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Appendix

In the appendix, we first provide detailed proofs of all
the remaining results in Section A. Then, we present
an application of APDRCD and APDGCD algorithms
for the Wasserstein barycenter problem in Section B.
Finally, further comparative experiments between
APDGCD algorithm versus APDRCD, APDAGD and
APDAMD algorithms, and experiments on larger syn-
thetic image datasets and CIFAR10 dataset are in
Section C.

A Proofs for all results

In this appendix, we provide the complete proofs for
remaining results in the main text.

A.1 Proof of Lemma 3.2

By Eq. (5), we have the following equations

|∇ϕik(yk)|2

= 2|∇ϕik(yk)|2 − |∇ϕik(yk)|2

= 2L
(
ykik − λ

k+1
ik

)
∇ikϕ(yk)− L2(λk+1

ik
− yk+1

ik
)2.

Combining the above equations with Lemma 3.1, we
have

ϕ(λk+1)

≤ ϕ(yk)− 1

2L
(∇ikϕ(yk))2

= ϕ(yk) + (λk+1
ik
− ykik)∇ikϕ(yk) +

L

2
(λk+1
ik
− yk+1

ik
)2.

(9)

Furthermore, the results from Eq. (5) and Eq. (6) lead
to the following equations

λk+1
ik
− ykik = − 1

L
∇ikϕ(yk),

zk+1
ik
− zkik = − 1

2nLθk
∇ikϕ(yk).

Therefore, we have

λk+1
ik
− ykik = 2nθk(zk+1

ik
− zkik).

The above equation together with Eq. (9) yields the
following inequality

ϕ(λk+1)

≤ ϕ(yk) + 2nθk
(
zk+1
ik
− zkik

)
∇ikϕik(yk)

+ 2n2Lθ2
k

(
zk+1
ik
− zkik

)2
. (10)

By the result of Eq. (6), we have

(zk+1
ik
− zkik) +

1

2nLθk
∇ikϕ(yk) = 0.

Therefore, for any λ ∈ R2n, we find that

(λik − z
k+1
ik

)[(zk+1
ik
− zkik) +

1

2nLθk
∇ikϕ(yk)] = 0.

Note that the above equation is equivalent to the fol-
lowing:

1

nLθk
(λik − z

k+1
ik

)∇ikϕ(yk)

= −2(λik − z
k+1
ik

)(zk+1
ik
− zkik)

= (λik − z
k+1
ik

)2 − (λik − zkik)2 + (zk+1
ik
− zkik)2

where the second equality in the above display comes
from simple algebra. Rewriting the above equality, we
have:

(zk+1
ik
− zkik)2

=
1

nLθk
(λik − z

k+1
ik

)∇ikϕ(yk)

− (λik − z
k+1
ik

)2 + (λik − zkik)2

Combining the above equation with Eq. (10) yields the
following inequality:

ϕ(λk+1)

≤ ϕ(yk) + 2nθk(λik − zkik)∇ikϕ(yk)

+ 2n2Lθ2
k

[
(λik − zkik)2 − (λik − z

k+1
ik

)2

]
. (11)

Recall the definition of yk in Step 3 of Algorithm 1 as
follows:

yk = (1− θk)λk + θkzk,

which can be rewritten as:

θk(λ− zk) = θk(λ− yk) + (1− θk)(λk − yk) (12)

for any λ ∈ R2n.

The above equation implies that

ϕ(yk) + θk(λ− zk)T∇ϕ(yk)

≤ θk[ϕ(yk) + (λ− yk)T∇ϕ(yk)]

+ (1− θk)[ϕ(yk) + (λk − yk)T∇ϕ(yk)]

≤ θk[ϕ(yk) + (λ− yk)T∇ϕ(yk)] + (1− θk)ϕ(λk)

where the last inequality comes from the convexity of
ϕ. Combining this equation and taking expectation
over ik for the first two terms of Eq. (11), we have:

ϕ(yk) + (2nθk)Eik [(λik − zkik)∇ikϕ(yk)]

= ϕ(yk) + θk(λ− zk)T∇ϕ(yk)

≤ θk[ϕ(yk) + (λ− yk)T∇ϕ(yk)] + (1− θk)ϕ(λk)
(13)
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where we use Eq. (12) and the convexity of the dual
function in the last step. For the last term in the right
hand side of Eq. (11), by taking expectation over ik,
we have:

Eik
[
2n2Lθ2

k

[
(λik − zkik)2 − (λik − z

k+1
ik

)2
]]

= 2n2Lθ2
kEik

[
||λ− zk||2 − ||λ− zk+1||2

]
(14)

where the last equality comes from the following equa-
tions:

Eik
[
(λik − zkik)2−

(
λik − z

k+1
ik

)2]
= Eik

[
(λik − zkik)2−

(
λik − zkik +

1

2nLθk
∇ikϕ(yk)

)2]
=

1

2n
(‖λ− zk‖2 −

2n∑
ik=0

(
λik − zkik +

1

2nLθk
∇ikϕ(yk)

)2

)

=
1

2n
‖λ− zk‖2 − 1

2n
‖λ− zk +

1

2nLθk
∇ϕ(yk)‖2

=
1

2n

[
− (λ− zk)

nLθk
∇ϕ(yk)− 1

4n2L2θ2
k

‖∇ϕ(yk)‖2
]

= (−2)(λ− zk)Eik [zk − zk+1]− Eik [||zk − zk+1||2]

where the last inequality is due to the fact that
∇ϕ(yk) = 4Eik [(zk−zk+1)n2Lθk] and Jensen’s inequal-
ity. Therefore, by simple algebra, we have

Eik
[
(λik − zkik)2 − (λik − z

k+1
ik

)2

]
= (−2)(λ− zk)Eik [zk − zk+1]− Eik [||zk − zk+1||2]

= Eik [‖λ− zk‖2 − ‖λ− zk+1‖2].

Notice that equation (11) holds for any value of ik.
Hence, by combining the results from Eq. (13) and
Eq. (14) with Eq. (11), at each iteration with a certain
value of ik, we obtain that

Eik [ϕ(λk+1)]

≤ (1− θk)ϕ(λk) + θk[ϕ(yk) + (λ− yk)>∇ϕ(yk)]

+ 2n2Lθ2
k

(
||λ− zk||2 − Eik [||λ− zk+1||2]

)
.

As a consequence, we achieve the conclusion of the
lemma.

A.2 Proof of Theorem 3.3

By the result of Lemma 3.2 and the definition of the
sequence {θk} in Algorithm 1, we obtain the following

bounds:

E
[

1

θ2
k

ϕ(λk+1)

]
≤ E

[
1− θk

=
θ2
kϕ(λk) +

1

θk
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+ 2Ln2
(
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)]
= E

[
1

θ2
k−1

ϕ(λk) +
1

θk
[ϕ(yk) + (λ− yk)T∇ϕ(yk)]

+ 2Ln2
(
||λ− zk||2 − ||λ− zk+1||2

)]
where the outer expectations are taken with respect
to the random sequence of the coordinate indices in
Algorithm 1. Keep iterating the above bound and using
the fact that θ0 = 1 and Ck = 1/θ2

k, we arrive at the
following inequalities:

CkE
[
ϕ(λk+1)

]
≤

k∑
i=0

1

θi
E
[
ϕ(yi) +

〈
∇ϕ(yi), λ− yi

〉 ]
+ 2Ln2

(
||λ− z0||2 − E

[
||λ− zk+1||2

])
≤ min
λ∈R2n

( k∑
i=0

1

θi
E
[
ϕ(yi) +

〈
∇ϕ(yi), λ− yi

〉 ]
+ 2Ln2

(
||λ− z0||2 − E

[
||λ− zk+1||2

]))
≤ min
λ∈B2(2R̂)

( k∑
i=0

1

θi
E
[
ϕ(yi) +

〈
∇ϕ(yi), λ− yi

〉 ]
+ 2Ln2

(
||λ− z0||2 − E

[
||λ− zk+1||2

]))
where R̂ := η

√
n(R+ 1

2 ) is the upper bound for l2-norm
of optimal solutions of dual regularized OT problem (4)
according to Lemma 3.2 in (Lin et al., 2019) and B2(r)
is defined as

B2(r) := {λ ∈ R2n | ||λ||2 ≤ r}.

As E
[
||λ − zk+1||2

]
≥ 0, the inequality in the above

display can be further rewritten as

CkE
[
ϕ(λk+1)

]
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λ∈B2(2R̂)

( k∑
i=0

1

θi
E
[
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〈
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〉 ]
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)
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( k∑
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1

θi
E
[
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〈
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〉 ]
+ 8Ln2R̂2

)
(15)
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Figure 4: Performance of APDGCD and APDAGD algorithms on the synthetic images. The organization of the images is
similar to those in Figure 1.

where the last inequality is due to z0 = 0. Furthermore,
by the definition of the dual entropic regularized OT
objective function ϕ(λ), we can verify the following
equations:

ϕ(yi) +
〈
∇ϕ(yi), λ− yi

〉
=
〈
yi, b−Ax(yi)

〉
− f(x(yi)) +

〈
λ− yi, b−Ax(yi)

〉
= −f(x(yi)) +

〈
λ, b−Ax(yi)

〉
where f(x) := 〈C, x〉, x(λ) := arg max

x∈Rn×n

{
− f(x) −〈

A>λ, x
〉}

, and b =

(
r
l

)
. The above equation leads

to the following inequality:

k∑
i=0

1

θi
E
[
ϕ(yi) +

〈
∇ϕ(yi), λ− yi

〉 ]
=

k∑
i=0

1

θi
E
[
− f(x(yi)) +

〈
λ, b−Ax(yi)

〉 ]
≤ −Ckf(E

[
xk
]
) +

k∑
i=0

1

θi

〈
λ, b−AE

[
x(yi)

]〉
= Ck

(
− f(E

[
xk
]
) +

〈
λ, b−AE

[
xk
]〉 )

(16)

where the second inequality is due to the convexity of f .
Combining the results from (15) and (16), we achieve

the following bound

CkE
[
ϕ(λk+1)

]
≤ −Ckf(E

[
xk
]
) + min

λ∈B2(2R̂)
{Ck

〈
λ, b−AE

[
xk
]〉
}

+ 8Ln2R̂2

≤ −Ckf(E
[
xk
]
) + 8Ln2R̂2 − 2CkR̂E

[
||Axk − b||2

]
.

which is equivalent to

f(E
[
xk
]
) + E

[
ϕ(λk+1)

]
+ 2R̂E

[
||Axk − b||2

]
≤ 8Ln2R̂2

Ck
. (17)

Denoting λ∗ as the optimal solution for the dual en-
tropic regularized OT problem (4). Then, we can verify
the following inequalities

f(E
[
xk
]
) + E

[
ϕ(λk+1)

]
≥ f(E

[
xk
]
) + ϕ(λ∗)

= f(E
[
xk
]
) + 〈λ∗, b〉+ max

x∈Rn×n
{−f(x)−

〈
A>λ∗, x

〉
}

≥ f(E
[
xk
]
) + 〈λ∗, b〉 − f(E

[
xk
]
)−

〈
λ∗, AE

[
xk
]〉

=
〈
λ∗, b−AE

[
xk
]〉

≥ −R̂E
[
||Axk − b||2

]
(18)

where the last inequality comes from Hölder inequality
and the fact that ||λ∗||2 ≤ R̂. Plugging the inequality
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Figure 5: Performance of APDGCD and APDAMD algorithms on the synthetic images. The organization of the images is
similar to those in Figure 5.

in (18) to the inequality in (17) leads to the following
bound:

E
[
||Axk − b||2

]
(19)

≤ 8Ln2R̂

Ck

=
8||A||21n

5
2 (R+ 1/2)

Ck

=
32n

5
2 (R+ 1/2)

Ck
. (20)

Therefore, E
[
||Axk − b||1

]
≤ 32n3(R+1/2)

Ck
. It remains

to bound Ck. We will use induction to show that
θk ≤ 2

k+2 for all k ≥ 0. The inequality clearly holds for
k = 0 as θ0 = 1. Suppose that the hypothesis holds for
k ≥ 0, namely, θk ≤ 2

k+2 for k ≥ 0. By the definition
of θk+1 and simple algebra, we obtain that

θk+1 =
θ2
k

2

(√
1 +

4

θ2
k

− 1

)
≤ 2

k + 3

where the above inequality is due to θk ≤ 2
k+2 . There-

fore, we achieve the conclusion of the hypothesis
for k + 1. Now, simple algebra demonstrates that
Ck ≥ 1

4 (k + 1)(k + 4) ≥ 1
4 (k + 1)2. Combining this

lower bound of Ck and the inequality in (20) leads to
the following result:

E
[
||Axk − b||1

]
≤ 128n3(R+ 1/2)

(k + 1)2
.

As a consequence, we conclude the desired bound on
the number of iterations k required to satisfy the bound
E
[
||Avec(Xk)− b||1

]
≤ ε′.

A.3 Proof of Theorem 3.4

The proof of the theorem follows the same steps as those
in the proof of Theorem 1 in (Altschuler et al., 2017).
Here, we provide the detailed proof for the completeness.
In particular, we denote X̃ the matrix returned by the
APDRCD algorithm (Algorithm 1) with r̃, l̃ and ε′/2.
Recall that, X∗ is a solution to the OT problem. Then,
we obtain the following inequalities:

E[〈C, X̂〉]− 〈C,X∗〉

≤ 2η log(n) + 4E
[
||X̃1− r||1 + ||X̃>1− l||1

]
||C||∞

≤ ε

2
+ 4E

[
||X̃1− r||1 + ||X̃>1− l||1

]
||C||∞,

where the last inequality in the above display holds
since η = ε

4 log(n) . Furthermore, we have

E
[
||X̃1− r||1 + ||X̃>1− l||1

]
≤ E

[ ∥∥∥X̃1− r̃
∥∥∥

1
+
∥∥∥X̃>1− l̃∥∥∥

1

]
+ ‖r − r̃‖1 +

∥∥∥l − l̃∥∥∥
1

≤ ε′

2
+
ε′

2
= ε′.

Since ε′ =
ε

8 ‖C‖∞
, the above inequalities demonstrate

E[〈C, X̂〉]−〈C,X∗〉 ≤ ε. Hence, we only need to bound



Fast Algorithms for Computational Optimal Transport and Wasserstein Barycenter

Figure 6: Performance of APDGCD and APDRCD algorithms on the synthetic images. The organization of the images is
similar to those in Figure 1.

the complexity. Following the approximation scheme in
Step 1 of Algorithm 2, we achieve the following bound

R =
||C||∞
η

+ log(n)− 2 log( min
1≤i,j≤n

{r̃i, l̃i})

≤
4 ‖C‖∞ log(n)

ε
+ log(n)− 2 log

(
ε

64n ‖C‖∞

)
.

Given the above bound with R, we have the following
bound with the iteration count:

k ≤ 1 + 12n
3
2

√
R+ 1/2

ε′

≤ 1 + 12n
3
2

{
8||C||∞

ε

(
4||C||∞ log(n)

ε
+ log(n)

− 2 log
( ε

64n||C||∞
)

+
1

2

)} 1
2

= O
(
n

3
2 ||C||∞

√
log(n)

ε

)
.

Combining the above result with the fact that each
iteration the APDRCD algorithm requires O(n) arith-
metic operations, we conclude that the total num-
ber of arithmetic operations required for the AP-
DRCD algorithm for approximating optimal transport

is O
(
n

5
2 ||C||∞

√
log(n)

ε

)
. Furthermore, the column r̃

and row l̃ in Step 2 of Algorithm 2 can be found in O(n)
arithmetic operations while Algorithm 2 in (Altschuler

et al., 2017) requires O(n2) arithmetic operations. As
a consequence, we conclude that the total number of

arithmetic operations is O
(
n

5
2 ||C||∞

√
log(n)

ε

)
.

Note that by Markov inequality,

P (〈C, X̂〉 > a) ≤ E[〈C, X̂〉]
a

for a ≥ 0. Combining with theorem 3.4 gives us a high
probability bound for obtaining an ε-optimal solution.

B Approximating Wasserstein
Barycenter with the APDRCD
algorithm

In this section, we introduce the distributed Wasser-
stein barycenter problem and present the adapted Ac-
celerated Primal-Dual Coordinate Descent algorithm to
approximate the Wasserstein barycenter efficiently for
a family of probability measures. We first introduce the
setup of the distributed Wasserstein barycenter prob-
lem and its entropic regularization. Then we construct
the dual form of the problem. We further generalize the
APDRCD and the APDGCD algorithms to compute
the Wasserstein barycenter and demonstrate its flexi-
bility for computations in the decentralized distributed
setting.



Wenshuo Guo, Nhat Ho, Michael I. Jordan

Figure 7: Performance of the APDGCD, APDAGD, APDAMD, and APDRCD algorithms on the MNIST real images.
The organization of the images is similar to those in Figure 3.

B.1 Distributed Wasserstein Barycenter
Problem

Given a network of probability measures, the optimal
transport distance naturally defines the mean represen-
tative of the given set of measures. The Wasserstein
barycenter problem consider finding the probability
measure that is closest to all the given measures in
terms of regularized Wasserstein distance. Wasserstein
barycenters captur the structure of the given set of
objects in a geometrically faithful way. For simplicity,
we present the Wasserstein barycenter problem for m
discrete measures or histograms with entropic regular-
izations, but the algorithm could be easily generalized
to any continous measures by drawing samples from
the given measures.

As introduced in Eq 1, given two probability measures
r, l ∈ ∆n, we define the regularized Wasserstein dis-
tance between r and l as:

W(r, l) := min
π∈Π(r,l)

〈π,C〉 (21)

where Π(r, l) = {π ∈ Rn×n+ : π1 = r, πT1 = l} is the
set of all coupling measures between the measure r and
l. Using the entropic regularization as in Eq 2, the

regularized OT distance is defined as:

Wγ(r, l) := min
π∈Π(r,l)

{〈π,C〉+ γH(π)} (22)

where γ ≥ 0 is the regularization parameter.

For a given set of probability measures r1, r2, ..., rm and
corresponding cost matrices C1, C2, ..., Cm ∈ Rn×n+ , the
weighted regularized Wasserstein barycenter problem
is therefore:

min
q∈∆n

Σmk=1wkWγ(rk, q) (23)

where wk ≥ 0, k = 1, ...m,Σmk=1wk = 1 are the weights
over the given measures.

B.2 Network Constrains in the Barycenter
Problem

The given set of probability measures form a network,
where each measure ri is held by an agent i on the
network. Such a network can be modeled as a fixed
connected undirected graph G = (V,E) where V is
the set of m nodes and E is the set of edges. For
convenience, we assume that the graph doesn’t contain
self-loops. The network structure add information
constraints: each node can only exchange information
with its direct neighbors.
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Figure 8: Performance of APDRCD, APDAGD and APDAMD algorithms on 30 ∗ 30 synthetic images.

The communication constraints can be well-captured
by the Laplacian matrix W ∈ Rm×mof the graph G
such that [W ]ij = −1 if (i, j) ∈ E, [W ]ij = deg(i)
if i = j, [W ]ij = 0 otherwise. We further define the
communitation matrix by W := W ⊗ In.

We note some properties of the matrix W. First, for
connected and undirected G, both W and W are pos-
itive semidefinite. Besides,

√
Wq = 0 if and only if

q1 = ... = qm where q = [q1, ..., qm]T ∈ Rmn.

B.3 Dual Formulation of the Wasserstein
Barycenter Problem

To construct the dual problem, we first rewrite prob-
lem 23 as:

min
q1,...,qm∈∆n

q1=...=qm

Wγ(r, q) := Σmk=1wkWγ(k)(rk, qk) (24)

where r = [r1, ..., rm]T , q = [q1, ..., qm]T .

By using the property that
√
Wq = 0 if and only if

q1 = ... = qm where q = [q1, ..., qm]T ∈ Rmn, the above
optimization problem can be further rewritten as:

max
q1,...,qm∈∆n
√
Wq=0

−Σmk=1wkWγ(k)(rk, qk) (25)

Given the above optimization problem with linear
constrains, we introduce a vector of dual variables

λ = [λT1 , ..., λ
T
m]T ∈ Rmn for the constraints

√
Wq = 0.

The Lagrangian dual problem for (25) is:

min
λ∈Rmn

max
q∈Rmn{

Σmk=1

〈
λk, [
√

W q]k

〉
− Σmk=1wkWγ(k)(rk, qk)

}
= min
λ∈Rmn

Σmk=1wkW∗γ(k),rk
([
√
Wλ]k/wk) (26)

where W∗γ(k),rk
(·) is the Fenchel-Legendre transofrm of

Wγ(k)(rk, ·). The function W∗γ(k),rk
(·) enjoys the nice

property that it is a smooth function with Lipschitz-
continous gradient as shown in (Dvurechenskii et al.,
2018).

B.4 Approximate Wasserstein Barycenters
with Accelerated Coordinate Descent

We apply the accelerated primal-dual randomized coor-
dinate descent (APDRCD) algorithm and accelerated
primal-dual greedy coordinate descent (APDGCD) al-
gorithm to solve the pair of primal and dual problems
for Wasserstein barycenter. The algorithms are pre-
sented in Algorithm 5 and Algorithm 6.

C Further Experimental Results

In this appendix, we provide further comparative exper-
iments between APDGCD algorithm versus APDRCD,
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Figure 9: Performance of APDRCD, APDAGD and APDAMD algorithms on 50 ∗ 50 synthetic images.

Figure 10: Performance of APDRCD, APDAGD and APDAMD algorithms on 10000 CIFAR10 test images.

APDAGD and APDAMD algorithms. We also provide
further results on the performance of the APDRCD
algorithm using larger synthetic datasets and CIFAR10.

Experiments in Section 4 and Appendix C) show that
APDRCD enjoys consistent favorable practical perfor-
mance than APDAGD, APDAMD on larger synthetic



Fast Algorithms for Computational Optimal Transport and Wasserstein Barycenter

Algorithm 5: Generalized APDRCD for Computing
Wasserstein Barycenters

1 Input:: Each agent k ∈ V is assigned measure rl, an
upper bound L for the Lipschitz constant of the
gradient of the dual objective, and N .

2 For all agents k ∈ V , set
rk = (1− ε

8 )(rk + ε
n(8−ε)1),γ(k) = ε

4mwk lnn , η
0
k =

ξ0
k = λ0

k = q̂0
k = 0 ∈ Rn, A0 = α0 = 0

3 For each agents k ∈ V :
4 for t = 0, ..., N − 1 do
5 Compute αt+1 as the largest root of

At+1 := At + αt+1 = 2Lα2
t+1

6 Update λt+1
k =

αt+1ξ
t
k+Akη

t
k

At+1
.

7 Calculate ∇W∗γ(k),rk
(λt+1
k ):

[∇W∗γ(k),rk
(λt+1
k )]i =

n∑
j=1

[pk]j
exp(([λ]i−[Ck]ij)/γ(k))
n∑
s=1

exp(([λs−[Ck]sj)/γ(k))

8 Share ∇W∗γ(k),rk
(λt+1
k ) with {j|(i, j) ∈ E}

9 Randomly choose coordinate s from {1, 2, ..., n}:
10 Update

[ξt+1
k ]s = [ξtk]s − [αt+1

m∑
j=1

Wkj∇W∗γ(k),rk
(λt+1
k )]s

11 Update [ηt+1
k ]s = (αt+1[ξt+1

k ]s +Ak[ηt+1
k ]s)/At+1

12 Update [qt+1
k ]s = 1

At+1

t+1∑
k=0

αi[qi(λ
t+1
k )]s =

(αt+1[qi([λt+1]k)]s +At[q
t
k]s)/At+1 where qk(·) is

defined as ∇W∗γ(k),rk
(·)

13 end for

14 Output: qN = [qT1 , ..., q
T
m]T

datasets and CIFAR10. Besides, APDGCD enjoys
favorable practical performance than APDAGD, AP-
DAMD, and APDRCD algorithms on both synthetic
and real datasets. This demonstrates the benefit of
choosing the best coordinate to descent to optimize
the dual objective function of entropic regularized OT
problems in the APDGCD algorithm comparing to
choosing the random descent coordinate in the AP-
DRCD algorithm.

C.1 APDGCD algorithm with synthetic
images

The generation of synthetic images as well as the eval-
uation metrics are similar to those in Section 4.1. We
respectively present in Figure 4, Figure 5 and Figure 6
the comparisons between APDGCD algorithm versus
APDAGD, APDAMD and APDRCD algorithms.

According to Figure 4, Figure 5 and Figure 6, the
APDGCD algorithm enjoys better performance than
the APDAGD, APDAMD and also the APDRCD al-
gorithms in terms of the iteration numbers in terms

Algorithm 6: Generalized APDGCD for Computing
Wasserstein Barycenters

1 Input:: Each agent k ∈ V is assigned measure rl, an
upper bound L for the Lipschitz constant of the
gradient of the dual objective, and N .

2 For all agents k ∈ V , set
rk = (1− ε

8 )(rk + ε
n(8−ε)1),γ(k) = ε

4mwk lnn , η
0
k =

ξ0
k = λ0

k = q̂0
k = 0 ∈ Rn, A0 = α0 = 0

3 For each agents k ∈ V :
4 for t = 0, ..., N − 1 do
5 Compute αt+1 as the largest root of

At+1 := At + αt+1 = 2Lα2
t+1

6 Update λt+1
k =

αt+1ξ
t
k+Akη

t
k

At+1
.

7 Calculate ∇W∗γ(k),rk
(λt+1
k ):

[∇W∗γ(k),rk
(λt+1
k )]i =

n∑
j=1

[pk]j
exp(([λ]i−[Ck]ij)/γ(k))
n∑
s=1

exp(([λs−[Ck]sj)/γ(k))

8 Share ∇W∗γ(k),rk
(λt+1
k ) with {j|(i, j) ∈ E}

9 Select coordinate s from {1, 2, ..., n} where
s = argmaxs |[∇W∗γ(k),rk

(·)]s|
10 Update

[ξt+1
k ]s = [ξtk]s − [αt+1

m∑
j=1

Wkj∇W∗γ(k),rk
(λt+1
k )]s

11 Update [ηt+1
k ]s = (αt+1[ξt+1

k ]s +Ak[ηt+1
k ]s)/At+1

12 Update [qt+1
k ]s = 1

At+1

t+1∑
k=0

αi[qi(λ
t+1
k )]s =

(αt+1[qi([λt+1]k)]s +At[q
t
k]s)/At+1 where qk(·) is

defined as ∇W∗γ(k),rk
(·)

13 end for

14 Output: qN = [qT1 , ..., q
T
m]T

of both the evaluation metrics. Besides, at the same
number of iteration number, the APDGCD algorithm
achieves even faster decrements than other three algo-
rithms with regard to both the distance to polytope
and the value of OT metrics during the computing
process. This is beneficial in practice for easier tuning
and smaller error when the update number is limited.

C.2 APDGCD algorithm with MNIST
images

We present comparisons between APDGCD algorithm
versus APDAGD, APDAMD, and APDRCD algo-
rithms in Figure 7 with MNIST images.

According to Figure 7, the APDGCD algorithm enjoys
better performance than the APDAGD, APDAMD and
also the APDRCD algorithms in terms of the iteration
numbers in terms of both the evaluation metrics. Fur-
thermore, the convergence of the APDGCD algorithm
is faster than other three algorithms with regard to
both the distance to polytope and the value of OT met-
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rics during the computing process when the number of
iterations are small. This is beneficial in practice for
easier tuning and smaller error when the total update
number is limited.

C.3 APDRCD algorithm with larger
synthetic image datasets and CIFAR10

In this section, we provide further experiments on the
APDRCD algorithm on larger syntheric image datasets
and CIFAR10 dataset. Results are included in Figure 8,
Figure 9 and Figure 10. First, we provided results on
the comparisons of APDRCD with APDAGD, AP-
DAMD algorithms on larger synthetic datasets, with
n = 30 ∗ 30 and n = 50 ∗ 50. We also provided the
results on the CIFAR10 dataset. For each comparison,
we provide the plots of the error of the dual variable
versus the number of updates; and the error of the dual
variable versus CPUtime (CPU: 3.1 GHz Intel Core i7)
per iteration. The supplementary experiments show
that APDRCD is more stable and achieve faster con-
vergence in both number of row/col updates of the dual
variables, and CPU time/iteration. The experimental
setup are the same as the previous experiments except
the change of dataset, hence omitted here.
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