
A Proof of Theorem 1: General regret bound

In this section, we provide a proof of the general eluder-dimension-based bound on the Bayesian regret of
Thompson Sampling (TS), and the proofs of technical lemmas which support the main proof. Certain results
and definitions from the main paper will be restated for convenience.

Theorem 1 Consider Thompson sampling with prior p0 on a function class F applied to the bandit problem
(A, f0, pη) where the reward function f0 is drawn from a p0, all functions f ∈ F are f : A → [0, C] for
some C > 0, and the reward noise distribution pη is (σ2, b)-sub-exponential. For all problem horizons T ∈ N,
nonincreasing functions κ : N→ R+, and parameters α > 0, δ ≤ 1/(2T ), and |λ| ≤ (2Cb)−1, it is the case that

BR(T ) ≤ Tκ(T ) + (dimE(F , κ(T )) + 1)C + 4
√
dimE(F , κ(T ))β∗T (F , α, δ, λ)T .

We begin the proof with the following martingale concentration result, an extension of Lemma 3 of Russo and
Van Roy (2014) (which holds for sub-Gaussian noise). The result below says that with high probability, for any

function f : A → R, its squared error L2,t(f) =
∑t−1
i=1(f(Ai)−Ri)2 is lower bounded. In particular, we say that

with high probability the squared error of f will not fall below the sum of the squared error of the true reward
generating function, f0, and a measure of the distance between f and f0, by more than a fixed constant.

Lemma 1. For any action sequence A1, A2, · · · ∈ A, inducing (σ2, b)-sub-exponential reward observations
R1, R2, . . . and any function f : A → R, we have

P
(
L2,n+1(f) ≥ L2,n+1(f0) + (1− 2λσ2)

n∑
i=1

(f(Ai)− f0(Ai))
2 − log(1/δ)

λ
, ∀n ∈ N

)
≥ 1− δ, (A.1)

for all λ with |λ| ≤ (2Cb)−1.

Proof. The proof is based on the sub-exponential property of the reward noise. First consider arbitrary random
variables {Zi}i∈N adapted to a filtration {Hi}i∈N. Assume that E(eλZi) is finite for λ ≥ 0, and define the
conditional mean µi = E(Zi|Hi−1) and conditional cumulant generating function of the centred random variable
[Zi−µi] as ψi(λ) = logE(exp(λ[Zi−µi])|Hi−1). By Lemmas 6 and 7 of Russo and Van Roy (2014), for all x ≥ 0,
and λ ≥ 0,

P
( n∑
i=1

λZi ≤ x+

n∑
i=1

[λµi + ψi(λ)], ∀n ∈ N
)
≥ 1− e−x. (A.2)

Now consider Zi defined in terms of squared error terms of both the true function f0 and an arbitrary function
f :

Zi = (f0(Ai)−Ri)2 − (f(Ai)−Ri)2

= −(f(Ai)− f0(Ai))
2 + 2(f(Ai)− f0(Ai))ηi,

where we have used that Ri = f0(Ai) + ηi. The conditional mean and conditional cumulant generating function
of these Zi are

µi = E(Zi|Hi−1) = −(f(Ai)− f0(Ai))
2, (A.3)

ψi(λ) = logE(exp(λ[Zi − µi]|Hi−1) = logE(exp(2λ(f(Ai)− f0(Ai))εi)|Hi−1). (A.4)

Therefore, by the sub-exponentiality assumption we have that

ψi(λ) ≤ 4λ2(f(Ai)− f0(Ai))
2σ2

2
, for |λ| ≤ (2Cb)−1,

where the bound on λ results from the bound in absolute value of both f0 and f .

Noting that
∑n
i=1 Zi = L2,n+1(f0)− L2,n+1(f), use (A.2), (A.4), and set x = log(1/δ), to find

P
(
L2,n+1(f) ≥ L2,n+1(f0) + (1− 2λσ2)

n∑
i=1

(f(Ai)− f0(Ai))
2 − log(1/δ)

λ
, ∀n ∈ N

)
≥ 1− δ, (A.5)

for all λ with |λ| ≤ (2Cb)−1, completing the proof.



Lemma 1 allows us to construct high-probability confidence sets for the true reward function, f0. These sets are
defined with respect to the least squares estimate of f0, i.e. the function f̂LSt = argminf∈F L2,t(f) with minimal
squared error, in reference to the observed rewards. The following lemma gives the definition and high-confidence
property of said confidence sets.

Lemma 2. For all δ > 0, α > 0, |λ| ≤ (2Cb)−1, n ∈ N and {A1, . . . An} ∈ An, define the confidence set

Fn =

{
f ∈ F :

n∑
i=1

(f̂LSn (Ai)− f(Ai))
2 ≤ β∗n(F , δ, α, λ)

}
. (A.6)

It is the case that

P
(
f0 ∈

∞⋂
n=1

Fn
)
≥ 1− 2δ.

Proof. Let Fα be an α-covering of F of size N(α,F , || · ||∞), in the sense that for any f ∈ F there is an fα ∈ Fα
such that ||fα − f ||∞ ≤ α. By Lemma 1 and a union bound over Fα we have, with probability at least 1− δ,

L2,n+1(fα)− L2,n+1(f0) ≥ (1− 2λσ2)

n∑
i=1

(fα(Ai)− f0(Ai))
2 − 1

λ
log

(
|Fα|
δ

)
, ∀n ∈ N, ∀fα ∈ Fα.

Then, by simple addition and subtraction, we have for any f ∈ F , with probability at least 1− δ,

L2,n+1(f)− L2,n+1(f0) ≥ (1− 2λσ2)

n∑
i=1

(f(Ai)− f0(Ai))
2 − 1

λ
log

(
|Fα|
δ

)

+ L2,n+1(f)− L2,n+1(fα) + (1− 2λσ2)

n∑
i=1

{
(fα(Ai)− f0(Ai))

2 − (f(Ai)− f0(Ai))
2
}
, ∀n ∈ N, ∀fα ∈ Fα.

The probability this statement holds for all fα is no larger than the probability it holds for the minimising fα.
So, for arbitrary f ∈ F , with probability at least 1− δ,

L2,n+1(f)− L2,n+1(f0) ≥ (1− 2λσ2)

n∑
i=1

(f(Ai)− f0(Ai))
2 − 1

λ
log

(
|Fα|
δ

)

+ min
fα∈Fα

[
L2,n+1(f)− L2,n+1(fα) + (1− 2λσ2)

n∑
i=1

{
(fα(Ai)− f0(Ai))

2 − (f(Ai)− f0(Ai))
2
}]

, ∀n ∈ N.

We refer to the term in the second line of this expression as the discretisation error. Lemma 3 gives a probability
1− δ bound of 2αn(4C + α)(1− λσ2) + 2α

∑
i≤bn0c

√
2σ2 log(4i2/δ) + 2α

∑n
i≥dn0e 2b log(4i2/δ) on the absolute

value of the discretisation error, where n0 =
√

δ
4 exp σ2

2b2 .

We now set f equal to the least squares estimator, f̂LSn . Noting that L2,n+1(f̂LSn ) ≤ L2,n+1(f0), and recalling
that |Fα| = N(α,F , || · ||∞), with probability at least 1− 2δ

(1− 2λσ2)

n∑
i=1

(f̂LSn (Ai)− f0(Ai))
2 ≤ 1

λ
log

(
N(α,F , || · ||∞)

δ

)
+ 2αn(4C + α)(1− λσ2)

+ 2α
∑

i≤bn0c

√
2σ2 log(4i2/δ) + 2α

n∑
i≥dn0e

2b log(4i2/δ) ∀n ∈ N.

Dividing throughout by (1− 2λσ2), and recalling the formula (3) for β∗ and the definition (A.6) of the Fn, this
shows that P (f0 ∈

⋂∞
n=1 Fn) ≥ 1− 2δ as required.

We now prove the discretisation error result required for the proof.



Lemma 3. If fα satisfies ||f − fα||∞ ≤ α, and |λ| ≤ (2Cb)−1, then with probability at least 1− δ,∣∣∣∣L2,n+1(f)− L2,n+1(fα)+(1− 2λσ2)

n∑
i=1

(fα(Ai)− f0(Ai))
2 − (f(Ai)− f0(Ai))

2

∣∣∣∣
≤ 2αn(4C + α)(1− λσ2) + 2α

∑
i≤bn0c

√
2σ2 log(4i2/δ) + 2α

n∑
i≥dn0e

2b log(4i2/δ),

where n0 =
√

δ
4 exp σ2

2b2 .

Proof. As in the proof of Lemma 8 of Russo and Van Roy (2014) we have

|(fα(a)− f0(a))2 − (f(a)− f0(a))2| ≤ 4Cα+ α2

|(Ri − f(a))2 − (Ri − fα(a))2| ≤ 2α|Ri|+ 2Cα+ α2

for all a ∈ A and α ∈ [0, C]. Then summing over time, we have that∣∣∣∣L2,n+1(f)− L2,n+1(fα) + (1− 2λσ2)

n∑
i=1

(fα(Ai)− f0(Ai))
2 − (f(Ai)− f0(Ai))

2

∣∣∣∣
≤

n∑
i=1

(1− 2λσ2)(4Cα+ α2) + 2α|Ri|+ 2Cα+ α2

≤
n∑
i=1

(1− 2λσ2)(4Cα+ α2) + 2α(C + |ηi|) + 2Cα+ α2

=

n∑
i=1

2(4Cα+ α2)(1− λσ2) + 2α|ηi|.

Since ηi is (σ2, b)-sub-exponential we have the following exponential bound

P(|ηi| ≥ x) ≤

{
2 exp(−x2/2σ2) if 0 ≤ x ≤ σ2/b

2 exp(−x/2b) if x > σ2/b.

Then, by the independence of reward noises, and union bound:

P
(
∃i ∈ N : |ηi| ≥

√
2σ2 log(4i2/δ)I{i :

√
2σ2 log(4i2/δ) ≤ σ2/b}

+ 2b log(4i2/δ)I{i : 2b log(4i2/δ) > σ2/b}
)

≤ δ

2

∞∑
i=1

1

i2
≤ δ.

Thus, with probability at least 1− δ,∣∣∣∣L2,n+1(f)−L2,n+1(fα) + (1− 2λσ2)

n∑
i=1

(fα(Ai)− f0(Ai))
2 − (f(Ai)− f0(Ai))

2

∣∣∣∣
≤

n∑
i=1

2(4Cα+ α2)(1− λσ2)

+ 2α

(√
2σ2 log

(
4i2

δ

)
I
{

log

(
4i2

δ

)
≤ σ2

2b2

}
+ 2b log

(
4i2

δ

)
I
{

log

(
4i2

δ

)
>

σ2

2b2

})
= 2αn(4C + α)(1− λσ2)



+ 2α

n∑
i=1

(√
2σ2 log

(
4i2

δ

)
I
{
i ≤

√
δ

4
exp

σ2

2b2

}
+ 2b log

(
4i2

δ

)
I
{
i >

√
δ

4
exp

σ2

2b2

})
and the required result follows.

The confidence sets {Fn}∞n=1 defined in Lemma 2, allow us to bound the Bayesian regret of TS. Specifically, we
can decompose the Bayesian regret in terms of a notion of the width of these confidence intervals.

By Lemma 4 of Russo and Van Roy (2014), we have for all problem horizons T ∈ N, that if sets {F}Tt=1 are such
that inff∈Ft f(a) ≤ f0(a) ≤ supf∈Ft f(a) for all t ≤ T and a ∈ A with probability at least 1− 1/T then

BR(T ) ≤ C + E
( T∑
t=1

sup
f∈Ft

f(At)− inf
f∈Ft

f(At)

)
. (A.7)

It is clear from Lemmas 1 and 2 that the sets defined in (A.6) satisfy this property. Therefore, the proof of
Theorem 1 can then be completed by bounding the widths of the confidence sets, defined as

wFt(a) = sup
f∈Ft

f(a)− inf
f∈Ft

f(a).

The following Lemma provides such a result by bounding the sum of the widths in terms of the κ(T )-eluder
dimension, dimE(F , κ(T )). It is a generalisation of Lemma 5 of Russo and Van Roy (2014) which fixes κ(t) = t−1.

Lemma 4. If {βt}t∈N is a non-negative, non-decreasing sequence and Ft is

Ft :=

{
f ∈ F :

∑t
i=1(f̂LSi (Ai)− f(Ai))

2 ≤ βt
}

then for all T ∈ N, and nonincreasing functions κ : N→ R+

T∑
t=1

wFt(At) ≤ Tκ(T ) + dimE(F , κ(T ))C + 4
√
dimE(F , κ(T ))βTT . (A.8)

Proof. The proof of Lemma 4 depends on Proposition 8 of Russo and Van Roy (2014), which tells us that the
definition of Ft in the lemma implies that

T∑
t=1

I{wFt(At) > ε} ≤
(

4βT
ε

+ 1

)
dimE(F , ε) (A.9)

for all T ∈ N and ε > 0.

Now, define wt = wFt(At) and reorder the sequence (w1, . . . , wT )→ (wi1 , . . . , wiT ) in descending order such that
wi1 ≥ wi2 ≥ · · · ≥ wiT . We have

T∑
t=1

wFt(At) =

T∑
t=1

wit

=

T∑
t=1

witI{wit ≤ κ(T )}+

T∑
t=1

witI{wit > κ(T )}

≤ Tκ(T ) +

T∑
t=1

witI{wit > κ(T )}.

As a consequence of (wi1 , . . . , wiT ) being arranged in descending order we have for t ∈ [T ] that wit > ε ⇒∑t
k=1 I{wFk(Ak) > ε} ≥ t. By (A.9), wit > ε is only possible if t ≤

(
4βT
ε + 1

)
dimE(F , ε). Furthermore,

ε ≥ κ(T ) ⇒ dimE(F , ε) ≤ dimE(F , κ(T )) since dimE(F , ε′) is non-increasing in ε′. Therefore if wit > ε ≥



κ(T ) we have that t <
(
4βT
ε + 1

)
dimE(F , ε), i.e. ε2 ≤

√
4βT dimE(F,κ(T ))
t−dimE(F,κ(T )) . Thus, if wit > κ(T ) ⇒ wi,t ≤

min(C,
√

4βT dimE(F,κ(T ))
t−dimE(F,κ(T )) ), and finally

T∑
t=1

witI{wit > κ(T )} ≤ dimE(F , κ(T ))C +

T∑
t=dimE(F,κ(T ))+1

√
4βT dimE(F , κ(T ))

t− dimE(F , κ(T ))

≤ dimE(F , κ(T ))C + 2
√
βT dimE(F , κ(T ))

∫ T

t=0

1√
t
dt

≤ dimE(F , κ(T ))C + 4
√
βT dimE(F , κ(T ))T .

The conclusions of Lemmas 2 and 4, along with (A.7), combine to give the bound on Bayesian regret which
comprises Theorem 1,

BR(T ) ≤ Tκ(T ) + (dimE(F , κ(T )) + 1)C + 4
√
dimE(F , κ(T ))β∗T (F , α, δ, λ)T .



B Further Proofs for the Eluder Dimension Bound

In this section, we provide a proof of the bound on the eluder dimension of the function classes FC,M,L of
functions with M ∈ N Lipschitz derivatives, and the proofs of technical results which support the main proof.
Again, where necessary, we will restate results and definitions from the main paper.

B.1 Proof of Proposition 1

Proposition 1 All functions g ∈ GC,M,L are [−C,C]-bounded and possess M 2L-Lipschitz smooth derivatives.

Proof of Proposition 1: We have that any function g ∈ GC,M,L is bounded since, f(a) ∈ [0, C] for all a ∈ [0, 1].
The Lipschitz-smoothness of the mth derivatives can be shown as follows. For any function g = f − f ′ where
f, f ′ ∈ FC,M,L, m = 0, . . . ,M , and pair of actions a, a′ ∈ [0, 1],

|g(m)(a)− g(m)(a′)| = |f (m)(a)− f ′(m)
(a)− f (m)(a′) + f ′

(m)
(a′)|

≤ |f (m)(a)− f (m)(a′)|+ |f ′(m)
(a′)− f ′(m)

(a)|
≤ 2L||a− a′||,

where the first inequality holds by the triangle inequality, and the second by the L-Lipschitz smoothness of the
M th derivatives of functions in FC,M,L. �

B.2 Proof of Theorem 3

Theorem 3 For M ∈ N, and C,L, ε > 0 the ε-eluder dimension of FC,M,L is bounded as follows,

dimE(FC,M,L, ε) = o((ε/L)−1/(M+1)).

Proof of Theorem 3: For any k ∈ N and sequence a1:k ∈ [0, 1]k, the event {wk(a1:k, ε
′) > ε′} by definition implies

that there exists g ∈ GC,M,L such that g(ak) > ε′ and
∑k−1
i=1 (g(ai))

2 ≤ (ε′)2. Conversely if for all g ∈ GC,M,L

the event {g(ak) > ε′} is known to imply
∑k−1
i=1 (g(ai))

2 > (ε′)2, then wk(a1:k, ε
′) ≤ ε′. This second idea will be

central to proving Theorem 3.

We will show that for functions g ∈ GC,M,L if g(ak) > ε′ then g2(b) > (ε′)2/9 for all b in a certain region around
ak. This is a consequence of functions in GC,M,L having M smooth derivatives. If g takes value greater than ε′ at
a given point, then it must take relatively large values within a certain neighbourhood of that given point. The
size of this neighbourhood is a function of the level of smoothness of g. As M increases, the size of this region
where g2(b) > (ε′)2/9 increases. It follows that as M increases, the previous actions a1:k−1 must be increasingly

far from ak for
∑k−1
i=1 (g(ai))

2 ≤ (ε′)2 to be satisfied. Thus as M increases, the eluder dimension decreases, since

the condition that
∑k−1
i=1 (g(ai))

2 ≤ (ε′)2 can only be satisfied for smaller k.

To be precise about this behaviour and derive the required bound on the eluder dimension, we will first lower
bound the size of the neighbourhood in which g must take large absolute values if g(a) > ε′ for some a ∈ [0, 1].
To aid in this we introduce the following additional notation. For a function g : [0, 1]→ [−C,C] define the region
where it takes absolute value greater than ε/3 as

B(g) := |{b ∈ [0, 1] : g(b)2 > ε2/9}|. (A.10)

Then for an action a ∈ [0, 1] define the minimum size of the set such that g2 must exceed ε2/9 if g(a) > ε and
g ∈ GC,M,L as

B∗C,M,L(a) := min
g∈GC,M,L:g(a)>ε

B(g), (A.11)

and the set of functions attaining this minimum as

G∗C,M,L(a) = argmin
g∈GC,M,L:g(a)>ε

B(g). (A.12)



Bounds on B∗C,M,L(a), derived by identifying and considering the form of functions in G∗C,M,L(a), will allow us
to bound the eluder dimension.

We will first provide lower bounds on B∗C,M,L for the special cases of M = 0 and M = 1, and then show a general
result for M ≥ 2. In the case of M = 0 the lower bound follows from the Lipschitz property of all functions
g ∈ GC,M,L. We give the lower bound on B∗C,0,L(a) for all a ∈ [0, 1] in the following lemma.

Lemma 5. For a ∈ [0, 1], and C,L > 0 we have B∗C,0,L(a) ≥ ε
3L .

Proof of Lemma 5: We have that |g(b)− g(b′)| ≤ 2L||b− b′|| for all g ∈ GC,M,L and b, b′ ∈ [0, 1]. Thus if g(a) > ε
for some a ∈ [0, 1] we have that (g(b))2 > ε2/9 for all b ∈ [0, 1] : (min(0, ε − 2L|a − b|))2 ≥ ε2/9, equivalently
b ∈ [0, 1] : |a− b| ≥ ε

3L . The conclusion that BC,0,L ≥ ε
3L then follows immediately. �

The following lemma gives a similar result for the case of M = 1. In this case the proof relies on the observation
that g′, the gradient of a function g ∈ G∗C,M,L(a), should satisfy g′(a) = 0, i.e. a should be a maximiser of g.
The bound on the size of B∗C,1,L(a) then follows from the Lipschitz property of g′. The result holds only for

a sufficiently from the edges of [0, 1], since g′(a) need not take value 0 to minimise |{b : g2(b) > (ε′)2/9}| if a
is close to an edge. Fortunately, however, the impact of these special edge cases is negligible when it comes to
bounding the eluder dimension.

Lemma 6. For a ∈ [0, 1] such that a >
√

2ε
3L and 1− a >

√
2ε
3L , and C,L > 0 we have B∗C,1,L(a) ≥ 2

√
2ε
3L .

Proof of Lemma 6: We have that |g′(b)− g′(b′)| ≤ 2L||b− b′|| for all g ∈ GC,1,L and b, b′ ∈ [0, 1]. Thus, for g with

g′(a) = 0, we have |g′(b)| ≤ 2L||a− b|| for all b ∈ [0, 1]. For any b′ < b ∈ [0, 1] we have g(b)− g(b′) =
∫ b
b′
g′(x)dx.

It follows that for 0 ≤ b < a

g(b) = g(a)− g(a) + g(b) = g(a)−
∫ a

b

g′(x)dx

≥ g(a)−
∫ a

b

2L(a− x)dx

= g(a)− La2 + 2Lab− Lb2

> ε′ − L(a− b)2.

A similar argument follows for a < b ≤ 1 and thus g(b) > ε′ − L||a − b||2 for all b ∈ [0, 1] given g(a) > ε′ and
g′(a) = 0. It follows that under these conditions we have g2(b) > ε2/9 for all b ∈ [0, 1] : (min(0, ε−L|a− b|2))2 ≥
ε2/9, equivalently b ∈ [0, 1] : |a− b| ≤

√
2ε
3L .

If g′(a) 6= 0 then ∃ c ∈ [0, 1] with g(c) > g(a) > ε′ and g′(c) = 0. Then by the logic used for the case with

g′(a) = 0 it follows that g2(b) > ε2/9 for all b ∈ [0, 1] : ||b− c|| ≤
√

1
L (g(c)− ε/3). Since g(c) > ε′ it follows that

if g(a) > ε′ then the region such that g2(b) > ε2/9 is larger if g′(a) 6= 0 than if g(a) = 0. Thus we have g′(a) = 0

for all g ∈ G∗C,1,L(a) and BC,1,L(a) ≥
√

2ε
3L for all a ∈ [0, 1] such that a >

√
2ε
3L and 1− a >

√
2ε
3L . �

Bounding B∗C,M,L for larger values of M is more involved. To do so we will first define a particular function
ha,M ∈ GC,M,L for each M ≥ 2 and a ∈ [0, 1] and bound B(ha,M ), the size of the region where ha,M takes
absolute value greater than ε/3. We will then show that ha,M is in the set of B-minimising functions G∗C,M,L,
and thus that B∗C,M,L(a) = B(ha,M ). The form of ha,M will vary depending on whether M is even or odd. We
will first specify ha,M for M even.

For M ≥ 2 even, let ha,M be maximised at a with ha,M (a) > ε′, and let x1,M = x1,a,M = maxx<a,ha,M (x)=ε/3 x
be the point closest to a on the left where ha,M takes value ε/3. Define ∆M = a− x1,M , and then further points
y1,M = x1,M − ∆M , x2,M = a + ∆M , and y2,M = a + 2∆M . We then specify ha,M as a function with M th

derivative given as

h
(M)
a,M (z) =

{
2L(x1,M − z), z ∈ (y1,M , a),

2L(z − x2,M ), z ∈ [a, y2,M ),
(A.13)

and whose lower order derivatives satisfy the following properties:

h
(m)
a,M (x1) = h

(m)
a,M (x2) = 0, 2 ≤ m ≤M,m even, (A.14)



h
(m)
a,M (y1) = h

(m)
a,M (a) = h

(m)
a,M (y2) = 0,m ≤M,m odd. (A.15)

Since h
(M)
a,M is necessarily Lipschitz (by ha,M ’s membership of GC,M,L) this defines the function that can have

h
(M)
a,M (x) = 0 where it crosses ε/3 and change most rapidly elsewhere. To bound B(hM ) we first require expressions

for the lower order derivatives of hM . Having the restricted behaviour on {y1,M , x1,M , a, x2,M , y2,M} means that

these functions can be identified from h
(M)
a,M alone. The following lemma specifies the form of these lower order

derivatives. We focus on the left of a, as a symmetry argument will give an analogous result for the right.

Lemma 7. For the function ha,M with M th derivative given by (A.13), and whose lower order derivatives satisfy
conditions (A.14) and (A.15) where M is even, the lower order derivatives are of the form

1

2L
h
(M−m)
a,M (z) =

{
jm+1(x1,M )− jm+1(z), m ∈ {0, 2, 4, . . . ,M}
jm+1(a)− jm+1(z), m ∈ {1, 3, . . . ,M − 1}

z ∈ (y1,M , a) (A.16)

where

jk(z) =

k∑
i=1

zi

i!
(−1)k−iJk−i, k ∈ {1, . . . ,M + 1},

Jk = jk(aI{k even}+ x1I{k odd}),

and j0(z) = 1 for all z ∈ (y1, a).

Proof of Lemma 7: We prove this Lemma via an induction argument over m. Firstly, for m = 1, we have
1
2Lh

(M−m)(z) = 1
2Lh

(M−1)(z) =
∫
x1 − zdz = x1z − z2/2 + D. Since M − 1 is odd and h ∈ G0C,M,L(a) we have

that h(M−1)(a) = 0 and the integration constant, D, must be a2/2− x1a, i.e. we have

1

2L
h(M−1)(z) = x1z − z2/2 + a2/2− ax1 = j2(a)− j2(z).

Second, for some m′ with 2 ≤ m′ < M let us assume that

1

2L
h(M−m

′)(z) = Jm′+1 − jm′+1(z) z ∈ (y1, a).

Finally we consider h(M−m
′−1). We have,

1

2L
h(M−m

′−1)(z)

=

∫
Jm′+1 − jm′+1(z)dz

=

∫ m′+1∑
i=1

(
x1I{m′ + 1 odd}+ aI{m′ + 1 even}

)i − zi
i!

(−1)m
′+1−iJm′+1−idz

=

m′+1∑
i=1

z
(
x1I{m′ + 1 odd}+ aI{m′ + 1 even}

)i
i!

(−1)m
′+1−iJm′+1−i

−
m′+1∑
i=1

zi+1

(i+ 1)!
(−1)m

′+1−iJm′+1−i +D

=

m′+1∑
i=1

z
(
x1I{m′ + 1 odd}+ aI{m′ + 1 even}

)i
i!

(−1)m
′+1−iJm′+1−i

−
m′+1∑
i=1

zi+1

(i+ 1)!
(−1)m

′+1−iJm′+1−i +

m′+1∑
i=1

(
x1I{m′ odd}+ aI{m′ even}

)i+1

(i+ 1)!
(−1)m

′+1−iJm′+1−i

−
m′+1∑
i=1

(x1I{m′ odd}+ aI{m′ even})
(
x1I{m′ + 1 odd}+ aI{m′ + 1 even}

)i
i!

(−1)m
′+1−iJm′+1−i



= zJm′+2−1 −
m′+2∑
s=2

zs

s!
(−1)m

′+2−sJm′+2−s − (x1I{m′ + 2 odd}+ aI{m′ + 2 even})Jm′+2−1

+

m′+2∑
s=2

(
x1I{m′ + 2 odd}+ aI{m′ + 2 even}

)s
s!

(−1)m
′+2−sJm′+2−s

=

m′+2∑
s=1

(
x1I{m′ + 2 odd}+ aI{m′ + 2 even}

)s − zs
s!

(−1)m
′+2−sJm′+2−s

= Jm′+2 − jm′+2(z)

The first equality uses the assumed form of h(M−m
′), the fourth evaluates the integration constant D based

on the knowledge that if m′ + 1 is odd, we will have h(M−m
′−1)(a) = 0 and if m′ + 1 is even, we will have

h(M−m
′−1)(x1) = 0, and the fifth uses a change of variable s = i+ 1. �

Since ha,M is unimodal, and symmetric about a, we have B(ha,M ) > x2,M − x1,M = 2(a− x1,M ) = 2∆M . In the
following lemma, we determine the order of B(ha,M ) by bounding ∆M for each even M ≥ 2.

Lemma 8. For the function ha,M with M th derivative given by (A.13) where M is even, there exist finite
constants K1,M ,K2,M > 0 such that

K1,M (ε/L)1/(M+1) ≤ B(ha,M ) ≤ K2,M (ε/L)1/(M+1).

Proof of Lemma 8: Firstly observe that since ha,M (x1,M ) = ε/3 we have by definition that

ha,M (a)− ha,M (x1,M ) =

∫ a

x1,M

h′a,M (z)dz >
2ε

3
.

Using the definition of h′a,M in (A.16), we expand the centre term of the above display as follows,∫ a

x1,M

h′a,M (z)dz =

∫ a

x1,M

h
(M−(M−1))
a,M (z)dz

= 2L

∫ a

x1,M

jM (a)− jM (z)dz

= 2L

∫ a

x1,M

jM (a)−
M∑
i=1

zi

i!
(−1)M−ijM−i

(
x1,M I{M − i odd}+ aI{M − i even}

)
dz

= 2L

[
jM (a)z −

M∑
i=1

zi+1

(i+ 1)!
(−1)M−ijM−i

(
x1,M I{M − i odd}+ aI{M − i even}

)]a
x1,M

= 2L

M∑
i=1

(
ai+1

i!
− ai+1

(i+ 1)!
− x1,Ma

i

i!
+

xi+1
1,M

(i+ 1)!

)
(−1)M−ijM−i

(
x1,M I{M − i odd}+ aI{M − i even}

)
= 2L

∑
i∈{2,4,...,M}

(
ai+1

i!
− ai+1

(i+ 1)!
− x1,Ma

i

i!
+

xi+1
1,M

(i+ 1)!

)
jM−i

(
a
)

− 2L
∑

i∈{1,3,...,M−1}

(
ai+1

i!
− ai+1

(i+ 1)!
− x1,Ma

i

i!
+

xi+1
1,M

(i+ 1)!

)
jM−i

(
x1,M

)
From the definition of the recurrence relation j, we have that for k even jk(a) may be written, for some κl,k,

l = 1, . . . k as jk(a) =
∑k
l=1 κl,ka

lxk−l1,M , i.e. for k even jk(a) is O(ak) and O(xk−11,M ). Similarly for k odd jk(x1,M )

may be written, for some τl,k, l = 1, . . . , k as jk(x1,M ) =
∑k
l=1 τl,kx

l
1,Ma

k−l, i.e. for k odd jk(x1,M ) is O(xk1,M )

and O(ak−1).

It follows from this and the above display, that we may write∫ a

x1,M

h′a,M (z)dz = 2L
∑

i∈{2,4,...,M}

(
ai+1

i!
− ai+1

(i+ 1)!
− x1,Ma

i

i!
+

xi+1
1,M

(i+ 1)!

)M−i∑
l=1

κl,M−ia
lxM−i−l1,M



− 2L
∑

i∈{1,3,...,M−1}

(
ai+1

i!
− ai+1

(i+ 1)!
− x1,Ma

i

i!
+

xi+1
1,M

(i+ 1)!

)M−i∑
l=1

τl,M−ix
l
1,Ma

M−i−l,

and that there exist constants HM,L,i, i = 0, . . . ,M + 1 such that

ha,M (a)− ha,M (x1) =

M+1∑
i=0

HM,L,ia
M+1−ixi1,M = O((a− x1,M )M+1).

Since ha,M (a) − ha,M (x1,M ) = 2ε/(3L) we have that x1,M = a − o((ε/L)1/(M+1)). By a symmetry argument
about a we will also have that x2,M = a+ o((ε/L)1/M+1). Furthermore, by symmetry of g′ about x1,M and x2,M
we have that ha,M need not fall below −ε/3, as y1,M and y2,M may be global minimisers of ha,M Thus for ha,M
as described above, and M ≥ 2 even, we have

B(ha,M ) = 2∆M = o((ε/L)1/(M+1))

for all a sufficiently far from the edges of [0, 1]. �

Lemmas 7 and 8 pertain only to the case where M is even. We must now consider the complementary case of
M odd. The function ha,M is different, but the argument used to bound B(ha,M ) is very similar.

For M ≥ 3 odd let ha,M be a function in G0C,M,L(a) with M th derivative specified as

1

2L
h
(M)
a,M (z) =


z − y1,M , z ∈ (y1,M , x1,M ),

a− z, z ∈ [x1,M , x2,M ),

z − y2,M , z ∈ [x2,M , y2,M ),

(A.17)

and whose lower order derivatives satisfy conditions (A.14) and (A.15). This is chosen similarly to in the case ofM
even as the fastest varying function which meets the constraints on the derivatives on {y1,M , x1,M , a, x2,M , y2,M}.
Again, we derive expressions for the lower order derivatives of ha,M and focus on the left of a, since similar
expressions follow for the right hand side by symmetry.

Lemma 9. For the function ha,M with M th derivative given by (A.17), and whose lower order derivatives satisfy
conditions (A.14) and (A.15) where M is odd, the lower order derivatives are of the form

1

2L
h
(M−m)
a,M (z) =

{
jm+1(z)− Jm+1, z ∈ (y1,M , x1,M ),

Lm+1 − lm+1(z), z ∈ [x1,M , a),
(A.18)

where

jk(z) =

k∑
i=1

zi

i!
(−1)k−iJk−i, z ∈ (y1,M , x1,M ),

Jk = jk(y1,M I{k odd}+ x1,M I{k even}),

lk(z) =

k∑
i=1

zi

i!
(−1)k−iLk−i, z ∈ [x1,M , a)

Lk = lk(aI{k odd}+ x1I{k even}),

for k ∈ {1, . . .M + 1} and where j0(z) = l0(z) = 1 for all z ∈ (y1,M , a).

Proof of Lemma 9: As in the case of M even, we prove this lemma via an induction argument over m. Firstly,
for m = 1 we have for z ∈ (y1, x1), 1

2Lh
(M−1)(z) =

∫
z − ydz = z2/2 − yz + D. Since M − 1 is even and

h ∈ G0C,M,L(a) we have that h(M−1)(x1) = 0 and the integration constant, D, must be yx1 − x21/2 = −J2. For

z ∈ [x1, a), 1
2Lh

(M−1)(z) =
∫
a− zdz = az − z2/2 +D, and D = x21/2− ax1 = L2. Thus,

1

2L
h(M−1)(z) =

{
j2(z)− J2, z ∈ (y1, x1)

L2 − l2(z), z ∈ [x1, a).



Secondly, for some m′, 2 ≤ m′ < M we assume that

1

2L
h(M−m

′)(z) =

{
jm′+1(z)− Jm′+1, z ∈ (y1, x1)

Lm′+1 − lm′+1(z), z ∈ [x1, a).

We now consider h(M−m
′−1). For z ∈ (y1, x1) we have,

1

2L
h(M−m

′−1)(z)

=

∫
jm′+1(z)− Jm′+1dz

=

∫ m′+1∑
i=1

zi −
(
y1I{m′ + 1 odd}+ x1I{m′ + 1 even}

)i
i!

(−1)m
′+1−iJm′+1−idz

=

m′+1∑
i=1

(
zi+1

(i+ 1)!
−
z
(
y1I{m′ + 1 odd}+ x1I{m′ + 1 even}

)i
i!

)
(−1)m

′+1−iJm′+1−i +D

=

m′+2∑
s=2

zs

s!
(−1)m

′+2−sJm′+2−s − zJm′+2−1 + (y1I{m′ + 2 odd}+ x1I{m′ + 2 even})Jm′+2−1

−
m′+2∑
s=2

(
y1I{m′ + 2 odd}+ x1I{m′ + 2 even}

)s
s!

(−1)m
′+2−sJm′+2−s

= jm′+2(z)− Jm′+2

This follows the same steps as the proof for M even, but with the opposite sign and slightly different definition
of j. The proof for z ∈ [x1, a) follows the same steps as the above and the proof for M even. The required result
follows by induction. �

Lemma 10. For the function ha,M with M th derivative given by (A.17) where M is odd, there exist finite
constants K3,M ,K4,M > 0 such that

K3,M (ε/L)1/(M+1) ≤ B(ha,M ) ≤ K4,M (ε/L)1/(M+1)

Proof of Lemma 10: By the definition of x1,M we have ha,M (a) − ha,M (x1,M ) =
∫ a
x1,M

h′a,M (z)dz > 2ε/3. We

rewrite the LHS of this relation as follows,∫ a

x1,M

h′a,M (z)dz = 2L

∫ a

x1,M

LM − lM (z)dz

= 2L

[
LMz −

M∑
i=1

zi+1

(i+ 1)!
(−1)M−iLm−i

]a
z=x1,M

= 2L

M∑
i=1

(
ai+1

i!
− ai+1

(i+ 1)!
− x1,Ma

i

i!
+

xi+1
1,M

(i+ 1)!

)
(−1)M−iLM−i.

This is the same expression derived for ha,M (a)−ha,M (x1,M ) as in the M even case, and thus the same conclusion
follows. �

The combined insight from Lemmas 8 and 10 is that for any M ≥ 2 and a ∈ [2∆M , 1 − 2∆M ] there exists a
function ha,M ∈ GC,M,L with B(ha,M ) = o((ε/L)1/(M+1)). We will demonstrate that this o((ε/L)1/(M+1)) result
is optimal, in the sense that B∗C,M,L(a) = o((ε/L)1/(M+1)) also.

Firstly, notice that g′(a) = 0 necessarily for all g ∈ G∗C,M,L(a). If for some g ∈ GC,M,L with g(a) > ε′, g′(a) 6= 0
then either there exists c ∈ [0, 1] such that g(c) > g(a) and g′(c) = 0 or else g(b) > g(a) for all b in either [0, a)
or (a, 1]. If the first event happens, by the same theory that says ∆M is increasing in g(a), there will be a region
of width greater than 2∆M centred c where g(b) > ε/3. If the second event happens, B(g) is plainly greater



than 2∆M since a > 2∆M and 1 − a > 2∆M . We therefore deduce that g′(a) = 0 for all g ∈ G∗C,M,L(a) since
B(ha,M ) < B(g) for any g with g(a) > ε′ and g′(a) 6= 0.

Next we observe that B(ha,M ) is the optimal value of B(g) among functions g ∈ GC,M,L with g(a) > ε′ and
derivatives constrained as in (A.14) and (A.15). For any such g ∈ GC,M,L it is true that B(g) = x2,g−x1,g where
x1,g = maxx<a:g(x)=ε/3 x and similarly x2,g = minx>a:g(x)=ε/3 x. For ha,M , we know that x1,ha,M = a−∆M and
x2,ha,M = a+ ∆M , thus that x2,ha,M − x1,ha,M = 2∆M . The value of ∆M is determined by h′a,M , which we have
previously pointed out changes at the fastest rate possible for a function with derivatives constrained according
to (A.14) and (A.15). Thus for any other function g with derivatives constrained according to (A.14) and (A.15),
x2,g − x1,g ≥ 2∆M and B(g) ≥ B(ha,M ).

On the other hand, functions whose derivatives are not constrained according to (A.14) and (A.15) may have
x2,g − x1,g < 2∆M . However, such functions will take value less than −ε/3 at some points in [0, 1]. That is to
say B(g) 6= x2,g −x1,g for such functions, since y1,g and y2,g cannot not be global minimisers. We will show that
B(g) > B(ha,M ) for functions g ∈ GC,M,L with g(a) > ε and x2,g − x1,g > 2∆M .

As before, we will consider the left hand side of a and allow the behaviour on the right hand to be explained
by a symmetry argument. If, for a function g ∈ GC,M,L with g(a) > ε′ and g′(a) = 0 (otherwise it would not
be optimal anyway) we have x1,g > x1,M - i.e. the point on the left where g takes value ε/3 is nearer to a than
under ha,M - then we have that

∫ a
x1,g

g′(z)dz >
∫ a
x1,g

h′M (z)dz. Since g′(a) = h′a,M (a) = 0, this implies that

g′′(z) < h′′a,M (z) over [x1,g, a] and that g′(y1,g) = 0 is not possible. There instead exists a point y1,min < y1,g
with g(y1,min) < −ε/3 and g′(y1,min) = 0. The contribution to B(g) from the left side of a is then at least
a− x1,g + 2(y1,g − y1,min). y1,g − y1,min = x1,g − x1,M by the smoothness properties of functions in GC,M,L and
thus the contribution to B(g) from the left of a will be greater than that of B(ha,M ). A similar result follows on
the right of a, and we thus have that B(g) > B(ha,M ) for functions with x2,g−x1,g < 2∆M . If x2,g−x1,g > 2∆M

then the function g is obviously not optimal.

By showing that ha,M is optimal amongst functions with similarly constrained derivatives, and that B(ha,M ) ≤
B(g) for functions g without these constraints, we have therefore demonstrated that B∗C,M,L(a) = o((ε/L)1/(M+1))
for a ∈ [2∆M , 1− 2∆M ].

We complete the proof of Theorem 3 by noticing that if k = 9/B∗C,M,L + 2 then for any sequence a1:k ∈ [0, 1]
there must exist an index j ∈ {1, . . . , k} such that aj ∈ [2∆M , 1−2∆M ] and there exist distinct at least 9 distinct
points ali , li ∈ {1, . . . , j − 1}, i = 1, . . . , 9 with |aj − ali | ≤ B∗C,M,L/2. Then if g(aj) > ε′ and g ∈ GC,M,L it

follows that (g(ali))
2 > (ε′)2/9 for i ∈ {1, . . . 9} and

∑j−1
i=1 (g(ai))

2 > (ε′)2.

Therefore if k ≥ 9/B∗C,M,L + 2 there exists no sequence a1:k ∈ [0, 1]k such that wτ (a1:τ , ε
′) > ε′ for every τ ≤ k,

and thus dimE(FC,M,L, ε) ≤ k = o((ε/L)1/(M+1)). �



C Proof of the Regret Lower Bound

In this section we provide a proof of the lower bound on regret for CABs whose reward functions have M > 0
Lipschitz derivatives, restated below.

Theorem 5 Let ALG be any algorithm for the CAB problem with reward function in FC,M,L. There exists a
problem instance I = I(x∗, δ) for some x∗ ∈ [0, 1] and δ > 0 such that

E(R(T )|I) ≥ Ω(T (M+2)/(2M+3)).

We first state a lower bound on regret for stochastic K-armed bandits, on which the proof of Theorem 5 relies.
This result, presented below, is a generalisation of the well-known Ω(

√
KT ) problem independent regret lower

bound in Theorem 5.1 of Auer et al. (2002), and its proof can be extracted from the proof of the original result.
The version we state is from Slivkins (2019), but a very similar generalisation of Auer et al’s theorem was
originally presented in Bubeck et al. (2011).

Theorem 6 (Theorem 4.3 of Slivkins (2019)) Consider stochastic bandits with K arms and horizon T . Let ALG
be any algorithm for this problem. Pick any positive δ ≤

√
c0K/T , where c0 is a small universal constant. Then

there exists a problem instance J = J (a∗, δ), a∗ ∈ [K], such that

E(R(T )|J ) ≥ Ω(δT ).

By relating the regret of algorithms for the CAB problems of interest to that of algorithms for particular MAB
problems, we will be able to utilise Theorem 6 to prove Theorem 5.

Proof of Theorem 5: We define the CAB problem instance I(x∗, δ,M) as that with reward function νx∗,δ,M ∈
F1,M,L, whose form we shall specify below. The function νx∗,δ,0 is identical to the function µ used in the original
lower bound proof for Lipschitz bandits, and stated as equation (8) in the main text. For clarity we define,

νx∗,δ,0(x) =

{
0.5 + δ − L|x∗ − x| x : |x∗ − x| ≤ δ/L,
0.5 otherwise.

For general M ≥ 1, νx∗,δ,M : [0, 1] → [0, 5, 0.5 + δ] are symmetric (around x∗), unimodal, bump functions with

νx∗,δ,M (x∗) = 0.5 + δ, and whose (M + 1)th derivatives, ν
(M+1)
x∗,δ,M , are piecewise-constant functions from [0, 1] to

{−L, 0, L}. In particular, they are the functions which minimise the width of such a bump, the region where the

function takes value greater than 0.5. Let F [a,b]
C,M,L be the restriction of FC,M,L to its elements which are defined

[0, 1]→ [a, b] for 0 ≤ a ≤ b ≤ C. The functions of interest may then be defined as follows:

νx∗,δ,M ∈ argmin
ν∈F [0.5,0.5+δ]

C,M,L :ν(x∗)=0.5+δ

∫ 1

0

|0.5− ν(x)|dx. (A.19)

We do not require the exact form of the functions νx∗,δ,M for the analysis that follows, and as they are complex
to write in closed form we will not do so. Their key property, however, is given in the following lemma.

Lemma 11. For any M ∈ N, function νx∗,δ,M as defined in (A.19) there exists a finite constant c1,M > 0 such
that

νx∗,δ,M (x)

{
= 0.5 x : |x∗ − x| > c1,M (δ/L)1/(M+1),

> 0.5 otherwise.

Proof. Two properties are apparent from the definition of νx∗,δ,M . Firstly that the (M+1)th derivative of νx∗,δ,M
is piecewise-constant on {−L, 0, L}, since otherwise the rate of change of lower order derivatives could be more
rapid, and the width of the bump could be smaller. Secondly, by the fundamental theorem of calculus, we have

that the first derivative satisfies
∫ x∗
0
ν′x∗,δ,M (x)dx = δ. However, since the function νx∗,δ,M is constant on a large

proportion of the unit interval, we also have
∫ x∗
y
ν′x∗,δ,M (x)dx =

∫ x∗
0
ν′x∗,δ,M (x)dx = δ for all y ∈ [0, xmax] for

some xmax < x∗. The width of the bump is 2(x∗ − xmax).



The Cauchy formula for repeated integration tells us that we may write the first derivative in terms of an
antiderivative of a higher order derivative, specifically, to relate the first and (M + 1)th derivatives, we have

ν′x∗,δ,M (x) =
1

(M − 1)!

∫ x

0

(x− t)M−1ν(M+1)
x∗,δ,M (t)dt.

As the (M +1)th derivative is piecewise constant, it follows that ν′x∗,δ,M is an O(xM ) piecewise polynomial, iden-

tifiable given ν
(M+1)
x∗,δ,M by the property that ν′x∗,δ,M (x∗) = 0 (which follows from the unimodality of νx∗,δ,M ). Simi-

larly, νx∗,δ,M must be a O(xM+1) piecewise polynomial and xmax may be written as being x∗−O((δ/L)1/(M+1)),
completing the proof. �

The idea of the proof of Theorem 5 is to derive a reward distribution such that the expected reward is given by
ν but that the regret of any algorithm applied to the problem with that reward distribution is bounded below
by that incurred when playing a related K-armed bandit problem. This is the same approach used to prove
Theorem 4, but here the proof is adapted to handle the more complex reward functions.

Fix K ∈ N to be defined later, and let δ = L(1/2c1,MK)M+1. We introduce a function fδ : [K] → [0, 1] which
will be used to associate arms of a particular K-armed bandit problem with points in the CAB action space. We
define this function as follows,

fδ(a) := (2a− 1)δ (A.20)

Now let J (a∗, δ,M) be the K-armed bandit problem instance where for a ∈ [K] we have µa = νx∗,δ,M (fδ(a)).
By the definition of fδ we we have that µa∗ = 0.5 + δ and that µa = 0.5 for a ∈ [K], a 6= a∗.

Let ALG be any algorithm for the CAB problem instance I(x∗, δ,M) - i.e. a rule which selects actions x1, x2, · · · ∈
[0, 1]. Then define ALG’ as an associated algorithm which for the MAB problem instance J (a∗, δ) which makes
decisions on the basis of those of ALG as follows. When ALG selects an action xt ∈ [0, 1], ALG’ selects an action
at = a(xt) ∈ [K] such that xt ∈ (fx∗,δ,M (at)−1/2K, fx∗,δ,M (at)+1/2K]. By the definition of the MAB problem,
ALG’ receives reward r which is a Bernoulli random variable with parameter µat . ALG receives reward rx defined
as follows,

rx =

{
r with probability px ∈ [0, 1],

X otherwise,
(A.21)

where X is a Bernoulli variable with parameter 0.5.

Choosing the probability px as follows,

px =
0.5− νx∗,δ,M (x)

0.5− µa(x)
we then have

E(rx|x) = (1− px)E(X) + pxνM (f(a(x)))

= 0.5− 0.5px + pxνx∗,δ,M (f(a(x)))

= νx∗,δ,M (x)

The construction of ALG and ALG’ ensures that

νx∗,δ,M (xt) = E(rxt |xt) ≤ E(r|at) = µat .

It follows that
∑T
t=1 νx∗,δ,M (xt) ≤

∑T
t=1 µat and since νx∗,δ,M (x∗) = µa∗ we have

E(R(T )|I) ≥ E(R′(T )|J ).

Thus any lower bound on the regret of ALG’ on J serves as a lower bound on the regret of ALG on I. Recall,
that Theorem 6 can be used to lower bound the regret of any algorithm for J , and thus all that remains is to
specify a choice of δ to achieve the required bound.

Theorem 6 requires δ ≤
√
c0K/T , so we select

K =

(
T

c0

(
1

(2c1,M )2M+2

))1/(2M+3)



so that this is satisfied. Then by Theorem 6, there exists an instance J such that

E(R′(T )|J ) ≥ Ω(δT ) = Ω

(
T 1− M+1

2M+3

)
and therefore E(R(T )|I) ≥ Ω(T (M+2)/(2M+3)) as required. �



D Finite and (Generalised) Linear Function Classes

Equipped with the general bound of Theorem 1, providing regret bounds for specific function classes and action
sets is a matter of bounding the eluder dimension dimE(F , κ(T )) and ball width function β∗t (F , δ, α, λ). In the
setting of sub-Gaussian reward noise, Russo and Van Roy (2014) provide bounds for dimE(F , T−1) and the
sub-Gaussian version of the ball-width function for three simple function settings: finitely many actions, linear
function classes, and generalised linear function classes. We present analogous results for these settings under
sub-exponential reward noise.

D.1 Eluder Dimension

The eluder dimension does not depend on the reward noise, and thus translates directly from the work of Russo
and Van Roy (2014). Thus for finite function classes, we may bound the eluder dimension as dimE(F , ε) ≤ |A| for
all ε > 0. For linear reward functions f0(a) = θTφ(a) where θ ∈ Θ ⊂ Rd such that F = {fρ, ρ ∈ Θ}. If there exist
constants S and γ, such that ||ρ||2 ≤ S and ||φ(a)||2 ≤ γ for all a ∈ A then the eluder dimension may be bounded
as dimE(F , ε) ≤ 3d e

e−1 log(3+3( 2S
ε )2)+1. Finally, consider generalised linear reward functions f0(a) = g(θTφ(a))

where again θ ∈ Θ ⊂ Rd and F = {fρ, ρ ∈ Θ}, and where g(·) is a differentiable and strictly increasing function.
If there exist constants h, h, S and γ such that for all ρ ∈ Θ and a ∈ A, 0 ≤ h ≤ g′(ρTφ(a)) ≤ h, ||ρ||2 ≤ S, and

||φ(a)||2 ≤ γ then the eluder dimension can be bounded as dimE(F , ε) ≤ 3dr2 e
e−1 log(3r2 +3r2( 2Sh

ε )2)+1, where

r = supθ̃,a g
′(< φ(a), θ̃ >)/ inf θ̃,a g

′(< φ(a), θ̃ >) bounds the ratio between the maximal and minimal slope of g.

D.2 Ball Width Function

For finite function classes, and α = 0 we have β∗n(F , δ, 0, λ) = log(|F|/δ)
λ(1−2λσ2) . For both the class of linear and

generalised linear reward functions we have logN(α,F , || · ||∞) = O(d log(1/α)) from Russo and Van Roy (2014).
It follows from the definition (3) that in both cases β∗T (F , δ, 1/T 2, λ) = O(d log(T/δ)).

D.3 Regret Bounds

As a result, for finite function classes we have,

BR(T ) ≤ 1 + (|A|+ 1)C + 4

√
|A| log(2|F|T )

λ(1− 2λσ2)
T .

For linear and generalised linear function classes we have, for δ ≤ 1/2T ,

BR(T ) = O
(
d log(T ) +

√
d2 log(T + T/δ)T

)
.

The orders, with respect to T , of these bounds match those of Russo and Van Roy’s bounds for the sub-Gaussian
case, and are optimal up to the small contribution of the logarithmic factors.
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