z2 , Z1 + Z21 ⇠ N�2 .
Consider:
��Eµ⇤N�1

f
?

1 � Eµ⇤N�2
f
?

1

�� = Ef?

1 (X + Z1)� Ef?

1 (X + Z2)

 EkZ21k

=
q
d (�2

2 � �2
1), (11a)

where the last in equality uses kf?
1 kLip  1. Similarly,

one has
��E⌫⇤N�1

f
?

1 � E⌫⇤N�2
f
?

1

�� 
q

d (�2
2 � �2

1). (11b)

Inserting (11) into (10) concludes the proof.

7.5 Proof of Theorem 4

We first include the definitions of tightness of measures
and �-convergence of functionals.

Definition 4 (Tightness of Measures) A subset

S ⇢ P(Rd) is tight if for any ✏ > 0 there is a

compact set K✏ ⇢ Rd
such that µ(K✏) � 1 � ✏, for all

µ 2 P(R)d.

Definition 5 (�-Convergence) Let X be a metric

space and Fk : X ! R, k 2 N be a sequence of func-

tionals. We say (Fk)k2N �-converges to F : X ! R,
and we write Fk

�! F, if:
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i) For every xk, x 2 X , k 2 N, with xk ! x, we have

F(x)  lim infk!1 Fk(xk);

ii) For any x 2 X , there exists xk 2 X , k 2 N, with
xk ! x, and F(x) � lim supk!1 Fk(xk)

By pointwise convergence of characteristic functions,
Pk , µ ⇤N�k and Qk , ⌫ ⇤N�k are weakly convergent
measures on Rd. Prokhorov’s Theorem then implies
they are tight. By [Villani, 2008, Lemma 4.4] we have

that ⇧
⇣
(Pk)k2N, (Qk)k2N

⌘
, the set of all couplings

with marginals in (Pk)k2N and (Qk)k2N is also tight.
Hence, the sequence of optimal couplings (⇡k)k2N is
tight and weakly converges to some ⇡ 2 P(Rd ⇥ Rd).
Taking the limit of the relation ⇡k 2 ⇧(Pk, Qk) we ob-
tain ⇡ 2 ⇧(P,Q), where P , µ ⇤N� and Q , ⌫ ⇤N�.

With that in mind, recall that if (Fk)k2N �-converges
to F, then limk!1 inf Fk = inf F [Maso, 2012, Thm.
7.8]. Furthermore, if (xk)k2N is a sequence of minimiz-
ers of Fk, for each k 2 N, then any cluster (limit) point
of (xk)k2N is a minimizer of F [Maso, 2012, Cor. 7.20].
Thus, to conclude the proof of Theorem 4 it su�ces to
establish �-convergence of Fk : P(Rd⇥Rd) ! R[{1}
to F : P(Rd ⇥ Rd) ! R [ {1} defined as

Fk(⇡) =

(
E⇡kX � Y k, ⇡ 2 ⇧(µ ⇤N�k , ⌫ ⇤N�k)

1, otherwise

F(⇡) =

(
E⇡kX � Y k, ⇡ 2 ⇧(µ ⇤N�, ⌫ ⇤N�)

1, otherwise
.

We start with the lim inf �-convergence inequality.
First observe that if (⇡k)k2N does not contain a sub-
sequence (without relabeling) such that ⇡k 2 ⇧(µ ⇤
N�k , ⌫ ⇤ N�k), then the claim is trivial. Accordingly,
assume (again, up to extraction of subsequences) that
⇡k 2 ⇧(µ ⇤N�k , ⌫ ⇤N�k), for all k 2 N. Since x 7! kxk
is a non-negative and continuous, the lim inf condition
directly follows from the Portmanteau Theorem:

F(⇡)  lim inf
k!1

Z
kx� ykd⇡k = lim inf

k!1
Fk(⇡k). (12)

For the lim sup let ⇡ 2 ⇧(µ ⇤ N�, ⌫ ⇤ N�). For con-
venience, we use random variable notation. There
exists a tuple (X,Y, Z

0
, Z

00) with marginal distribu-
tions X ⇠ µ, Y ⇠ ⌫ and Z

0
, Z

00 ⇠ N�, such that
(X,Z

0) are independent, (Y, Z 00) are independent, and
(X + Z

0
, Y + Z

00) ⇠ ⇡.

To construct the sequence (⇡k)k2N, let Zk ⇠ Np
�2
k��2

be independent of (X,Y, Z
0
, Z

00). Setting ⇡k as the
joint probability law of (X + Z

0 + Zk, Y + Z
00 + Zk),

we have ⇡k 2 ⇧(µ ⇤N�k , ⌫ ⇤N�k), k 2 N. Evaluating
Fk we obtain

Fk(⇡k) = EkX + Z
0 � Y � Z

00k = F(⇡), (13)

which in particular implies the lim sup condition.

7.6 Proof of Theorem 5

The 1-Wasserstein distance is upper bounded by
weighted total variation (TV) as follows [Villani, 2008,
Theorem 6.15]:

W1(µ̂n ⇤ G�, µ ⇤ G�) 
Z

Rd

ktk
��rn(t)� q(t)

�� dt, (14)

where rn and q are the densities of µ̂n ⇤ G� and µ ⇤
G�, respectively. The inequality is proved using the
maximal TV coupling of µ̂n ⇤ G� with µ ⇤ G�.

Let a > 0 (to be specified later) and set fa : Rd ! R
as the density of N

�
0, 1

2a Id
�
. By Cauchy-Schwarz, we

have

Eµ⌦n

Z

Rd

ktk
��rn(t)� q(t)

�� dt


✓Z

Rd

ktk2fa(t) dt
◆1

2

 
Eµ⌦n

Z

Rd

�
q(t)� rn(t)

�2

fa(t)
dt

!1
2

.

(15)

The first term equals d

2a . Turning to the second in-
tegral, note that rn(t) = 1

n

P
n

i=1 g�(t � Xi), where
{Xi}ni=1 are i.i.d. and Eµg�(t�Xi) = q(t). Using the
definition of subgaussianity (Definition 3), we have the
following lemma (proven in Appendix ??) that bounds
g� everywhere in terms of the Gaussian density '�.

Lemma 2 Let � , min
�
1, 1

4�2

 
. There exists a con-

stant c1 > 0 such that

g�(t)  c
d

1e
�ktk2

'�(t), 8t 2 Rd
. (16)

We now can bound the second integrand of (15):

Eµ⌦n

�
q(z)� rn(z)

�2
= varµ⌦n

�
rn(z)

�

= varµ⌦n

 
1

n

nX

i=1

g�(z �Xi)

!

=
1

n
varµ

�
g�(z �X)

�

 Eµg
2
�
(z �X)

 c
d

1�
2dEµe

2�kz�Xk2

'
2
�
(z �X)

 c
2
2

n
Eµe

� 1
2�2 kz�Xk2

, (17)

with c2 = c
d
1(2⇡�

2)�d/2. This further implies

Z

Rd

Eµ⌦n

�
q(t)�rn(t)

�2

fa(t)
dz  c2

n2d/2
E 1

fa(X+Z)
, (18)

where X ⇠ µ and Z ⇠ N� are independent.
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Starting from (18), we finish the proof via steps similar

to [Goldfeld et al., 2020]. Specifically, for c3 ,
�
⇡

a

� d
2 ,

it holds that
�
fa(t)

��1
= c3e

aktk2

. Since X is K-
subgaussian and Z is �-subgaussian, X+Z is (K+�)-
subgaussian. Following (18), for any 0 < a <

1
2(K+�)2 ,

we have [Hsu et al., 2012, Rmk. 2.3]

c2

n2d/2
E 1

f(X + Z)

=
c2c3

n2d/2
E exp

⇣
a
��X + Z

��2
⌘

(19)

 c2c3

n2d/2
exp

✓�
K+�

�2
ad+

(K+�)4a2d

1�2(K+�)2a

◆
,

Setting a = 1
4(K+�)2 and combining (15)-(19) yields

Eµ⌦nW(G�)
1 (µ̂n, µ)  c

d

1�
p
2d

✓
1 +

K

�

◆ d
2+1

e
3d
16

1p
n
,

(20)
where c1 is the constant from Lemma 2. We note that a
better constant can be achieved by assuming G� = N�

[Goldfeld et al., 2020], but we chose to sacrifice that
in favor of generality.

7.7 Proof of Corollary 1

The main tool we use is McDiarmid’s inequality:

Lemma 3 (McDiarmid’s Inequality) Let X
n ,

(X1, . . . , Xn) be an n-tuple of X -valued independent

random variables. Suppose g : Xn ! R is a map that

for any i = 1, . . . , n and x1, . . . , xn, x
0
i
2 X satisfies

��g(xn)� g(x1, . . . , xi�1, x
0
i
, xi+1, . . . , xn)

��  ci, (21)

for some non-negative {ci}ni=1. Then for any t > 0:

P
⇣
g(Xn)� Eg(Xn) � t

⌘
 e

� 2t2Pn
i=1 c2i (22a)

P
⇣��g(Xn)� Eg(Xn)

�� � t

⌘
 2e

� 2t2Pn
i=1 c2i (22b)

Let g(Xn) , W(G�)
1 (µ̂n, µ) and use Kantorovich-

Rubinstein duality:

g(Xn) = sup
kfkLip1

Eµ̂n⇤G�f � Eµ⇤G�f

= sup
kfkLip1

1

n

nX

i=1

(f ⇤ g�)(Xi)� Eµ

⇥
f ⇤ g�

⇤
.

Fix i 2 {1, . . . , n} and x1, . . . , xn, x
0
i
2 X . Property

(21) follows by first observing that:

n

⇣
g(xn)� g(x1, . . . , xi�1, x

0
i
, xi+1, . . . , xn)

⌘

= sup
kfkLip1

(
X

j 6=i

(f ⇤g�)(xj)�Eµ

⇥
f ⇤g�

⇤
+(f ⇤g�)(xi)

)

� sup
khkLip1

(
X

j 6=i

(h⇤g�)(xj)�Eµ

⇥
h⇤g�

⇤
+(h⇤g�)(x0

i
)

)

 sup
kfkLip1

(f ⇤ g�)(xi)� (f ⇤ g�)(x0
i
). (23)

Then we note that Lipschitzness of f implies that f⇤g�
is also Lipschitz.

Lemma 4 (Lipschitz after Convolution) If f :
Rd ! R has kfkLip  L, then kf ⇤ gkLip  L for any

PDF g : Rd ! R�0.

The proof is immediate and thus omitted. Combining
Lemma 4 and (23), we obtain

���g(xn)�g(x1, . . . , xi�1, x
0
i
, xi+1, . . . , xn)

��� 
diam(X )2

n
,

for all i = 1, . . . , n and x1, . . . , xn, x
0
i
2 X .

Applying McDiarmiad’s inequality (22b) for g(Xn) =

W(G�)
1 (µ̂n, µ) produces (5). Taking t = ⇥

⇣
lognp

n

⌘
and

inserting into (22a) gives (6).

8 Summary and Concluding Remarks

We proposed a novel Gaussian-smoothed framework

for OT defined as W(�)
1 (µ, ⌫) , W1(µ ⇤ N�, ⌫ ⇤ N�).

This GOT distance was shown to inherit the metric
structure (and the metrization of weak convergence)
from the regular 1-Wasserstein distance. As a function

of �, W(�)
1 (µ, ⌫) is a continuous and monotonically de-

creasing function maximized at W(0)
1 (µ, ⌫) = W1(µ, ⌫).

Furthermore, as W(�)
1 (µ, ⌫) ���!

�!0
W1(µ, ⌫), optimal

transport plans for W(�)
1 (µ, ⌫) weakly converge to an

optimal plan for W1(µ, ⌫). Finally, we explored sta-

tistical properties of W(�)
1 , studying the convergence

rate of EW(�)
1 (µ̂n, µ) to 0, where µ̂n is the empir-

ical measure induced by n i.i.d. samples from µ.
Building on [Goldfeld et al., 2020], we showed that

W1(µ̂n ⇤ G�, µ ⇤ G�) 2 O

⇣
n
� 1

2

⌘
in all dimensions, for

any subgaussian noise distribution G� with a monotone

and bounded density. In particular,W(�)
1 alleviates the

curse of dimensionality in the one-sample (and hence
also in the weaker two-sample) regime. This stands in
striking contrast to the classic 1-Wasserstein distance,
which converges at most as n

� 1
d , while no results are

available for entropic OT with distance cost. These
theoretical findings were verified through an empirical
study, posing GOT as an appealing alternative to the
popular entropically regularized OT methods.
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[Dobrić and Yukich, 1995] Dobrić, V. and Yukich,
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F.-X., Amari, S.-I., Trouve, A., and Peyré, G.
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