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A Proofs

A.1 Proof of Proposition 1

For simplicity of notation, we will drop the hats from all of the variables in this proof, since they are irrelevant
to the result. Without loss of generality, we can also assume Y := {a1, . . . , a|Y |} = {1, . . . ,K}. To show that

B:Y (LY )−1(B:Y )> =
∑|Y |
k=1 ckc

>
k , we proceed by induction on K. When K = 1, the result is trivial since:

B:Y (LY )−1(B:Y )> = b1(b>1 b1)−1b>1 =
b1b
>
1

‖b1‖22
= c1c

>
1 . (21)

For the inductive case, we assume that the statement holds for K−1. For simplicity, we denote X := [b1, . . . , bK−1]

and Ck :=
∑k
j=1 cjc

>
j for k = 1, . . . ,K. From the inductive hypothesis, it holds that:

X(X>X)−1X> = CK−1 =

K−1∑
j=1

cjc
>
j . (22)

Writing the D ×K matrix B:Y in terms of its submatrix X, we have:

B:Y (LY )−1B>:Y = B:Y (B>:YB:Y )−1B>:Y =
[
X bK

]([X>
b>K

] [
X bK

])−1 [
X>

b>K

]
=
[
X bK

] [X>X X>bK
b>KX b>KbK

]−1 [
X>

b>K

]
. (23)

From the Schur complement, we get that:[
X>X X>bK
b>KX b>KbK

]−1

=

[
(X>X)−1 0

0> 0

]
+

1

b>K(bK −X(X>X)−1X>bK)

[
(X>X)−1X>bKb>KX(X>X)−1 −(X>X)−1X>bK

−b>KX(X>X)−1 1

]
(24)

where 0 is k-dimensional zeros vector. Substituting Equation 24 into Equation 23, we obtain:

B:Y (LY )−1B>:Y = X(X>X)−1X> +
1

b>K(bK − CK−1bK)

(
CK−1bKb>KCK−1 − CK−1bKb>K − bKb>KCK−1 + bKb>K

)
= CK−1 +

(bK − CK−1bK)(bK − CK−1bK)>

b>K(bK − CK−1bK)

= CK−1 +
dKd>K
bKdK

= CK−1 + cKc>K =

K∑
j=1

cjc
>
j . (25)

This completes the proof of Proposition 1.

A.2 Proof of Theorem 1

First, recall our assumption that the smallest singular value of B̂:S is greater than 1 for all S ⊆ [N ] where

|S| = K. This implies that the eigenvalues of L̂S = B̂>:SB̂:S are all greater than 1. It also implies, by the
eigenvalue interlacing theorem, that the eigenvalues of all submatrices of this matrix are greater than 1. This
means that, for any S ⊆ [N ] where |S| ≤ K, the determinant of the matrix L̂S is always > 1. This is sufficient

to show that the set function f(S) = log det(L̂S) defined on S ⊆ [N ], |S| ≤ K is non-negative, monotone, and
submodular (see Sharma et al., 2015, Propositions 1 and 2). These three properties, combined with the fact that
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log(det(L̂∅)) = log(1) = 0, imply that the greedy algorithm of Nemhauser et al. (1978) applied to the log det
function gives a (1− 1/e)-approximation ratio:

log det(L̂Ȳ ) ≥ (1− 1/e) log det(L̂Y ∗). (26)

By monotonicity of log, we get the statement from the theorem. This completes the proof of Theorem 1.

A.3 Proof of Theorem 2

From our stated minumum eigenvalue assumption on B̂:S , we have that f(S) = log det(L̂S) defined on S ⊆
[N ], |S| ≤ K is non-negative, monotone, and submodular. (See the proof of Theorem 1 for a more in-depth
argument of why this is the case.) The properties guarantee that the greedy algorithm of Nemhauser et al. (1978)
applied to the log det function gives a (1− 1/e)-approximation ratio. The greedy algorithm starts from the empty
set and builds a set S one item at a time by adding the item that maximizes the following marginal gain:

argmax
i∈[N ]

log

(
det(L̂S∪{i})

det(L̂S)

)
. (27)

Recall from the developments in Equation 4 through Equation 11 that we can write this marginal gain as the
following inner product:

log

(
det(L̂S∪{i})

det(L̂S)

)
= log

〈
W>W −W>Ĉ(S)W, bib

>
i

〉
. (28)

Further, note that, since we already established this log det is non-negative, the inner product here is a positive
quantity (in fact, it must be ≥ 1). This means that, if i ∈ [N ] is the index from a (1 − ε)-approximate MIPS

structure M with the query matrix W>W −W>Ĉ(S)W , we have the following lower bound:

log
det(L̂S∪{i})

det(L̂S)
≥ log

(
(1− ε) max

i∈[N ]

〈
W>W −W>Ĉ(S)W, bib

>
i

〉)
= − log

(
1

1− ε

)
+ max
i∈[N ]

log
det(L̂S∪{i})

det(L̂S)
. (29)

To conclude the proof, we introduce the following lemma that guarantees the optimality of the greedy algorithm
when the marginal gain is maximized with an additive error.

Lemma 1. Suppose that f : [N ]→ R+ is monotone submodular function that satisfies f(∅) = 0. Let Y0 = ∅ and
Yi = Yi−1 ∪ {ai} such that:

f(Yi−1 ∪ {ai})− f(Yi−1) ≥ max
a∈[N ]

f(Yi−1 ∪ {a})− f(Yi−1)− α (30)

for i = 1, . . . ,K and some α ≥ 0. Then, it holds that:

f(YK) ≥
(

1− 1

e

)
max
|S|=K

f(S)−Kα. (31)

From Lemma 1 and Equation 29, we have that:

log det(L̂Y ) ≥
(

1− 1

e

)
max
|S|=K

log det(L̂S)−K log

(
1

1− ε

)
, (32)

where Y is the output of Algorithm 1. Exponentiating, we obtain the result:

det(L̂Y ) ≥ (1− ε)K
(

max
|S|=K

det(L̂S)

)(1−1/e)

. (33)

This concludes the proof of Theorem 2.
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A.4 Proof of Lemma 1

This proof is similar to that of Nemhauser et al. (1978)’s proof of the (1 − 1/e)-approximation guarantee for
the greedy algorithm, with a few modifications. Let Yi = {a1, a2, . . . , ai} for i = 1, . . . ,K and let Y ∗ :=

argmax|S|=K det(L̂S) represent the optimal size-K set. For a fixed i, let Y ∗ \ Yi := {d1, . . . , dr}. Then:

f(Y ∗) ≤ f(Y ∗ ∪ Yi) (34)

= f(Yi) + [f(Yi ∪ {d1})− f(Yi)] + [f(Yi ∪ {d1, d2})− f(Yi ∪ {d1})]+ (35)

· · ·+ [f(Yi ∪ Y ∗)− f(Yi ∪ (Y ∗ \ dr))] (36)

≤ f(Yi) + |Y ∗ \ Yi|
(

max
`∈[r]

f(Yi ∪ {d`})− f(Yi)

)
(37)

≤ f(Yi) +K

(
max
`∈[r]

f(Yi ∪ {d`})− f(Yi)

)
(38)

≤ f(Yi) +K

(
max
j∈[N ]

f(Yi ∪ {j})− f(Yi)

)
(39)

≤ f(Yi) +K (f(Yi ∪ {ai+1})− f(Yi) + α) , (40)

where the first inequality follows from monotonicity of f , the second from the submodularity of f , the third from
the fact that |Y ∗| ≤ K, and the last from the greedy selection property. Rearranging the above equation, we
have that:

f(Y ∗)− f(Yi+1) ≤
(

1− 1

K

)
(f(Y ∗)− f(Yi)) + α. (41)

Using induction on i, it holds that:

f(Y ∗)− f(YK) ≤
(

1− 1

K

)K
(f(Y ∗)− f(Y0)) + α

K∑
i=0

(
1− 1

K

)i
(42)

≤
(

1− 1

K

)K
f(Y ∗) + αK (43)

≤ 1

e
f(Y ∗) + αK. (44)

Rearranging this, we conclude the proof of Lemma 1.

A.5 Proof of Theorem 3

From the definition of bC := 1
|C|
∑
i∈C bi and BC := 1

|C|
∑
i∈C bib

>
i , we have that:

bCb
>
C −BC =

(∑
i∈C bi

) (∑
i∈C bi

)> − |C|(∑i∈C bib
>
i

)
|C|2

(45)

=

(∑
i 6=j bib

>
j

)
− (|C| − 1)

(∑
i∈C bib

>
i

)
|C|2

(46)

= − 1

|C|2
∑
i<j

(bi − bj) (bi − bj)
>

(47)
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Putting together this, we have that, for a symmetric query matrix Q:∣∣∣〈bCb>C , Q〉− 〈BC , Q〉∣∣∣ =
∣∣∣〈bCb>C −BC , Q〉∣∣∣ (48)

=
1

|C|2

∣∣∣∣∣∣
∑
i<j

〈
(bi − bj) (bi − bj)

>
, Q
〉∣∣∣∣∣∣ (49)

≤ 1

|C|2
∑
i<j

∣∣∣〈(bi − bj) (bi − bj)
>
, Q
〉∣∣∣ (50)

=
1

|C|2
∑
i<j

∣∣∣(bi − bj)
>
Q (bi − bj)

∣∣∣ (51)

≤ 1

|C|2

∑
i<j

‖bi − bj‖22

 ‖Q‖2 (52)

≤ 1

2

(
max
i,j∈C

‖bi − bj‖22

)
‖Q‖2 . (53)

The inequality on the third line follows from the triangle inequality. The equality on the fourth line is from the
fact that

〈
vv>, A

〉
= v>Av for a vector v and a symmetric matrix A. The next-to-last inequality follows from

the definition of the 2-norm of a matrix: ‖Q‖2 = max
‖x‖2=1

x>Qx. This completes the proof of Theorem 3.

B Parameter Search for FastSamp

Even though it produces exact samples from the DPP, FastSamp (Derezinski et al., 2019) has two tunable
parameters that have some influence on the runtime of the method: qBless and qxdpp. We benchmarked the
performance of the method with respect to these parameters on synthetic data with N = 10,000.

The pre-processing time only depends on qBless (i.e., it is O(q2
Bless)), and the dependency is shown in the leftmost

plot of Figure 3. Item selection (sampling) time depends on both parameters in theory, but in practice we found
that the time was in fact very insensitive to how these parameters were set; see the rightmost plot in Figure 3. We
choose qBless = 3 and qxdpp = 2 for our experiments in Section 4. (Setting qBless any smaller makes the algorithm
unstable.)
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Figure 3: Results for (a) pre-processing time varying qBless and (b) item selection (sampling) time varying both
qBless and qxdpp.


