A Bernstein and empirical Bernstein inequalities

Proof of Lemma 4.2. We use the Empirical Bernstein inequality of [Maurer and Pontil 2009]. This inequality states that for \(\hat{\sigma}^2 := \frac{1}{2n(n-1)} \sum_{i,j \in [n], i \neq j} (Y_i - Y_j)^2 \), with a probability at least \(1 - \delta \), we have

\[
\hat{\mu} - \mu \leq \frac{7 \ln(\frac{2}{\delta})}{3(n-1)} + \sqrt{\frac{2\hat{\sigma}^2 \ln(\frac{2}{\delta})}{n}}.
\]

We have \(\hat{\sigma}^2 \leq \frac{n}{2(n-1)n^2} \sum_{i,j \in [n]} (Y_i - Y_j)^2 = \frac{1}{2n(n-1)} \mathbb{E}[(Y - Y')^2] \), where \(Y, Y' \) are drawn independently and uniformly from the fixed sample \(Y_1, \ldots, Y_n \). Since \(\mathbb{E}[(Y - Y')^2] \leq 2 \mathbb{E}[Y^2] \), and \(Y \in [0,1] \), we have \(\hat{\sigma}^2 \leq \frac{n}{2(n-1)} \mathbb{E}[Y] = \frac{\hat{\mu}}{n-1} \hat{\mu} \). Therefore,

\[
\hat{\mu} - \mu \leq \frac{7 \ln(\frac{2}{\delta})}{3(n-1)} + \sqrt{\frac{2\hat{\mu} \ln(\frac{2}{\delta})}{n-1}}.
\]

If \(\hat{\mu} = \ln(\frac{2}{\delta})/(n-1) \) for \(a \geq 16 \), then the RHS is at most

\[
\frac{7}{3} + \sqrt{2a} \ln(\frac{2}{\delta})/(n-1) \leq a/2 \cdot \ln(\frac{2}{\delta})/(n-1) \leq \hat{\mu}/2.
\]

Proof of Lemma 4.3. Let \(\sigma^2 = \text{Var}[Y_i] \). By Bernstein’s inequality [Hoeffding 1963] (see, e.g., Maurer and Pontil 2009 for the formulation below),

\[
\mu - \hat{\mu} \leq \frac{\ln(\frac{1}{\delta})}{3n} + \sqrt{\frac{2\sigma^2 \ln(\frac{1}{\delta})}{n}}.
\]

Since \(Y_i \) are supported on \([0,1] \), we have \(\sigma^2 \leq \mu \). Since \(\mu = \ln(\frac{2}{\delta})/n \) for \(a \geq 10 \), we have that the RHS is equal to \((1/3 + \sqrt{2a}) \ln(\frac{2}{\delta})/n \leq a/2 \cdot \ln(\frac{1}{\delta})/n \leq \mu/2 \).

The statement of the lemma follows.

B Tightness of multiplicative factor of SKM

Proof of Theorem 3.1. We define a weighted undirected graph \(G = (V,E,W) \), and let \((\mathcal{X}, \rho) \) be a metric space such that \(\mathcal{X} = V \) and \(\rho(u,v) \) is the length of the shortest path in the graph between \(u \) and \(v \). \(G \), which is illustrated in Figure 2 is formally defined as follows. The set of nodes is \(V := U \cup Y \cup \{o,v\} \), where \(U := [0,1] \) and \(Y := [3,4] \). The set of edges is

\[
E := \{ \{u,o\} \cup \{v,y\} \mid y \in Y \cup \{o,v\} \}.
\]

Denote \(m_1 := m/2 \), and let \(\eta := 1/(4m_1) \). The weight function \(W \) assigns a weight of 1 to all edges except for those that have a node in \(Y \) as an endpoint, which are assigned a weight of \(2 - \eta \).

Define the distribution \(P \) over \(\mathcal{X} \) such that \(P(o) = 0 \), \(P(v) = 1/m_1 \), \(P(Y) = 2q \), with a uniform conditional distribution over \(Y \). Lastly, \(P(U) = 1 - 2q - \frac{1}{m_1} \), with a uniform conditional distribution over \(U \). Note that the latter is positive for a large enough \(m_1 \), since \(q(m_1) \to 0 \).

Let \(S \sim P^m \) be the i.i.d. sample used as an input sequence to SKM, and set \(k = 1 \). Let \(S_1 \) be the sample observed in the first phase of SKM, of size \(m_1 \). Define the following events:

1. \(E_1 := \{ o \notin S_1 \} \).
2. \(E_2 := \{ v \text{ appears in } S_1 \} \).
3. \(E_3 := \{ \text{at least } qm_1 \text{ of the samples in } S_1 \text{ are from } Y \} \).

First, observe that all these events occur together with a positive probability, as follows. \(\mathbb{P}[E_1] = 1 \) since \(P(o) = 0 \). For \(E_2 \), we have

\[
\mathbb{P}[E_2] > 1 - (1 - \frac{1}{m_1})^{m_1} > \frac{1}{2}.
\]

For \(E_3 \), note that the probability mass of \(Y \) is \(2q \). Apply Lemma 4.3 with \(\mu = 2q \), \(n = m_1 \) and a confidence
value of $1/4$. By the assumption of the theorem, for sufficiently small δ, we have $q \geq 5\log(4)/m_1$. Therefore, Lemma 4.3 implies that $P[E_3] \geq 3/4$. It follows that $P[E_1 \land E_2 \land E_3] \geq 1/4$.

Now, assume that all the events above hold. By E_1, o does not appear in S_1, and by E_2, v appears in S_1. We show that out of the points in S_1, the 1-clustering $\{v\}$ has the best empirical risk. The only other options in S_1 are centers from Y or from U. For a center $u \in U$ from S_1, note that with a probability 1, it does not have additional copies in S_1. Its distance from all other $u' \in U$ is the same as that of v, while its distance from points in Y and from v is larger. Thus, $R(S_1, \{u\}) > R(S_1, \{v\})$. For a center $y \in Y$, it too does not have additional copies in S_1. Its distance to all other points is larger than that of v. Thus, $R(S_1, \{y\}) > R(S_1, \{v\})$. Therefore, v has the best empirical risk on S_1. Thus, $A(S_1)$ returns the 1-clustering $\{v\}$.

By E_3, the number of instances of vertices from Y is at least qm_1. Since the points in Y are the closest to v in S_1, we have $y' := q_{S_1}(v, q) \in Y$. Therefore, $q_{ball}(v, y') = \{v\} \cup Y$. It follows that SKM selects as a center the first element from $\{v\} \cup Y$ that it observes in the second phase. With a probability $\frac{2q}{2q + m_1}$, the first element that SKM observes from $\{v\} \cup Y$ is in Y. Since $q \geq 1/m_1$, this probability is at least $2/3$. Thus, the output center of SKM is from Y with a constant probability.

However, the risk of this clustering is large:

$$R(P, \{y\}) = (4 - \eta)(1 - 2q - \frac{1}{m_1}) + (2 - \eta)\frac{1}{m_1} + (4 - \eta)2q.$$

For large m, we have $m_1 \to \infty$. In addition, $q, \eta \to 0$. Hence, $R(P, \{y\}) \to 4$. In contrast, the risk using o as a center is small:

$$R(P, \{o\}) = (1 - 2q - \frac{1}{m_1}) + \frac{1}{m_1} + (3 - \eta)2q.$$

This approaches 1 for large m. Therefore, for $m \to \infty$, $R(P, \{y\})/R(P, \{o\}) \to 4$. Since $\{y\}$ is the output of SKM with a constant probability, the multiplicative factor obtained by SKM cannot be smaller than $4 = 2^3$ in this case.

C Full results of experiments

The results of the experiments for large stream sizes with the k-medoids as the black box are reported in Figure 3. The results for the BIRCH black-box are reported in Figure 4 and in Figure 5. For the k-medoids black box, the risk ratios for large stream sizes are in the following ranges: MNIST $1.02 - 1.04$, Covertype $1.04 - 1.08$, Census $1 - 1.04$. For the BIRCH black box, the risk ratios for large stream sizes are in the following ranges: MNIST $1.03 - 1.04$, Covertype $1.05 - 1.1$, Census $1 - 1.02$. Thus, the risk ratio converges to a ratio very close to 1.
Figure 3: Risk ratio between SKM with \(k \)-medoids and offline \(k \)-medoids for large stream sizes, as a function of the stream size, for various values of \(k \). Top to bottom: MNIST, Covertype, Census.

Figure 4: Risk ratio between SKM with BIRCH and offline BIRCH as a function of the stream size, for various values of \(k \). Top to bottom: MNIST, Covertype, Census.
Figure 5: Risk ratio between SKM with BIRCH and offline BIRCH for large stream sizes, as a function of the stream size, for various values of k. Top to bottom: MNIST, Covertype, Census.