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Here, we give proofs of theorems and other technical
discussions omitted from Sections 2 and 3, and also
provide further details about the experiment setups,
the training phase, additional experiments on Gaus-
sian synthetic data and discussion on limitation.

1 Proofs and Theoretical Backgrounds

In this section, we provide proofs omitted in the main
text, as well as some discussions on the relationship
between the TIDE and variational representations of
f divergences and the Newey-McFadden lemma.

1.1 Proof of Theorem 1

For notational brevity, we drop yj−1 from the condi-
tioning part of PYj |s,yj−1 and PYj |yj−1 and also write
P and Q for PYj |s and PYj , respectively. To prove this
theorem, note that according to Definition 3, we can
write

Eeε(P‖Q) = P (i(s;Yj) > ε)− eεQ(i(s;Yj) > ε).

Hence, letting C denote the tail event {y : i(s; y) > ε}
for a given s, we have

Eeε(P‖Q) = P (C)− eεQ(C)

= EP
[
1{Yj∈C}

]
− eεEQ

[
1{Yj∈C}

]
(a)
= EQ

[
ei(s;Yj)1{Yj∈C}

]
− eεEQ

[
1{Yj∈C}

]
= EQ

[(
ei(s;Yj) − eε

)
1{Yj∈C}

]
= EQ

[(
ei(s;Yj) − eε

)
+

]
= EQ

[
ei(s;Yj)e−i(s;Yj)

(
ei(s;Yj) − eε

)
+

]
(b)
= EP

[(
1− eεe−i(s;Yj)

)
+

]
=

∫ ∞
0

Pr

((
1− eε−i(s;Yj)

)
1{Yj∈C} ≥ t

)
dt,

where both (a) and (b) follow from the simple change-

of-variable argument EP
[
f(Y )

]
= EQ

[
ei(s;Yj)f(Y )

]
for any function f .

Furthermore, since
(

1− eε−i(s;Yj)
)

1{i(s;Yj)>ε} < 1

with probability one, we have

Eeε(P‖Q) =

∫ ∞
0

Pr

((
1− eε−i(s;Yj)

)
1{Yj∈C} ≥ t

)
dt

=

∫ 1

0

Pr

((
1− eε−i(s;Yj)

)
1{Yj∈C} ≥ t

)
dt

=

∫ 1

0

Pr
(

1− eε−i(s;Yj) ≥ t
)

dt

=

∫ 1

0

Pr
(
e−i(s;Yj) ≤ (1− t)e−ε

)
dt

= eε
∫ e−ε

0

Pr
(
e−i(s;Yj) ≤ b

)
db

= eε
∫ ∞
ε

e−t Pr
(
i(s;Yj) ≥ t

)
dt.

1.2 Proof of Theorem 2

First assume that m = 2. For any set A ⊂ X 2 and
s ∈ S, we have

PY1Y2|s(A) =
∑
y1∈X

PY1|s(y1) Pr((y1, Y2) ∈ A|s)

≤
∑
y1∈X

PY1|s(y1) min
{

1, eε Pr((y1, Y2) ∈ A) + δ′
}

≤
∑
y1∈X

PY1|s(y1) min
{

1, eε Pr((y1, Y2) ∈ A)
}

+ δ′

≤
∑
y1∈X

(
eεPY1

(y1) + ζ(y1)
)

×min
{

1, eε Pr((y1, Y2) ∈ A)
}

+ δ′

≤
∑
y1∈X

eεPY1
(y1) min

{
1, eε Pr((y1, Y2) ∈ A)

}
+
∑
y1∈X

ζ(y1) + δ′
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≤ e2ε
∑
y1∈X

PY1(y1) Pr((y1, Y2) ∈ A) +
∑
y1∈X

ζ(y1) + δ′

≤ e2εPY1Y2
(A) +

∑
y1∈X

ζ(y1) + δ′

= e2εPY1Y2
(A) + Eeε(PY1|s‖PY1

) + δ′

≤ e2εPY1Y2
(A) + 2δ′

where δ′ = δ
2 and ζ(a) :=

(
PY1|s(a)− eεPY1(a)

)
+

for

any a ∈ X . The last step follows from the fact that
Eγ(P‖Q) =

∑
a∈X (P (a)−γQ(a))+. Consequently, we

obtain that

PY1Y2|s(A) ≤ e2εPY1Y2(A) + δ,

for any set A ⊂ X 2 for m = 2. Repeating this argu-
ment (m− 1) times, we can write

PY |s(A) ≤ emεPY (A) + δ,

for any set A ⊂ Xm and s ∈ S from which we conclude

Eeε(PY |s‖PY ) ≤ δ.

1.3 Proof of Theorem 3

For any γ ≥ 1 and yj−1 ∈ X j−1, we have

Eγ(PYj |s,yj−1‖PYj |yj−1) (S.1)

≤ sup
xj−1

Eγ(PYj |s,xj−1,yj−1‖PYj |xj−1,yj−1)

= sup
xj−1

Eγ(PYj |s,xj−1‖PYj |xj−1), (S.2)

where the inequality follows from the convexity of Eγ-
divergence in each of its arguments (see, e.g., Sason
and Verdú (2016)). Notice that for any given xj−1 ∈
X j−1, we can write (with an abuse of notation)

Eγ(PYj |s,xj−1‖PYj |xj−1)

=

∫
B

[P (dxj |s, xj−1)N (xj , λ)− eεP (dxj |xj−1)N (xj , λ)]+

+

∫
Bc

[P (dxj |s, xj−1)− eεP (dxj |xj−1)]+

=

∫
B

[P (dxj |s, xj−1)N (xj , λ)− eεP (dxj |xj−1)N (xj , λ)]+

where we use B and Bc to write Bεj (x
j−1) and its

complement. This demonstrates that the mass points
corresponding to the event Bc do not contribute in the
Eγ-divergence.

Letting P = PXj |s,xj−1 and Q = PXj |xj−1 for a given

xj−1, it follows from above that

sup
xj−1

Eγ(PYj |s,xj−1‖PYj |xj−1)

≤ Eγ(P ∗ N (0, λ)‖Q ∗ N (0, λ))

= E
[
Eγ(N (A, λ))‖N (B, λ)

]
, (S.3)

where ∗ denotes the convolution operator and A ∼ P
and B ∼ Q and the expectation is taken over any
arbitrary coupling of P and Q (e.g., their product). It
can be shown that

Eγ(N (µ1, λ
2Ir)‖N (µ2, λ

2Ir))

= Q

(
log γ

β
− 1

2
β

)
− γQ

(
log γ

β
+

1

2
β

)
, (S.4)

where Q(v) = Pr(N (0, 1) ≥ v) =
∫∞
v

1√
2π
e−t

2/2dt and

β = ‖µ1−µ2‖
λ . Notice that the Eγ-divergence between

two Gaussian distributions depends on their means
only through their differences.

θγ(a, λ) , Eγ(N (µ, λ2Ir)‖N (0, λ2Ir)),

where ‖µ‖= a. According to (S.3), we can now write

sup
xj−1

Eγ(PYj |s,xj−1‖PYj |xj−1) ≤ sup
a∈C

θγ(‖a‖, λ) = θγ(K,λ),

where the equality is due to the fact that a 7→ θγ(a, λ)
is increasing for a fixed λ. This, together with (S.2),
implies

Eγ(PYj |s,yj−1‖PYj |yj−1) ≤ θγ(K,λ),

and hence (14) is satisfied if θeε(K,λ) ≤ δ
m .

1.4 Estimating Information Density using
f-Divergences

Other f -divergence measures could also be used to
estimate the information density by leveraging their
dual representation (Nguyen et al., 2010). Given a
convex function f with f(1) = 0, the f -divergence

Df (P‖Q) = EQf
(
P
Q

)
can be expressed as

Df (P‖Q) = sup
g:X→R

EP [g(X)]− EQ[f∗(g(X))], (S.5)

where f∗(t) , supx∈R{xt − f(t)} is the Fenchel con-
vex conjugate of f . It can be shown that the opti-
mizer is the subdifferential ∂f(PQ ) which, in turn, is a

non-decreasing function of P
Q . Thus, Df (P‖Q) is also

a candidate loss function in density ratio estimation
problems.

1.5 Newey-McFadden Lemma

Lemma 1 ((Newey and McFadden, 1994, The-
orem 2.1)). Given the extremum estimator â =
argmaxa∈A Λn(a), if (i) A is compact; (ii) there exists
a limiting function Λ(a) such that Λn(a) converges to
Λ(a) in probability over A; (iii) Λ(a) is continuous and
has unique maximum at a = a∗, then â is a consistent
estimator of a∗.
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1.6 Proof of Theorem 4

Let the objective function of the extremum estimator
be

Λn(g) , EPSn,Xn [g(S,X)]− logEPSnPXn [eg(S,X)].(S.6)

We prove this theorem by checking the properties of
Λn(g) according to Lemma 1. First, since Θ is compact
and the mappings gθ are continuous, the images G(Θ)
is also compact. Second, by triangular inequality, for
g ∈ G(Θ), we have

|Λn(g)− (EPS,X [g(S,X)]− logEpSpX [eg(S,X)])|
≤ sup
g∈G(Θ)

|EPS,X [g(S,X)]

− EPSn,Xn [g(S,X)]|
+ sup
g∈G(Θ)

|logEPSPX [g(S,X)]

− logEPSnPXn [g(S,X)]|.

(S.7)

Since the function g is uniformly bounded by M , i.e.
|g|≤ M for all θ, s and x, and logarithm is Lipschitz
continuous with constant eM in the interval [e−M , eM ],
we have

|logEPSPX [g(S,X)]− logEPSnPXn [g(S,X)]|
≤ eM |EPSPX [g(S,X)]− EPSnPXn [g(S,X)]|.

(S.8)

Moreover, since G is compact and g is continuous, the
functions g and eg satisfy the uniform law of large
numbers (van de Geer, 2000). Thus, Given η > 0,
there exists an integer N such that for all n ≥ N and
with probability one,

sup
g∈G(Θ)

|EPS,X [g(S,X)]− EPSn,Xn [g(S,X)]|≤ η

2
, (S.9)

and

sup
g∈G(Θ)

|logEPSPX [g(S,X)]− logEPSnPXn [g(S,X)]|

≤ η

2
e−M . (S.10)

Summarizing (S.7)-(S.10), we have with probability
one

|Λn(g)− (EPS,X [g(S,X)]− logEPSPX [eg(S,X)])|
≤ η. (S.11)

In other words, there exists a limiting function Λ(g) =
EPS,X [g(S,X)] − logEPSPX [eg(S,X)] such that Λn(g)
converges to Λ(g) in probability.

Third, since Λ(g) = EPS,X [g(S,X)] −
logEPSPX [eg(S,X)] consists of linear combinations
(expectations) and continuous mappings (logarithm
and exponential) of the continuous function g, Λ(g)

is continuous. Moreover, Λ(g) has a unique optimizer
g∗. Therefore, by Lemma 1, we know that with
probability one,

|ĝn(s, x)− ĝθ(s, x)|≤ η, ∀s ∈ S, x ∈ X , (S.12)

giving the consistency of the information density esti-
mator.

Note that a constant function g results in 0 for the
objective (20); therefore, the constant function will not
be selected as a possible solution for the optimization
unless S and X are independent.

1.7 Proof of Theorem 5

By Hoeffding’s inequality (Hoeffding, 1994), for all
functions g bounded by M , i.e. |g|≤M , we have

Pr{|EPSn,Xn [g(S,X)]− EPS,X [g(S,X)]|> η

4
}

≤ 2 exp

(
−

2n2(η2 )2

(2M)2n

)
= 2 exp

(
− nη2

32M2

)
.

(S.13)

Moreover, since gθ is parameterized by θ, we uti-
lize the union bound (Shalev-Shwartz and Ben-David,
2014, Lemma 2.2) to extend (S.13) for the parameters
θ. For this purpose, recall that Θ ⊂ Rd is compact
and bounded by C, by the exterior covering num-
ber of bounded subspace (Shalev-Shwartz and Ben-
David, 2014, pp. 337), we know the r-covering number
N(r,Θ) of Θ is upper bounded by

N(r,Θ) ≤

(
2C
√
d

r

)d
. (S.14)

By (S.13) and (S.14), we have

Pr{∃θl ∈ Θ s.t. sup
gθ

|EPSn,Xn [gθl(S,X)]

− EPS,X [gθl(S,X)]|> η

4
}

≤ 2N(r,Θ) exp

(
− nη2

32M2

)
.

(S.15)

where θl is in the r-cover of Θ. Since G(Θ) is compact,
we can replace the supremum by maximum. To make

2N(r,Θ) exp
(
− nη2

32M2

)
< δ, we have

n >
32M2(logN(r,Θ) + log 2

δ )

η2
. (S.16)

Now, let r = η
8L , and recall that gθ is L-Lipschitz

continuous with respect to θ, then for any θ ∈ Θ, we
have with probability one

|gθ − gθl |≤ L|θ − θl|≤ Lr = L× η

8L
=
η

8
. (S.17)
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By triangular inequality, for any θ ∈ Θ, whenever

n >
32M2(d log 16LC

√
d

η +log 2
δ )

η2 , we have with probability
at least 1− δ,

max
gθ
|EPSn,Xn [gθ(S,X)]− EPS,X [gθ(S,X)]|

≤ max
gθ
|EPSn,Xn [gθ(S,X)]− EPSn,Xn [gθl(S,X)]|

+ max
gθ
|EPSn,Xn [gθl(S,X)]− EPS,X [gθl(S,X)]|

+ max
gθ
|EPS,X [gθ(S,X)]− EPS,X [gθl(S,X)]|

≤ η

8
+
η

4
+
η

8
=
η

2
(S.18)

Therefore, we have

Pr{max
gθ
|EPSn,Xn [gθ(S,X)]

− EPS,X [gθ(S,X)]|≤ η

2
} ≥ 1− δ.

(S.19)

Similarly, starting from

Pr{∃θl ∈ Θ s.t. |logEPSnPXn [egθl (S,X)]

− logEPSPX [egθl (S,X)]|≥ η

4
}

≤ 2N(r,Θ) exp

(
− nη2

32M2

)
,

(S.20)

we also conclude that for any θ ∈ Θ, whenever n >
32M2(d log 16LC

√
d

η +log 2
δ )

η2 , we have with probability at
least 1− δ,

Pr{max
gθ
|logEPSn,Xn [Egθ(S,X)]

− logEPS,X [egθ(S,X)]|≤ η

2
} ≥ 1− δ.

(S.21)

Summarizing (S.19) and (S.21), whenever n >
32M2(d log 16LC

√
d

η +log 2
δ )

η2 , for any θ ∈ Θ, we have

Pr{|max Λn(ĝn(s, x))−max Λ(g(s, x))|≤ η}
≥ Pr{max

gθ
|EPSn,Xn [gθ(S,X)]

− EPS,X [gθ(S,X)]|
+ max

gθ
|logEPSn,Xn [Egθ(S,X)]

− logEPS,X [egθ(S,X)]|≤ η}
≥ 1− δ.

(S.22)

The thresholded information density estimator, in this
sense, gives a thresholded (clipped) information den-
sity, i.e. |ĝn(s, x) − g∗(s, x)|≤ η if g∗(s, x) ≤ M and
|ĝn(s, x) − g∗(s, x)|≥ η otherwise. By the concentra-
tion of the information density (Polyanskiy and Wu,
2014), we also know the probability that the informa-
tion density is clipped is upper bounded, i.e.

Pr{|g∗(s, x)|≥M} ≤ e−M . (S.23)

Therefore, whenever n >
32M2(d log 16LC

√
d

η +log 2
δ )

η2 , for
all s ∈ S and x ∈ X , we have

Pr{|ĝn(s, x)− g∗(s, x)|≤ η}
≥ 1− δ ≥ 1− e−M ,

(S.24)

by choosing δ ≥ e−M , and the desire result follows.

2 Experimental Details

In this section, we provide detailed experimental se-
tups including architecture of the function g in TIDE,
training details for the experiments shown in the main
text.

2.1 GENKI-4K Smiling Dataset

The GENKI-4K smiling dataset (MPLab, 2009) con-
tains 2400 colorful images for training and 600 for test,
where each image, viewed as X, is a 64×64 pixels face
that is smiling (S = 1) or not (S = 0).

Since the inputs of the encoder TIDE are images,
we use adopt a convolutional neural net with three
convolutional layers, two fully-connected layers, and
a readout layer. The convolutional layers have ker-
nels with dimension (5, 5, 3, 64), (5, 5, 64, 64), and
(3, 3, 64, 128) respectively. After flatting the output
of the third convolutional layer, we feed the out-
put to two fully-connected layers with 384 and 192
neurons respectively. We train for 100 epochs us-
ing AdagradOptimizer with learning rate 0.0001 and
batch size 256, and achieve I(S,X) = 0.594 < H(S) =
1 bits.

The adversary we used here is also a convolutional
neural net with identical structure as the TIDE with
the difference that the objective is the cross-entropy
loss for classification, and is trained for 150 epochs
using AdagradOptimizer with learning rate 0.005 and
batch size 256.

2.2 Celebrity Attributes (CelebA) Dataset

The CelebA dataset (Liu et al., 2015) contains 202599
colorful images, where each image is a 218×178 pixels
face of a celebrity with 40 distinct binary labels, in-
cluding smiling, gender, Arched Eyebrows, etc. We
select 100000 face images as X and the private at-
tribute S as smiling or not.

Since the inputs of the encoder TIDE are images, we
use adopt a convolutional neural net with five convo-
lutional layers, two fully-connected layers, and a read-
out layer. The convolutional layers have kernels with
dimension (5, 5, 3, 64), (5, 5, 64, 64), (3, 3, 128, 128),
(3, 3, 128, 128), and (3, 3, 64, 128) respectively. After
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Table 1: WMAE of the information density estimation on Gaussian synthetic data (M = 5).

Empirical Plug-In Estimator Kernel Density Estimator TIDE

d
ρ

0.0 0.1 0.2 0.5 0.0 0.1 0.2 0.5 0.0 0.1 0.2 0.5

1 0.466 0.509 1.092 1.821 0.252 0.434 0.973 1.395 0.005 0.007 0.011 0.057
10 5.305 7.613 9.704 18.245 2.869 4.076 6.698 11.496 1.010 1.216 1.884 2.503

flatting the output of the third convolutional layer, we
feed the output to two fully-connected layers with 384
and 192 neurons respectively. We train for 100 epochs
using AdagradOptimizer with learning rate 0.005 and
batch size 64, and achieve I(S,X) = 0.967 ≈ H(S) =
1 bits.

The adversaries we used for emotion and gender de-
tection here are also convolutional neural nets with
identical structure as the TIDE with the difference
that the objective is the cross-entropy loss for classifi-
cation. We train the adversaries for 300 epochs using
AdagradOptimizer with learning rate 0.001 and batch
size 2000.

2.3 Politically-Biased Tweets

We collect 75946 tweets from more than 20 online pub-
lishers (e.g. CNN, Bloomberg, New York Times) using
the Twitter API, and determine its private attribute
S as the political bias of being right-wing (S = 0)
and left-wing (S = 1) according to Rachez (2017). We
clean up the tweets to only keep meaningful terms (i.e.
pieces of words), and use bag-of-words representation
(Manning et al., 2010) to tokenize all the pieces of
words for each tweet according to term frequency, end-
ing up with 24657 words (xj). We order the xj by the
order it appears in the training texts of the Tweets.

The TIDE is a simple feed-forward neural network
consists of three hidden layers with ReLU activation
with 100 neurons for each hidden layer, and a readout
layer with 32 neurons. We train for 50 epochs using
AdagradOptimizer with learning rate 0.005 and batch
size 128, and achieve I(S;X) = 0.645 bits.

3 Additional Experiments on
Synthetic Data

We apply the TIDE in Section 3 on Gaussian syn-
thetic data to estimate the trimmed information den-
sity with limited number of samples and M = 5. We
consider two d-dimensional multivariate standard Nor-
mal random variables S and X, with pairwise correla-
tion corr(Si, Xj) = ρ1{i=j}, ρ ∈ (−1, 1), 1 ≤ i, j,≤ d.
Since the KL divergence is invariant to continuous bi-
jective transformations of the considered variables, it
is sufficient to consider S and X with standard Normal

marginals. We generate 3000 samples with 70%−30%
train-test split accordingly. The TIDE is a simple feed-
forward neural network consists of three hidden layers
with ReLU activation with 100, 50, 50 neurons for each
hidden layer, and a readout layer with 50 neurons. We
jointly train over the entire training set for 3000 epochs
using AdagradOptimizer with learning rate 0.005.

We compare the plug-in estimator using empirical dis-
tributions (with 30 bins for quantization), the Gaus-
sian kernel density estimator (Bishop, 2006), and the
TIDE using 3k samples, and report the Weighted
Mean Absolute Error (WMAE) of the information
density in Table 1, where the weights are chosen as
the ground true joint distributions and each number
in the table is averaged over 10 repeated experiments.
Note that since the Normal random variable is contin-
uous, quantized empirical distribution gives loose es-
timate. The kernel density estimator performs better
than the plug-in estimator but worse than the TIDE
due to limited number of samples.

4 Final Remarks

We introduced a new information obfuscation frame-
work that first identifies information-leaking features
using the trimmed information density, and then tai-
lors the obfuscation mechanism only on these fea-
tures. To our knowledge, this framework is the first
formal application of information density to quan-
tify information-leaking features, and could potentially
serve as a data-driven tool for designing obfuscation
mechanism for high-dimensional data.

It is worth mentioning that information obfuscation,
being inherently prior-dependent, has several limita-
tions (Huang et al., 2017). In order to estimate the
information density, we make two key assumptions:
(i) we know a priori sensitive attributes that we wish
to hide (e.g., political preference), and (ii) we have ac-
cess to a reference dataset from which we can fit the
TIDE (though this is difficult to avoid as discussed
in Žliobaitė and Custers (2016)). Although these as-
sumptions are restrictive in practice, they allow us to
develop systematic machinery to discover information-
leaking samples and features in an entirely data-driven
manner.
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Žliobaitė, I. and Custers, B. (2016). Using sensitive
personal data may be necessary for avoiding discrim-
ination in data-driven decision models. Artificial In-
telligence and Law, 24(2):183–201.

http://mplab.ucsd.edu

