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A Does the MIP enforce Strong Hierarchy?

We note that there can be a pathological case where the MIP does not satisfy SH. We will briefly

discuss why this case corresponds to a zero probability event, when y is drawn from a continuous

distribution (this happens for example, if ε ∼ N(0, σ2) with σ > 0). First, we assume that α1 and

α2 are chosen large enough so that the number of selected variables (as counted by
∑
zi+

∑
i<j zij)

is less than or equal to the number of samples n. We will also assume that the Xi’s and X̃ij ’s

corresponding to the nonzero zi’s and zij ’s have full rank.

A pathological case can happen when the optimal solution of the MIP satisfies: z∗ij = 1, z∗i = 1,

β∗i = 0, and θ∗ij 6= 0 for some i and j (for example). However, in the latter case, βi is a free variable,

i.e., |βi| ≤ M (since z∗i = 1 and we assume M to be sufficiently large). Thus, β∗i = 0 is equivalent

to saying that a least squares solution on the support defined by the nonzero z∗i ’s and z∗ij ’s, leads

to a coordinate β∗i which is exactly zero. We know that this is a zero probability event when y is

drawn from a continuous distribution (assuming the number of variables is less than or equal to

the number of samples and the corresponding columns have full rank).

B Proof of Lemma 1

Suppose the zi’s and zij ’s are relaxed to [0, 1] and fix some feasible solution β, θ. Let us (partially)

minimize the objective function with respect to z, while keeping β, θ fixed, to obtain a solution z∗.

Then, z∗ must satisfy z∗i = max{ |βi|M ,maxk,j∈Gi zkj} for every i (since this choice is the smallest

feasible zi). Moreover, z∗ij =
|θij |
M for every i < j (by the same reasoning). Substituting the optimal

values z∗i and z∗ij leads to

min
β,θ

f(β, θ) + Ω(β, θ) s.t. ‖β, θ‖∞ ≤M (B.1)
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where Ω(β, θ)
def
= λ1

∑p
i=1 max{|βi|, ‖θGi‖∞}+λ2‖θ‖1 and λ1 = α1/M, λ2 = α2/M . Finally, we note

that the box constraint in the above formulation can be removed, and the resulting formulation is

still a valid relaxation.

C Dual Reformulation of the Proximal Problem

In this section, we present a dual reformulation of the proximal problem, which will facilitate

solving the problem. We note that Jenatton et al. (2011) and Mairal et al. (2011) dualize a

proximal problem which involves sum of `∞ norms (their proximal problem thus includes ours as

a special case). However, the dual we will present here uses Θ(p2) less variables as it exploits the

presence of the `1 norm in the objective. First, we introduce some necessary notation. We define

the soft-thresholding operator as follows:

Sγ(ṽ) =

0 if |ṽ| ≤ γ

(|ṽ| − γ) sign(ṽ) o.w.

We associate every βi with a dual variable ui ∈ R, and every θij with two dual variables: wij ∈ R
and wji ∈ R. Moreover, we use the notation wi ∈ Rp−1 to refer to the vector composed of wij for

all j such that j 6= i.

Theorem C.1. (Dual formulation) A dual of the proximal problem is:

max
u,w

q(u,w) s.t. ‖(ui, wi)‖1 ≤ 1 ∀ i ∈ [p] (C.2)

where q(u,w) is a continuously differentiable function with a Lipschitz continuous gradient, and

∇uiq(u,w) = λ1

(
β̃i −

λ1
L
ui
)

∇wijq(u,w) = ∇
wji
q(u,w) = λ1Sλ2

L

(
θ̃ij −

λ1
L

(wij + wji )
)
.

If u∗, w∗ is a solution to (C.2), then the solution to the proximal problem is:

β∗i =
∇uiq(u∗, w∗)

λ1
and θ∗ij =

∇wijq(u
∗, w∗)

λ1
. (C.3)

Proof. Since the `1 norm is the dual of the l∞ norm, we have:

max{|βi|, ‖θGi‖∞} = max
ui∈R, wi∈Rp−1

uiβi + 〈wi, θGi〉 s.t.‖(ui, wi)‖1 ≤ 1 (C.4)

Plugging the above into the proximal problem and switching the order of the min and max (which
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is justified by strong duality), we arrive to the dual of the proximal problem:

max
u,w

min
β,θ

L

2

∥∥∥∥∥
[
β − β̃
θ − θ̃

]∥∥∥∥∥
2

2

+ λ1
∑
i

(uiβi + 〈wi, θGi〉) + λ2‖θ‖1

s.t. ‖(ui, wi)‖1 ≤ 1,∀i ∈ [p]

(C.5)

Note that each dual variable ui is a scalar which corresponds to the primal variable βi. Similarly,

the dual vector wi ∈ Rp−1 corresponds to θGi . The term
∑

i(u
iβi + 〈wi, θGi〉) in (C.5) can be

written as
∑

i u
iβi +

∑
i<j θij(w

i
j + wji ), where wij and wji are the components of the vectors wi

and wj , respectively, corresponding to θij . Using this notation, we can rewrite Problem (C.5) as

follows:

max
u,w

min
β,θ

∑
i

h(βi, u
i; β̃i) +

∑
i<j

g(θij , w
i
j , w

j
i ; θ̃ij)

s.t. ‖(ui, wi)‖1 ≤ 1,∀i ∈ [p]

(C.6)

where

h(a, b; ã)
def
=
L

2
(a− ã)2 + λ1ab and g(a, b, c; ã)

def
=
L

2
(a− ã)2 + λ1a(b+ c) + λ2|a|

The optimal solution of the inner minimization in (C.6) is (uniquely) given by:

β∗i
def
= arg min

βi

h(βi, u
i; β̃i) = β̃i −

λ1
L
ui

θ∗ij
def
= arg min

θij

g(θij , w
i
j , w

j
i ; θ̃ij) = Sλ2

L

(
θ̃ij −

λ1
L

(wij + wji )
) (C.7)

Therefore, the dual problem can equivalently written as:

max
u,w

∑
i

h(β∗i , u
i; β̃i) +

∑
i<j

g(θ∗ij , w
i
j , w

j
i ; θ̃ij)︸ ︷︷ ︸

q(u,w)

s.t. ‖(ui, wi)‖1 ≤ 1 ∀ i
(C.8)

Finally, since the solution β∗, θ∗ is defined in (C.7) is unique, Danskin’s theorem implies that the

dual objective function q(u,w) is continuously differentiable and that

∇uiq(u,w) = λ1β
∗
i and ∇wijq(u,w) = ∇

wji
q(u,w) = λ1θ

∗
ij . (C.9)

In problem (C.2), the separability of the feasible set across the (ui, wi)’s and the smoothness

of q(u,w) make the problem well-suited for the application of block coordinate ascent (BCA)

(Bertsekas (2016); Tseng (2001)), which optimizes with respect to a single block at a time. When
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updating a particular block in BCA, we perform inexact maximization by taking a step in the

direction of the gradient of the block and projecting the resultant vector onto the feasible set, i.e.,

the `1 ball. We present the algorithm more formally below.

Algorithm 3: BCA for Solving (C.2)

• Initialize with u,w and take step size αi, i ∈ [p].

• For i ∈ [p] perform updates (till convergence):[
ui

wi

]
← P‖.‖1≤1

([
ui

wi

]
+ αi∇ui,wiq(u,w)

)
,

where for a vector a, P‖.‖1≤1(a) denotes projection of a onto the unit `1-ball.

The Lipschitz parameter of ∇ui,wiq(u,w) is given by Li = p
λ21
L (this follows by observing that each

component of ∇ui,wiq(u,w) is a piece-wise linear function with a maximal slope of
λ21
L ). Thus, by

standard results on block coordinate descent (e.g., Beck and Tetruashvili (2013); Bertsekas (2016)),

Algorithm 3 with step size αi = 1
Li

converges at a rate of O(1t ) (where t is the iteration counter). We

note that BCA has been applied to the dual of structured sparsity problems (e.g., Jenatton et al.

(2011); Yan and Bien (2017))—however, the duals considered in the latter works are different.

D Proof of Theorem 1

We prove the theorem using the dual reformulation presented in Theorem (C.1) and the block

coordinate ascent (BCA) algorithm presented in Section C. Suppose
∑

t∈Gi max{|θ̃t| − λ2
L , 0} ≤

λ1
L − |β̃i| is satisfied for some i. Let u,w be some feasible solution to Problem (C.2) (e.g., solution

of all zeros). Now update u,w as follows:

ui =
L

λ1
β̃i, (D.10)

and for every t ∈ Gi, let j be the index in t different from i and set:

wij = max
{ L
λ1
|θ̃t| −

λ2
λ1
, 0
}

sign(θ̃t) and wji = 0 (D.11)

It is easy to check that u,w is still feasible for Problem (C.2) after this update and that∇ui,wiq(u,w) =

0 and ∇
wji
q(u,w) = 0 for every j. Thus, BCA will never change ui, wi, or wji (for any j) in sub-

sequent iterations. Since BCA is guaranteed to converge to an optimal solution, we conclude that

the values in (D.10) and (D.11) (which correspond to β∗i , θ
∗
Gi

= 0) are optimal.

For the case when |θ̃ij | ≤ λ2
L , if we set wij = wji = 0, then ∇wijq(u,w) = ∇

wji
q(u,w) = 0, so BCA

will never change wij or wji , which leads to θ∗ij = 0.
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E Proof of Theorem 2

By Theorem 1, we have β∗Vc = 0, θ∗Ec = 0. Plugging the latter into the proximal problem leads

to: [
β∗V
θ∗E

]
= arg min

βV ,θE

L

2

∥∥∥∥∥
[
βV − β̃V
θE − θ̃E

]∥∥∥∥∥
2

2

+ Ω(βV , θE) (E.12)

where Ω(βV , θE) = λ1
∑

i∈V max{|βi|, ‖θG̃i‖∞} + λ2‖θE‖1 and G̃i = Gi \ Ec. But by the definition

of the connected components, the following holds:

Ω(βV , θE) =
∑
l∈[k]

[
λ1
∑
i∈Vl

max{|βi|, ‖θG̃i‖∞}+ λ2‖θEl‖1
]

=
∑
l∈[k]

Ω(βVl , θEl).

The above implies that the proximal problem is separable across the blocks βVl , θEl , which leads to

the result of the theorem.

F Proof of Lemma 2

First, note that the full gradient ∇β,θf(β̂, θ̂) is sufficient for constructing G (see steps 2 and 3 of

Algorithm 2). The (i, j)’s in T c whose |θ̃ij | ≤ λ2/L are not needed to construct G (this follows from

the definitions of V and E). For every (i, j) ∈ T c, we have θ̂ij = 0, so the condition |θ̃ij | ≤ λ2/L is

equivalent to |∇θijf(β̂, θ̂)| ≤ λ2 (see the definition of θ̃ij in step 2 of Algorithm 2). Thus, the (i, j)’s

in T c with |∇θijf(β̂, θ̂)| ≤ λ2 are not needed to construct G. The latter indices are exactly those in

Sc. Thus, the remaining parts of the gradient are: ∇βf(β̂, θ̂), ∇θT f(β̂, θ̂), and ∇θSf(β̂, θ̂)—these

are sufficient to construct G.

G Proof of Lemma 3

Let (i, j) ∈ S. By the triangle inequality:

|∇θijf(β̂, θ̂)| ≤ |∇θijf(βw, θw)|+ |∇θijf(β̂, θ̂)−∇θijf(βw, θw)| (G.13)

Writing down the gradients explicitly and using Cauchy-Schwarz, we get:

|∇θijf(β̂, θ̂)−∇θijf(βw, θw)| = |X̃T
ij(y −Xβ̂ − X̃θ̂)− X̃T

ij(y −Xβw − X̃θw)|

≤ ‖X̃ij‖2‖(Xβ̂ + X̃θ̂)− (Xβw + X̃θw)‖2
≤ C‖γ‖2
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Plugging the upper bound above into (G.13), we get |∇θijf(β̂, θ̂)| ≤ |∇θijf(βw, θw)| + C‖γ‖2.
Therefore, if (i, j) ∈ S, i.e., |∇θijf(β̂, θ̂)| > λ2 then |∇θijf(βw, θw)| + C‖γ‖2 > λ2, implying that

(i, j) ∈ Ŝ.

H Results of Additional Experiments

H.1 Sizes of Connected Components

For the Riboflavin (p = 4088, n = 71) and Coepra (p = 5786, n = 89) datasets (discussed in the

paper), we fit a regularization path with 100 solutions using Algorithm 2. In Table H.1, we report

the maximum number of edges and vertices encountered across all the connected components and

for all the 100 solutions in the path.

Table H.1: Maximum size of the connected components across a regularization path of 100 solutions.

Dataset
λ2 = 2λ1 λ2 = λ1

# Edges # Vertices # Edges # Vertices

Ribo 350 149 1855 693
Coepra 227 86 400 103

H.2 Prediction Error
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Figure H.1: MSE on the test set for synthetic data (Anti-Hierarchical truth).
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Figure H.2: MSE on the test set for synthetic data (Hierarchical truth).
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