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A Bernstein and empirical Bernstein
inequalities

Proof of Lemma[3.3 We use the Empirical Bernstein
inequality of (Maurer and Pontil, |2009)). This inequal-
ity states that for 62 := m ijemizg(Yi —-Y;)?,
with a probability at least 1 — §, we have

We have 62 < ﬁ# e (Y - Y;)? =
ﬁE[(Y —Y")?], where Y,Y’ are drawn indepen-
dently and uniformly from the fixed sample Y7, ...,Y,.
Since E[(Y — Y")?] < 2E[Y?], and Y € [0, 1], we have
0% < L2E[Y] = 25 /i. Therefore,
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If i =aln(2)/(n — 1) for a > 16, then the RHS is at
most

(1/3+V3a) In(3)/(n~1) < a/2-In(3)/(n~1) < /2.

O
Proof of Lemma[{.3 Let o*> = Var[Y;]. By Bern-

stein’s inequality (Hoeffding} 1963) (See, e.g., [Maurer
and Pontil 2009 for the formulation below),
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Since Y; are supported on [0, 1], we have 02 < p. Since
1 = aln()/n for @ > 10, we have that the RHS is
equal to (1/3 ++v/2a)In(%)/n < a/2 - In()/n < p/2.
The statement of the lemma follows. O

B Tightness of multiplicative factor of
SKM

Proof of Theorem[3.6, We define a weighted undi-
rected graph G = (V, E, W), and let (X, p) be a metric
space such that X =V and p(u, v) is the length of the
shortest path in the graph between u and v. G, which

is illustrated in Figure [2| is formally defined as fol-
lows. The set of nodes is V := U UY U {0, v}, where
U:=1[0,1] and Y := [3,4]. The set of edges is

E:={u,0} [ucUtU{{v,y} [y e Y}U{{o,v}}.

Denote m; :=m/2, and let  := 1/(4my). The weight
function W assigns a weight of 1 to all edges except
for those that have a node in Y as an endpoint, which
are assigned a weight of 2 — 7.
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Figure 2: Hlustration of the graph G which defines the
metric space.

Define the distribution P over X such that P(o) = 0,
P(v) =1/m1, P(Y) = 2q, with a uniform conditional
distribution over Y. Lastly, P(U) = 1 — 2¢q — n%’
with a uniform conditional distribution over U. Note
that the latter is positive for a large enough mg, since
q(my1) — 0.

Let S ~ P™ be the i.i.d. sample used as an input
sequence to SKM, and set £ = 1. Let S7 be the sample
observed in the first phase of SKM, of size m;. Define
the following events:

1. E1 = {0 ¢ Sl}
2. E5 :={v appears in S }.
3. Ej3:= {at least gm; of the samples in S; are from

Y}

First, observe that all these events occur together with
a positive probability, as follows. P[E;] = 1 since
P(0) = 0. For E5, we have

1 1
PEy ) >1—(1——)™ > —.
(B > 1- (1= =)™ > 3
For F5, note that the probability mass of Y is 2¢, Ap-
ply Lemma [£.3] with p = 2¢, n = m; and a confidence
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value of 1/4. By the assumption of the theorem, for
sufficiently small §, we have ¢ > 5log(4)/my. There-
fore, Lemma implies that P[Es] > 3/4. It follows
that P[El A E2 A E3] Z 1/4

Now, assume that all the events above hold. By FEj,
o does not appear in S7, and by Es, v appears in S7.
We show that out of the points in S7, the 1-clustering
{v} has the best empirical risk. The only other op-
tions in S; are centers from Y or from U. For a
center u € U from Si, note that with a probability
1, it does not have additional copies in S;. Its dis-
tance from all other v/ € U is the same as that of
v, while its distance from points in Y and from v is
larger. Thus, R(S1,{u}) > R(S1,{v}). For a center
y € Y, it too does not have additional copies in Sj.
Its distance to all other points is larger than that of
v. Thus, R(S1,{y}) > R(S1,{v}). Therefore, v has
the best empirical risk on S;. Thus, A(S7) returns the
1-clustering {v}.

By Ej3, the number of instances of vertices from Y is
at least gmy. Since the points in Y are the closest
to v in Sy, we have 3’ := qpg, (v,q) € Y. Therefore,
gball(v,y’) = {v}UY. It follows that SKM selects as a
center the first element from {v} UY that it observes
in the second phase. With a probability 2#%, the

my

first element that SKM observes from {v} UY isin Y.
Since ¢ > 1/my, this probability is at least 2/3. Thus,
the output center of SKM is from Y with a constant
probability.

However, the risk of this clustering is large:
R(P,{y})

1 1
=(4— 1—2q— — 2—n)— 4 —n)2q.
(4=n)(1-2q ml)+( Mot 1)2q
For large m, we have m; — oo. In addition, ¢,n — 0.
Hence, R(P,{y}) — 4. In contrast, the risk using o as
a center is small:

1 1
R(P0}) = (1= 20— -o) + ==+ (3= 1)
This approaches 1 for large m. Therefore, for m — oo,
R(P,{y})/R(P,{o}) — 4. Since {y} is the output of
SKM with a constant probability, the multiplicative
factor obtained by SKM cannot be smaller than 4 = 23
in this case. O

C Full results of experiments

The results of the experiments for large stream sizes
with the k-medoids as the black box are reported in
Figure[3] The results for the BIRCH black-box are re-
ported in Figure [d and in Figure[5] For the k-medoids
black box, the risk ratios for large stream sizes are

in the following ranges: MNIST 1.02 — 1.04, Covertype
1.04—1.08, Census 1—1.04. For the BIRCH black box,
the risk ratios for large stream sizes are in the follow-
ing ranges: MNIST 1.03 — 1.04, Covertype 1.05 — 1.1,
Census 1 — 1.02. Thus, the risk ratio converges to a
ratio very close to 1.
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Figure 3: Risk ratio between SKM with k-medoids and
offline k-medoids for large stream sizes, as a function
of the stream size, for various values of k. Top to
bottom: MNIST, Covertype, Census.
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Figure 4: Risk ratio between SKM with BIRCH and
offline BIRCH as a function of the stream size, for var-
ious values of k. Top to bottom: MNIST, Covertype,
Census.
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Figure 5: Risk ratio between SKM with BIRCH and
offline BIRCH for large stream sizes, as a function of
the stream size, for various values of k. Top to bottom:
MNIST, Covertype, Census.



