
Linear Dynamics: Clustering without identification

A Proofs for model equivalence

In this section, we prove a generalization of Theorem
4.1 for both LDSs with observed inputs and LDSs with
hidden inputs.

A.1 Preliminaries

Sum of ARMA processes It is known that the
sum of ARMA processes is still an ARMA process.
Lemma A.1 (Main Theorem
in [Granger and Morris, 1976]). The sum of two
independent stationary series generated by ARMA(p,
m) and ARMA(q, n) is generated by ARMA(x, y),
where x  p+ q and y  max(p+ n, q +m).

In shorthand notation, ARMA(p,m) + ARMA(q, n) =
ARMA(p+ q,max(p+ n, q +m)).

When two ARMAX processes share the same exoge-
nous input series, the dependency on exogenous in-
put is additive, and the above can be extended to
ARMAX(p,m, r) + ARMAX(q, n, s) = ARMAX(p +
q,max(p+ n, q +m),max(r, s)).

Jordan canonical form and canonical basis Ev-
ery square real matrix is similar to a complex block
diagonal matrix known as its Jordan canonical form
(JCF). In the special case for diagonalizable matri-
ces, JCF is the same as the diagonal form. Based
on JCF, there exists a canonical basis {ei} consisting
only of eigenvectors and generalized eigenvectors of
A. A vector v is a generalized eigenvector of rank µ

with corresponding eigenvalue � if (�I �A)µv = 0 and
(�I �A)µ�1

v 6= 0.

Relating the canonical basis to the characteristic poly-
nomial, the characteristic polynomial can be com-
pletely factored into linear factors �A(�) = (� �

�1)µ1(� � �2)µ2 · · · (� � �r)µr over C. The complex
roots �1, · · · ,�r are eigenvalues of A. For each eigen-
value �i, there exist µi linearly independent generalized
eigenvectors v such that (�iI �A)µiv = 0.

A.2 General model equivalence theorem

Now we state Theorem A.1, a more detailed version of
Theorem 4.1.
Theorem A.1. For any linear dynamical system with
parameters ⇥ = (A,B,C,D), hidden dimension n, in-
puts xt 2 Rk, and outputs yt 2 Rm, the outputs yt

satisfy
�
†
A(L)yt = �

†
A(L)⇠t + �(L)xt, (5)

where L is the lag operator, �†
A(L) = L

n
�A(L�1) is the

reciprocal polynomial of the characteristic polynomial
of A, and �(L) is an m-by-k matrix of polynomials of
degree n� 1.

This implies that each dimension of yt can be generated
by an ARMAX(n, n, n � 1) model, where the autore-
gressive parameters are the characteristic polynomial
coefficients in reverse order and in negative values.

To prove the theorem, we introduce a lemma to an-
alyze the autoregressive behavior of the hidden state
projected to a generalized eigenvector direction.
Lemma A.2. Consider a linear dynamical system with
parameters ⇥ = (A,B,C,D), hidden states ht 2 Rn,
inputs xt 2 Rk, and outputs yt 2 Rm as defined in
(1). For any generalized eigenvector ei of A

⇤ with
eigenvector � and rank µ, the lag operator polynomial
(1� �L)µ applied to time series h

(i)
t := hht, eii results

in

(1��L)µh(i)
t = linear transformation of xt, · · · , xt�µ+1.

Proof. To expand the LHS, first observe that

(1� �L)h(i)
t = (1� �L)hht, eii

= hh
(i)
t , eii � �Lhh

(i)
t , eii

= hAht�1 +Bxt, eii � hht�1,�eii

= hh
(i)
t�1, (A

⇤
� �I)eii+ hBxt, eii.

We can apply (1� �L) again similarly to obtain

(1� �L)2h(i)
t = hht�2, (A

⇤
� �I)2eii

+hBxt�1, (A
⇤
� �I)eii+ (1� �L)hBxt, eii,

and in general we can show inductively that

(1� �L)kh(i)
t � hht�k, (A

⇤
� �I)keii =

k�1X

j=0

(1� �L)k�1�j
L
j
hBxt, (A

⇤
� �I)jeii,

where the RHS is a linear transformation of
xt, · · · , xt�k+1.

Since (�I � A
⇤)µei = 0 by definition of general-

ized eigenvectors, hht�µ, (A⇤
� �I)µeii = 0, and

hence (1 � �L)µh(i)
t itself is a linear transformation

of xt, · · · , xt�µ+1.

Proof for Theorem A.1 Using Lemma A.2 and the
canonical basis, we can prove Theorem A.1.

Proof. Let �1, · · · ,�r be the eigenvalues of A with mul-
tiplicity µ1, · · · , µr. Since A is a real-valued matrix, its
adjoint A⇤ has the same characteristic polynomial and
eigenvalues as A. There exists a canonical basis {ei}ni=1

for A
⇤, where e1, · · · , eµ1 are generalized eigenvectors
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with eigenvalue �1, eµ1+1, · · · , eµ1+µ2 are generalized
eigenvectors with eigenvalue �2, so on and so forth, and
eµ1+···+µr�1+1, · · · , eµ1+···+µr are generalized eigenvec-
tors with eigenvalue �r.

By Lemma (A.2), (1 � �1L)µ1h
(i)
t is a linear trans-

formation of xt, · · · , xt�µ1+1 for i = 1, · · · , µ1; (1 �

�2L)µ2h
(i)
t is a linear transformation of xt, · · · , xt�µ2+1

for i = µ1 + 1, · · · , µ1 + µ2; so on and so forth; (1 �

�rL)µrh
(i)
t is a linear transformation of xt, · · · , xt�µr+1

for i = µ1 + · · ·+ µr�1 + 1, · · · , n.

We then apply lag operator polynomial ⇧j 6=i(1��jL)µj

to both sides of each equation. The lag polynomial
in the LHS becomes (1 � �1L)µ1 · · · (1 � �rL)µr =
�
†
A(L). For the RHS, since ⇧j 6=i(1��jL)µj is of degree

n� µi, it lags the RHS by at most n� µi additional
steps, and the RHS becomes a linear transformation of
xt, · · · , xt�n+1.

Thus, for each i, �†
A(L)h

(i)
t is a linear transformation

of xt, · · · , xt�n+1.

The outputs of the LDS are defined as yt = Cht +

Dxt + ⇠t =
Pn

i=1 h
(i)
t Cei + Dxt + ⇠t. By linearity,

and since �†
A(L) is of degree n, both

Pn
i=1 h

(i)
t Cei and

�
†
A(L)Dxt are linear transformations of xt, · · · , xt�n.

We can write any such linear transformation as �(L)xt

for some m-by-k matrix �(L) of polynomials of degree
n� 1. Thus, as desired,

�
†
A(L)yt =�

†
A(L)⇠t + �(L)xt.

Assuming that there are no common factors in �†
A and

�, �†
A is then the lag operator polynomial that repre-

sents the autoregressive part of yt. This assumption is
the same as saying that yt cannot be expressed as a
lower-order ARMA process. The reciprocal polynomial
has the same coefficients in reverse order as the original
polynomial. According to the lag operator polynomial
on the LHS, 1 � '1L � '2L

2
� · · · � 'nL

n = �
†
A(L),

and L
n
�'1L

n�1
� · · ·�'n = �A(L), so the i-th order

autoregressive parameter 'i is the negative value of
the (n � i)-th order coefficient in the characteristic
polynomial �A.

A.3 The hidden input case as a corollary

The statement about LDS without external inputs in
Theorem 4.1 comes as a corollary to Theorem A.1, with
a short proof here.

Proof. Define y0t = Cht+Dxt to be the output without
noise, i.e. yt = y

0
t + ⇠t. By Theorem A.1, �†

A(L)y
0
t =

�(L)xt. Since we assume the hidden inputs xt are i.i.d.

Gaussians, y0t is then generated by an ARMA(n, n� 1)
process with autoregressive polynomial �†

A(L).

The output noise ⇠t itself can be seen as an ARMA(0, 0)
process. By Lemma A.1, ARMA(n, n � 1) +
ARMA(0, 0) = ARMA(n + 0,max(n + 0, n � 1 + 0))
= ARMA(n, n). Hence the outputs yt are generated
by an ARMA(n, n) process as claimed in Theorem 4.1.
It is easy to see in the proof of Lemma A.1 that the
autoregressive parameters do not change when adding
a white noise [Granger and Morris, 1976].

B Proof for eigenvalue approximation
theorems

Here we restate Theorem 4.2 and Theorem 4.3 together,
and prove it in three steps for 1) the general case, 2)
the simple eigenvalue case, and 3) the explicit condition
number bounds for the simple eigenvalue case.
Theorem B.1. Suppose yt are the outputs from an
n-dimensional latent linear dynamical system with pa-
rameters ⇥ = (A,B,C,D) and eigenvalues �1, · · · ,�n.
Let �̂ = ('̂1, · · · , '̂n) be the estimated autoregressive
parameters with error k�̂� �k = ✏, and let r1, · · · , rn
be the roots of the polynomial 1� '̂1z � · · ·� '̂nz

n.

Assuming the LDS is observable, the roots converge to
the true eigenvalues with convergence rate O(✏1/n). If
all eigenvalues of A are simple (i.e. multiplicity 1),
then the convergence rate is O(✏). If A is symmetric,
Lyapunov stable (spectral radius at most 1), and only
has simple eigenvalues, then

|ri � �i| 

p
n2n�1

⇧k 6=j |�j � �k|
✏+O(✏2).

B.1 General (1/n)-exponent bound

This is a known perturbation bound on polynomial
root finding due to Ostrowski [Beauzamy, 1999].
Lemma B.1. Let �(z) = z

n+'1z
n�1+ · · ·+'n�1z+

'n and  (z) = z
n + 1z

n�1 + · · ·+ n�1z+ n be two
polynomials of degree n. If k� �  k2 < ✏, then the
roots (rk) of � and roots (r̃k) of  under suitable order
satisfy

|rk � r̃k|  4Cp✏
1/n

,

where C = max1,0kn{|'n|
1/n

, | n|
1/n

}.

The general O(✏1/n) convergence rate in Theorem 4.2
follows directly from Lemma B.1 and Theorem 4.1.

B.2 Bound for simple eigenvalues

The 1
n -exponent in the above bound might seem not

very ideal, but without additional assumptions the
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1
n -exponent is tight. As an example, the polyno-
mial x

2
� ✏ has roots x ±

p
✏. This is a general

phenomenon that a root with multiplicity m could
split into m roots at rate O(✏m), and is related to the
regular splitting property [Hryniv and Lancaster, 1999,
Lancaster et al., 2003] in matrix eigenvalue perturba-
tion theory.

Under the additional assumption that all the eigen-
values are simple (no multiplicity), we can prove a
better bound using the following idea with companion
matrix: Small perturbation in autoregressive parame-
ters results in small perturbation in companion matrix,
and small perturbation in companion matrix results in
small perturbation in eigenvalues.

Matrix eigenvalue perturbation theory The
perturbation bound on eigenvalues is a well-studied
problem [Greenbaum et al., 2019]. The regular split-
ting property states that, for an eigenvalue �0 with
partial multiplicities m1, · · · ,mk, an O(✏) perturba-
tion to the matrix could split the eigenvalue into
M = m1 + · · · + mk distinct eigenvalues �ij(✏) for
i = 1, · · · , k and j = 1, · · · ,mi, and each eigenvalue
�ij(✏) is moved from the original position by O(✏1/mi).

For semi-simple eigenvalues, geometric multiplicity
equals algebraic multiplicity. Since geometric multiplic-
ity is the number of partial multiplicities while alge-
braic multiplicity is the sum of partial multiplicities, for
semi-simple eigenvalues all partial multiplicities mi = 1.
Therefore, the regular splitting property corresponds to
the asymptotic relation in equation 6. It is known that
regular splitting holds for any semi-simple eigenvalue
even for non-Hermitian matrices.
Lemma B.2 (Theorem 6 in [Lancaster et al., 2003]).
Let L(�, ✏) be an analytic matrix function with semi-
simple eigenvalue �0 at ✏ = 0 of multiplicity M . Then
there are exactly M eigenvalues �i(✏) of L(�, ✏) for
which �i(✏) ! �0 as ✏! 0, and for these eigenvalues

�i(✏) = �0 + �
0
i✏+ o(✏). (6)

Companion Matrix Matrix perturbation theory
tell us how perturbations on matrices change eigen-
values, while we are interested in how perturbations
on polynomial coefficients change roots. To apply ma-
trix perturbation theory on polynomials, we introduce
the companion matrix, also known as the controllable
canonical form in control theory.
Definition B.1. For a monic polynomial �(u) = z

n +
'1z

n�1 + · · ·+ 'n�1z + 'n, the companion matrix of
the polynomial is the square matrix

C(�) =

2

666664

0 0 . . . 0 �'n

1 0 . . . 0 �'n�1

0 1 . . . 0 �'n�2
...

...
. . .

...
...

0 0 . . . 1 �'1

3

777775
.

The matrix C(�) is the companion in the sense that its
characteristic polynomial is equal to �.

In relation to a pure autoregressive AR(p) model, the
companion matrix corresponds to the transition matrix
in the linear dynamical system when we encode the
values form the past p lags as a p-dimensional state

ht =
⇥
yt�p+1 · · · yt�1 yt

⇤T
.

If yt = '1yt�1 + · · ·+ 'pyt�p, then ht =

2

66664

yt�p+1

yt�p+2

· · ·

yt�1

yt

3

77775
=

2

666664

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
'p 'p�1 'p�2 . . . '1

3

777775

2

66664

yt�p

yt�p+1

· · ·

yt�2

yt�1

3

77775

= C(��)Tht�1.

(7)

Proof of Theorem 4.2 for simple eigenvalues

Proof. Let yt be the outputs of a linear dynamical
system S with only simple eigenvalues, and let � =
('1, · · · ,'n) be the ARMAX autoregressive parameters
for yt. Let C(�) be the companion matrix of the
polynomial z

n
� '1z

n�1
� '2z

n�2
� · · · � 'n. The

companion matrix is the transition matrix of the LDS
described in equation 7. Since this LDS the same
autoregressive parameters and hidden state dimension
as the original LDS, by Corollary 4.1 the companion
matrix has the same characteristic polynomial as the
original LDS, and thus also has simple (and hence also
semi-simple) eigenvalues. The O(✏) convergence rate
then follows from Lemma B.2 and Theorem 5.1, as the
error on ARMAX parameter estimation can be seen as
perturbation on the companion matrix.

A note on the companion matrix One might
hope that we could have a more generalized result using
Lemma B.2 for all systems with semi-simple eigenvalues
instead of restricting to matrices with simple eigenval-
ues. Unfortunately, even if the original linear dynamical
system has only semi-simple eigenvalues, in general the
companion matrix is not semi-simple unless the original
linear dynamical system is simple. This is because the
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companion matrix always has its minimal polynomial
equal to its characteristic polynomial, and hence has
geometric multiplicity 1 for all eigenvalues. This also
points to the fact that even though the companion
matrix has the form of the controllable canonical form,
in general it is not necessarily similar to the transition
matrix in the original LDS.

B.3 Explicit bound for condition number

In this subsection, we write out explicitly the condi-
tion number for simple eigenvalues in the asymptotic
relation �(✏) = �0 + ✏ + o(✏), to show how it varies
according to the spectrum. Here we use the notation
(C,�) to note the condition number for eigenvalue �
in companion matrix C.
Lemma B.3. For a companion matrix C with simple
eigenvalues �1, · · · ,�n, the eigenvalues �01, · · · ,�0n of
the perturbed matrix by C + �C satisfy

|�j � �
0
j |  (C,�j)k�Ck2 + o(k�Ck

2
2), (8)

and the condition number (C,�j) is bounded by

1Q
k 6=j |�j � �k|

 (C,�j) 

p
nQ

k 6=j |�j � �k|
(max(1, |�j |))

n�1 (1 + ⇢(C)2)
n�1
2 ,

(9)

where ⇢(C) is the spectral radius, i.e. largest absolute
value of its eigenvalues.

In particular, when ⇢(C)  1, i.e. when the matrix is
Lyapunov stable,

|�j � �
0
j | 

p
n(
p
2)n�1

Q
k 6=j |�j � �k|

k�Ck2 + o(k�Ck
2
2). (10)

Proof. For each simple eigenvalue � of the companion
matrix C with column eigenvector v and row eigenvec-
tor w

⇤, the condition number of the eigenvalue is

(C,�) =
kwk2kvk2

|w⇤v|
. (11)

This is derived from differentiating the eigenvalue equa-
tion Cv = v�, and multiplying the differentiated equa-
tion by w⇤, which results in

w
⇤(�C)v + w

⇤
C(�v) = �w

⇤(�v) + w
⇤
v(��).

�� =
w

⇤(�C)v

w⇤v
.

Therefore,

|��| 
kwk2kvk2

|w⇤v|
k�Ck2 = (C,�)k�Ck2. (12)

The companion matrix can be diagonalized as C =
V

�1diag(�1, · · · ,�n)V , the rows of the Vandermonde
matrix V are the row eigenvectors of C, while the
columns of V �1 are the column eigenvectors of C. Since
the the j-th row Vj,⇤ and the j-th column V

�1
⇤,j have

inner product 1 by definition of matrix inverse, the
condition number is given by

(C,�j) = kVj,⇤k2 kV
�1
⇤,j k2. (13)

Formula for inverse of Vandermonde matrix
The Vandermonde matrix is defined as

V =

2

6664

1 �1 �
2
1 · · · �

p�1
1

1 �2 �
2
2 · · · �

p�1
2

...
...

... · · ·
...

1 �p �
2
p · · · �

p�1
p

3

7775
. (14)

The inverse of the Vandermonde matrix V is given
by [El-Mikkawy, 2003] using elementary symmetric
polynomial.

(V �1)i,j =
(�1)i+j

Sp�i,jQ
k<j(�j � �k)

Q
k>j(�k � �j)

, (15)

where Sp�i,j = Sp�i(�1, · · · ,�j�1,�j+1, · · · ,�p).

Pulling out the common denominator, the j-th column
vector of V �1 is

(�1)jQ
k<j(�j � �k)

Q
k>j(�k � �j)

2

666664

(�1)Sp�1

(�1)2Sp�2
...

(�1)p�1
S1

(�1)p

3

777775
,

where the elementary symmetric polynomials are over
variables �1, · · · ,�j�1,�j+1, · · · ,�p.

For example, if p = 4, then the 3rd column (up to
scaling) would be

�1

(�3 � �1)(�3 � �2)(�4 � �3)

2

664

��1�2�4

�1�2 + �1�4 + �2�4

��1 � �2 � �4

1

3

775.

Bounding the condition number As discussed be-
fore, the condition number for eigenvalue �j is

(C,�j) = kVj,⇤k2 kV
�1
⇤,j k2.

where Vj,⇤ is the j-th row of the Vandermonde matrix
V and V

�1
⇤,j is the j-th column of V �1.
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By definition Vj,⇤ =
h
1 �j �

2
j · · · �

p�1
j

i
, so

kVj,⇤k2 =

 
p�1X

i=0

�
2i
j

!1/2

.

Using the above explicit expression for V �1, kV �1
⇤,j k2 =

1Q
k 6=j |�j � �k|

 
p�1X

i=0

S
2
i (�1, · · · ,�j�1,�j+1, · · · ,�p)

!1/2

.

.

Therefore,

(C,�j) =
1Q

k 6=j |�j � �k|

 
p�1X

i=0

�
2i
j

!1/2

 
p�1X

i=0

S
2
i (�1, · · · ,�j�1,�j+1, · · · ,�p)

!1/2

.

(16)

Note that both parts under (· · · )1/2 are greater than
or equal to 1, so we can bound it below by

(C,�j) �
1Q

k 6=j |�j � �k|
.

We could also bound the two parts above. The first
part can be bounded by

 
p�1X

i=0

�
2i
j

!1/2


p
pmax(1, |�j |)

(p�1)
. (17)

While for the second part, since

|Si(�1, · · · ,�j�1,�j+1, · · · ,�p)| 

✓
p� 1

i

◆
|�|

i
max,

we have that
p�1X

i=0

S
2
i (�1, · · · ,�j�1,�j+1, · · · ,�p)



p�1X

i=0

✓
p� 1

i

◆
|�|

2i
max = (1 + |�|

2
max)

p�1
.

(18)

Combining equation 17 and 18 for the upper bound,
and putting it together with the lower bound,

1Q
k 6=j |�j � �k|

 (C,�j) 

p
pQ

k 6=j |�j � �k|
(max(1, |�j |))

p�1 (1 + ⇢(C)2)
p�1
2 ,

(19)

as desired.

Theorem 4.3 follows from Lemma B.3, because the
estimation error on the autoregressive parameters can
be seen as the perturbation on the companion matrix,
and the companion matrix has the same eigenvalues as
the original LDS.

C Iterated regression for ARMAX

Algorithm We generalize Algorithm 1 to accommo-
date for exogenous inputs. Since the exogenous inputs
are explicitly observed, including exogenous inputs in
the regression does not change the consistent property
of the estimator.

Theorem A.1 shows that different output channels from
the same LDS have the same autoregressive parame-
ters in ARMAX models. Therefore, we could leverage
multidimensional outputs by estimating the autoregres-
sive parameters in each channel separately and average
them.

Algorithm 2: Regularized iterated regression for
AR parameter estimation in ARMAX
Input: A time series {yt}

T
t=1 where yt 2 Rm,

exogenous input series {xt}
T
t=1 where xt 2 Rk,

and guessed hidden state dimension n.
for d = 1, · · · ,m do

Let y
(d)
t be the projection of yt to the d-th

dimension;
Initialize error term estimates ✏̂t = ~0 2 Rm for
t = 1, · · · , T ;

for i = 0, · · · , n do
Perform `2-regularized least squares
regression on yt against lagged terms of yt,
xt, and ✏̂t to solve for coefficients '̂j 2 R,
✓̂j 2 R, and �̂j 2 Rk in the linear equation
y
(d)
t = c+

Pn
j=1 '̂jy

(d)
t�j +

Pn�1
j=1 �̂jxt�j +Pi

j=1 ✓̂j ✏̂t�j , with `2-regularization only
on ✓̂j ;

Update ✏̂t to be the residuals from the most
recent regression;

end
Record �̂(d) = ('̂1, · · · , '̂n);

end
Return the average estimate
�̂ = 1

d (�̂
(1) + · · ·+ �̂(m)).

Again as before the i-th iteration of the regression
only uses error terms from the past i lags. In other
words, the initial iteration is an ARMAX(n, 0, n� 1)
regression, the first iteration is an ARMAX(n, 1, n� 1)
regression, and so forth.
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Time complexity The iterated regression in each
dimension involves n + 1 steps of least squares re-
gression each on at most n(k + 2) variables. There-
fore, the total time complexity of Algorithm 2 is
O(nm((nk)2T+(nk)3)) = O(mn

3
k
2
T+mn

4
k
3), where

T is the sequence length, n the hidden state dimension,
m the output dimension, and k the input dimension.

D Additional simulation details

D.1 Synthetic data generation

First, we generate K cluster centers by generating
LDSs with random matrices A,B,C of standard i.i.d.
Gaussians. We assume that the output yt only de-
pends on the hidden state ht but not the input xt, i.e.
the matrix D is zero. When generating the random
LDSs, we require that the spectral radius ⇢(A)  1,
i.e. all eigenvalues of A have absolute values at most
1, and regenerate a new random matrix if the spectral
radius is above 1. Our method also applies to the
case of arbitrary spectral radius, this requirement is
for the purpose of preventing numeric overflow in gen-
erated sequence. We also require that the `2 distance
d(⇥1,⇥2) = k�(A1)� �(A2)k2 between cluster centers
are at least 0.2 apart.

Then, we generate 100 LDSs by randomly assigning
them to the clusters. To obtain a LDS with assigned
cluster center ⇥ = (Ac, Bc, Cc), we generate A

0 by
adding a i.i.d. Gaussians to each entry of Ac, while
B

0 and C
0 are new random matrices of i.i.d. stan-

dard Gaussians. The standard deviation of the i.i.d.
Gaussians for A

0
� Ac is chosen such that the aver-

age distance to cluster centers is less than half of the

inter-cluster distance between centers.

For each LDS, we generate a sequence by drawing hid-
den inputs xt ⇠ N(0, 1) and put noise ⇠t ⇠ N(0, 0.012)
on the outputs.

D.2 Empirical correlation between AR
distance and LDS distance.

Theorem 4.2 shows that LDSs with similar AR param-
eters also have similar eigenvalues. The converse of
Theorem 4.2 is also true: dynamical systems with small
eigenvalue distance have small autoregressive parameter
distance, which follows from perturbation bounds for
characteristic polynomials [Ipsen and Rehman, 2008].
Figure 2 shows simulation results where the AR pa-
rameter distance and the LDS eigenvalue distance are
highly correlated.

Figure 2: The eigenvalue `2 distance and the autore-
gressive parameter `2 distance for 100 random linear
dynamical systems with eigenvalues drawn uniformly
randomly from [�1, 1]. The two distance measures are
highly correlated.


