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A Bernstein and empirical Bernstein
inequalities

Proof of Lemma 3.2. We use the Empirical Bernstein
inequality of (Maurer and Pontil, 2009). This inequal-
ity states that for σ̂2 := 1

2n(n−1)

∑
i,j∈[n],i6=j(Yi−Yj)2,

with a probability at least 1− δ, we have

µ̂− µ ≤
7 ln( 2

δ )

3(n− 1)
+

√
2σ̂2 ln( 2

δ )

n
.

We have σ̂2 ≤ n
2(n−1)

1
n2

∑
i,j∈[n](Yi − Yj)

2 =
n

2(n−1)E[(Y − Y ′)2], where Y, Y ′ are drawn indepen-

dently and uniformly from the fixed sample Y1, . . . , Yn.
Since E[(Y − Y ′)2] ≤ 2E[Y 2], and Y ∈ [0, 1], we have
σ̂2 ≤ n

n−1E[Y ] ≡ n
n−1 µ̂. Therefore,

µ̂− µ ≤
7 ln( 2

δ )

3(n− 1)
+

√
2µ̂ ln( 2

δ )

n− 1
.

If µ̂ = a ln( 2
δ )/(n − 1) for a ≥ 16, then the RHS is at

most

(7/3+
√

2a) ln(
2

δ
)/(n−1) ≤ a/2 · ln(

2

δ
)/(n−1) ≤ µ̂/2.

Proof of Lemma 4.3. Let σ2 = Var[Yi]. By Bern-
stein’s inequality (Hoeffding, 1963) (See, e.g., Maurer
and Pontil 2009 for the formulation below),

µ− µ̂ ≤
ln( 1

δ )

3n
+

√
2σ2 ln( 1

δ )

n
.

Since Yi are supported on [0, 1], we have σ2 ≤ µ. Since
µ = a ln( 1

δ )/n for a ≥ 10, we have that the RHS is

equal to (1/3 +
√

2a) ln(1
δ )/n ≤ a/2 · ln( 1

δ )/n ≤ µ/2.
The statement of the lemma follows.

B Tightness of multiplicative factor of
SKM

Proof of Theorem 3.6. We define a weighted undi-
rected graph G = (V,E,W ), and let (X , ρ) be a metric
space such that X = V and ρ(u, v) is the length of the
shortest path in the graph between u and v. G, which

is illustrated in Figure 2, is formally defined as fol-
lows. The set of nodes is V := U ∪ Y ∪ {o, v}, where
U := [0, 1] and Y := [3, 4]. The set of edges is

E := {{u, o} | u ∈ U} ∪ {{v, y} | y ∈ Y } ∪ {{o, v}}.

Denote m1 := m/2, and let η := 1/(4m1). The weight
function W assigns a weight of 1 to all edges except
for those that have a node in Y as an endpoint, which
are assigned a weight of 2− η.

Figure 2: Illustration of the graph G which defines the
metric space.

Define the distribution P over X such that P (o) = 0,
P (v) = 1/m1, P (Y ) = 2q, with a uniform conditional
distribution over Y . Lastly, P (U) = 1 − 2q − 1

m1
,

with a uniform conditional distribution over U . Note
that the latter is positive for a large enough m1, since
q(m1)→ 0.

Let S ∼ Pm be the i.i.d. sample used as an input
sequence to SKM, and set k = 1. Let S1 be the sample
observed in the first phase of SKM, of size m1. Define
the following events:

1. E1 := {o /∈ S1}.

2. E2 := {v appears in S1}.

3. E3 := {at least qm1 of the samples in S1 are from
Y }.

First, observe that all these events occur together with
a positive probability, as follows. P[E1] = 1 since
P (o) = 0. For E2, we have

P[E2] > 1− (1− 1

m1
)m1 >

1

2
.

For E3, note that the probability mass of Y is 2q, Ap-
ply Lemma 4.3 with µ = 2q, n = m1 and a confidence
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value of 1/4. By the assumption of the theorem, for
sufficiently small δ, we have q ≥ 5 log(4)/m1. There-
fore, Lemma 4.3 implies that P [E3] ≥ 3/4. It follows
that P[E1 ∧ E2 ∧ E3] ≥ 1/4.

Now, assume that all the events above hold. By E1,
o does not appear in S1, and by E2, v appears in S1.
We show that out of the points in S1, the 1-clustering
{v} has the best empirical risk. The only other op-
tions in S1 are centers from Y or from U . For a
center u ∈ U from S1, note that with a probability
1, it does not have additional copies in S1. Its dis-
tance from all other u′ ∈ U is the same as that of
v, while its distance from points in Y and from v is
larger. Thus, R(S1, {u}) > R(S1, {v}). For a center
y ∈ Y , it too does not have additional copies in S1.
Its distance to all other points is larger than that of
v. Thus, R(S1, {y}) > R(S1, {v}). Therefore, v has
the best empirical risk on S1. Thus, A(S1) returns the
1-clustering {v}.

By E3, the number of instances of vertices from Y is
at least qm1. Since the points in Y are the closest
to v in S1, we have y′ := qpS1

(v, q) ∈ Y . Therefore,
qball(v, y′) = {v}∪Y . It follows that SKM selects as a
center the first element from {v} ∪ Y that it observes
in the second phase. With a probability 2q

2q+ 1
m1

, the

first element that SKM observes from {v} ∪ Y is in Y .
Since q ≥ 1/m1, this probability is at least 2/3. Thus,
the output center of SKM is from Y with a constant
probability.

However, the risk of this clustering is large:

R(P, {y})

= (4− η)(1− 2q − 1

m1
) + (2− η)

1

m1
+ (4− η)2q.

For large m, we have m1 →∞. In addition, q, η → 0.
Hence, R(P, {y})→ 4. In contrast, the risk using o as
a center is small:

R(P, {o}) = (1− 2q − 1

m1
) +

1

m1
+ (3− η)2q.

This approaches 1 for large m. Therefore, for m→∞,
R(P, {y})/R(P, {o}) → 4. Since {y} is the output of
SKM with a constant probability, the multiplicative
factor obtained by SKM cannot be smaller than 4 = 2β
in this case.

C Full results of experiments

The results of the experiments for large stream sizes
with the k-medoids as the black box are reported in
Figure 3. The results for the BIRCH black-box are re-
ported in Figure 4 and in Figure 5. For the k-medoids
black box, the risk ratios for large stream sizes are

in the following ranges: MNIST 1.02− 1.04, Covertype
1.04−1.08, Census 1−1.04. For the BIRCH black box,
the risk ratios for large stream sizes are in the follow-
ing ranges: MNIST 1.03 − 1.04, Covertype 1.05 − 1.1,
Census 1 − 1.02. Thus, the risk ratio converges to a
ratio very close to 1.
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Figure 3: Risk ratio between SKM with k-medoids and
offline k-medoids for large stream sizes, as a function
of the stream size, for various values of k. Top to
bottom: MNIST, Covertype, Census.
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Figure 4: Risk ratio between SKM with BIRCH and
offline BIRCH as a function of the stream size, for var-
ious values of k. Top to bottom: MNIST, Covertype,

Census.
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Figure 5: Risk ratio between SKM with BIRCH and
offline BIRCH for large stream sizes, as a function of
the stream size, for various values of k. Top to bottom:
MNIST, Covertype, Census.


