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A Proof of Theorem 2

We start with the case where lim inft→∞
‖Qt‖
log t = 0.

To lower bound the error probability we need to un-
derstand first how the mismatched MAP decisions
evolve over time/players. We next establish some no-
tation, which will simplify the analysis. For i ∈ {1, 2}
and t ≥ 1, recall our notation in (4)–(8). Also, for
x ∈ {1, 2}, let

φi(x) ,
α

α+ β
1 [x = i] +

β

α+ β
1 [x 6= i] . (22)

Note that D̂ti = L̂t−1
i φi(Xt). Finally, we define

Rt ,
L̂t1

L̂t2
, R′t ,

D̂t1

D̂t2
. (23)

It is clear that

R′t = Rt−1
φ1(Xt)

φ2(Xt)
. (24)

Since the ratio φ1(Xt)/φ2(Xt) can take values in
{β/α, α/β}, we have three possible cases only:

• If Rt−1 < β/α then, clearly R′t < 1, irrespective
of the value of Xt. Thus, Zt = 1 only if player t
is irrational and Xt = 1. Otherwise, Zt = 2.

• If Rt−1 ∈ [β/α, α/β] then it can be easily shown
that Zt = Xt.

• If Rt−1 > α/β then, clearly R′t > 1, irrespective
of the value of Xt. Thus, Zt = 2 only if player t
is irrational and Xt = 2. Otherwise, Zt = 1.

Let {Ft}t≥0 denote the filtration spanned by {Zt}t≥1.

Let P̂1(Zt = i|Ft−1) be the probability that the guess
by player t is i, given the history and θ = 1, and the
evaluation of this probability is with respect to the
mismatched revealers probabilities Q. Then, based on
the above, we have

P̂1(Zt = 1|Ft−1)

=


α

α+β qt, if Rt−1 < β/α,

α
α+β , if Rt−1 ∈ [β/α, α/β],

1− β
α+β qt, if Rt−1 > α/β,

(25)

and

P̂2(Zt = 1|Ft−1)

=


β

α+β qt, if Rt−1 < β/α,

β
α+β , if Rt−1 ∈ [β/α, α/β],

1− α
α+β qt, if Rt−1 > α/β.

(26)

There are two main sources for wrong action: 1) the
tth player is irrational, which happens with probability
pt, and his draw is of minority color type, or, 2) the tth

player is rational, but his mismatched MAP estimate
is wrong. Accordingly, we can write

Pe,t(P?,Q) = P
(
MAPQ(Zt−1

1 , Xt) 6= θ
)
· (1− p?t )

+ P(Xt 6= θ) · p?t
≥ P

(
MAPQ(Zt−1

1 , Xt) 6= θ
)
· (1− p?t )

= P1

(
MAPQ(Zt−1

1 , Xt) = 2
)
· (1− p?t ),

(27)

where the last equality follows by symmetry. We next
lower bound the probability term at the r.h.s. of (27).
To this end, we define an event that implies that the
output of the mismatched MAP is 2, given that θ = 1.
Let t̄1, t̄2 ≤ t? be three natural numbers, to be defined
in the sequel. Let rev(t?) , {i1, i2, . . . , it?} be the set
of the last t? revealers. Define the following event

E(t̄1, t̄2, t
?) , {Xi = 2,∀i ∈ rev(t?)

∪{it̄1 , it̄1 + 1 . . . , it̄1 + t̄2}} , (28)

namely, it is the event that the last t? revealers are
such that their private signal is “2”, and all consecu-
tive players it̄1 , it̄1 + 1, . . . , it̄1 + t̄2 (either revealers or
rationals) are such that their private signal is “2” as
well. We claim that by carefully choosing the values
of t̄1, t̄2, and t?, we can show that E(t̄1, t̄2, t

?) implies
that the tth player (mismatched MAP) guess is “2”. To
this end, note that the first two individuals follow their
private signals, that is Z1 = X1 and Z2 = X2. There-
fore, if X1 = X2 = 1, then R2 = (α/β)2, otherwise,
R2 = (β/α)2. Depending on either one of the above
situations, the proceeding guesses depend on whether
a student is a revealer or not, and value of the likeli-
hood Rt at each step t. Accordingly, at step i1−1, the
worst-case (largest) attainable value of the likelihood
ratio is

Ri1−1 =

(
α

β

)2

·
i1−1∏
i=3

1− β
α−β qi

1− α
α−β qi

(29)

≤
(
α

β

)2

e
α−β
α+β

∑i1−1
i=3 qi , (30)

which corresponds to the situation where X1 = X2 =
1, and the proceeding players decisions up to t ≤ i1−1
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are Zt = 1. Now, over E(t̄1, t̄2, t
?), we know that the

i1 player is a revealer and its private information is
Xi1 = 2. Since he is a revealer its decision will be
Zi1 = 2, which implies that the likelihood ratio is

Ri1 =

(
α

β

)
·
i1−1∏
i=3

1− β
α−β qi

1− α
α−β qi

. (31)

The index of the next revealer is i2. Thus, since
Ri1 > α/β, the decisions of the proceeding players up
to player i2, are “1”, which imply that

Ri2−1 =

(
α

β

)
·
i2−1∏
i=3

1− β
α−β qi

1− α
α−β qi

. (32)

Then, since i2 is a revealer and its private information
is Xi2 = 2, we have

Ri2 =

i1−1∏
i=3

1− β
α−β qi

1− α
α−β qi

, (33)

and the above process continues. In particular, assum-
ing that Rij−1

> α/β, the likelihood ratio after the ij
th

decision is

Rij =

(
β

α

)j−2 ij−1∏
i=3

1− β
α−β qi

1− α
α−β qi

. (34)

We denote by t̄1 the index at which the likelihood
ratio Rit̄1 , after the it̄1

th decision, is in the interval
[β/α, α/β]. Indeed, when this happens, according to
(25)–(26), the likelihood ratio Rit̄1 will be multiplied
by either β/α or α/β depending on whether the pri-
vate information is “2” or “1”, respectively, until the
likelihood ratio value will be either below β/α or above
α/β. Accordingly, over E(t̄1, t̄2, t

?), we force the pri-
vate information of players it̄1 , it̄1 + 1, . . . , it̄1 + t̄2 to
be “2”, so that the corresponding likelihoods will be
multiplied by β/α, until the likelihood ratio value will
get bellow β/α, and accordingly, t̄2 is chosen such that

Rt̄1+t̄2 =

(
β

α

)t̄1+t̄2−2 it̄−1∏
i=3

1− β
α−β qi

1− α
α−β qi

, (35)

will be less than β/α. Next, due to the fact that over
E(t̄1, t̄2, t

?) the leftover revealers are such that their
private information is “2”, and the likelihood ratio is
below β/α (and so MAP outputs “2”), it is clear that
all the leftover players decisions will be “2”. To assure
that we take enough revealers at the end, we chose t?

such that, (
β

α

)t?−2 t−t∗∏
i=3

1− β
α−β qi

1− α
α−β qi

<
β

α
, (36)

which reflects the case where the players decision are
always “1” up to time t− t?, and then the left over t?

players are all revealers with “2” being their private
information. It is evident that (36) holds if

t? ≥ 3 +
α− β
α+ β

· ‖Qt‖
log(α/β)

. (37)

Note that when ‖Qt‖ is a finite number which happens
to be the case when qt = o(t−1) (as opposed to ‖P?t ‖
which grows logarithmically with t), implies that t? is
finite, which in turn is the reason for the fact that the
error probability is finite. Also, by the same token,
it is clear that t̄1 and t̄2 are finite too, with t̄2 < t?.
The latter implies that E(t̄1, t

?, t?) ⊆ E(t̄1, t̄2, t
?). Fi-

nally, we need to make sure that the size of the
set of all revealers, denoted by Revt , {i ∈ [t] :
player i is revealer} is bigger than t? with high proba-
bility. Let Mt ,

∑t
i=1 pi ∼ log t. Then, by Chernoff’s

bound P (|Revt| ≤ t?) ≤ exp(t? log Mt

t? − Mt + t?) =
O(t−1) ≤ 1/2. Thus, we get that

P1

(
MAPQ(Zt−1

1 , Xt) = 2
)
≥ P1 [E(t̄1, t̄2, t

?)]

≥
∑

A:|A|>t?
P (Revt = A)P1 [E(t̄1, t̄2, t

?)|Revt = A]

≥
∑

A:|A|>t?
P (Revt = A)P1 [E(t̄1, t

?, t?)|Revt = A]

≥
(

β

α+ β

)2t?

· P (|Revt| > t?)

≥ 1

2

(
β

α+ β

)2t?

. (38)

Therefore, using (27), (38), and the fact that

lim inft→∞
‖Qt‖
log t = 0 we get

E(P?,Q) = lim inf
t→∞

− logPe,t(P?,Q)

log t
(39)

≤ 2 log

(
α+ β

β

)
· lim inf
t→∞

t?

log t
= 0. (40)

Since it is clear that E(P?,Q) ≥ 0 we may conclude
that in this regime E(P?,Q) = 0. Finally, proving that

E(P?,Q) = 0 for the case lim inft→∞
‖Qt‖
log t =∞ follows

from Theorem 3 (specifically, using the fact that for
ρ > ρ1 we have E(P?,Q) = 0), and a monotonicity
property of the error probability w.r.t. the revealing
probabilities Q. We provide the complete details in
Appendix B.2.

B Proof of Theorem 3

We split the proofs into several upper and lower
bounds, which together characterize tightly the
asymptotic learning rate. Note that by “lower bounds”
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(“upper bounds”) we mean lower- (upper-) bounding
the learning rate by upper- (lower-) bounding the error
probability.

B.1 Lower Bound: ρ0 ≤ ρ ≤ ρ1

We analyze next the probability of wrong action by the
tth player. Accordingly, there are two main sources for
wrong action: 1) the tth player is irrational, which hap-
pens with probability pt, and his draw is of minority
color type, or, 2) the tth player is rational, but his mis-
matched MAP estimate is wrong. Accordingly, we can
write

Pe,t(P,Q) = P
(
MAPQ(Zt−1

1 , Xt) 6= θ
)
· (1− pt)

+ P(Xt 6= θ) · pt (41)

= P
(
MAPQ(Zt−1

1 , Xt) 6= θ
)
· (1− pt)

+
β

α+ β
· pt. (42)

Therefore, to upper bound Pe,t(P,Q) we need to up-
per bound the probability that the mismatched MAP
estimator is incorrect. To this end, we next establish
some notation, which will simplify the analysis. For
i ∈ {1, 2} and t ≥ 1, recall our notations in (4)–(8),
as well as the definitions in (22)–(24). Finally, recall
that depending on the value that Rt−1 takes, there are
three modes of operation for the MAP estimator (see,
the paragraph following (24)). In particular, the error
probability associated with the MAP estimator can be
upper bounded as follows,

P
(
MAPQ(Zt−1

1 , Xt) 6= θ
)

= P1

(
MAPQ(Zt−1

1 , Xt) 6= 1
)

= P1 (R′t ≤ 1)

≤ P1

(
Rt−1 ≤

α

β

)
. (43)

Thus, it is suffice to upper bound P1 (Rt−1 ≤ α/β).
To this end, we use similar techniques used in
[Peres et al., 2018, Sec. 2.2], but with modifications
which handle the mismatch aspect of our model. Let
{Ft}t≥0 denote the filtration spanned by {Zt}t≥1.
Then, for λ ∈ [0, 1], we have

E1

[(
Rt

Rt−1

)−λ∣∣∣∣∣Ft−1

]

= E1

( P̂1(Zt|Ft−1)

P̂2(Zt|Ft−1)

)−λ∣∣∣∣∣∣Ft−1

 (44)

=
∑

i∈{1,2}

P1(Zt = i|Ft−1)

(
P̂1(Zt = i|Ft−1)

P̂2(Zt = i|Ft−1)

)−λ
,

(45)

where P1(Zt = i|Ft−1) is the probability that player t
guess is i given the history and θ = 1, and the evalua-
tion of this probability is with respect to the underly-
ing true revealers probabilities P. On the other hand,
P̂1(Zt = i|Ft−1) is the probability that player t guess
is i given the history and θ = 1, and the evaluation
of this probability is with respect to the mismatched
revealers probabilities Q. Accordingly, the values of
these probabilities are given in (25)–(26), and

P1(Zt = 1|Ft−1)

=


α

α+β pt, if Rt−1 < β/α,

α
α+β , if Rt−1 ∈ [β/α, α/β],

1− β
α+β pt, if Rt−1 > α/β.

(46)

Therefore, we have,

E1

[(
Rt

Rt−1

)−λ∣∣∣∣∣Ft−1,Rt−1 <
β

α

]

=
α1−λβλ

α+ β
pt +

(
1− α

α+ β
pt

)[
1− β

α+β qt

1− α
α+β qt

]λ
,

E1

[(
Rt

Rt−1

)−λ∣∣∣∣∣Ft−1,Rt−1 ∈
[
β

α
,
α

β

]]

=
α1−λβλ + αλβ1−λ

α+ β
,

E1

[(
Rt

Rt−1

)−λ∣∣∣∣∣Ft−1,Rt−1 >
α

β

]

=
αλβ1−λ

α+ β
pt +

(
1− β

α+ β
pt

)[
1− α

α+β qt

1− β
α+β qt

]λ
. (47)

Since we assume that both pt and qt decay with t, we
use the fact that (1− δ)λ = 1−λ · δ+ Θ(δ2), as δ → 0.
Let

fλ ≡ fλ(α, β) ,
α− α1−λβλ

α+ β
, (48)

gλ ≡ gλ(α, β) ,
(α− β)λ

α+ β
, (49)

hλ ≡ hλ(α, β) ,
β − αλβ1−λ

α+ β
. (50)
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Then, we have

E1

[(
Rt

Rt−1

)−λ∣∣∣∣∣Ft−1,Rt−1 <
β

α

]
= 1− fλ · pt + gλ · qt +O(p2

t + q2
t ), (51)

E1

[(
Rt

Rt−1

)−λ∣∣∣∣∣Ft−1,Rt−1 ∈
[
β

α
,
α

β

]]

=
α1−λβλ + αλβ1−λ

α+ β
, (52)

E1

[(
Rt

Rt−1

)−λ∣∣∣∣∣Ft−1,Rt−1 >
α

β

]
= 1− hλ · pt − gλ · qt +O(p2

t + q2
t ). (53)

Define the following two sets:

At ,
{
i ∈ [t] : Ri−1 >

α

β

}
, (54)

and Bt , Act = [t] \ At. Define also,

R
(1)
t ,

∏
i∈At

Ri
Ri−1

(55)

and

R
(2)
t ,

∏
i∈Bt

Ri
Ri−1

. (56)

Note that Rt = R
(1)
t · R

(2)
t . We these definitions, using

(51)–(53), we note that there exist some constants C
and C ′ independent of λ, such that for all λ,

E1

[(
Rt

Rt−1

)−λ
ehλpt+gλqt

∣∣∣∣∣Rt−1, t ∈ At

]
≤ eC

′(p2
t+q

2
t ),

(57)

and

E1

[(
Rt

Rt−1

)−λ
efλpt−gλqt

∣∣∣∣∣Rt−1, t ∈ Bt

]
≤ eC(p2

t+q
2
t ).

(58)

Recall that ‖Pt‖ =
∑t
i=1 pi and ‖Qt‖ =

∑t
i=1 qi.

Also, let Γpt ,
∑t
i∈At pi and Γqt ,

∑t
i∈At qi. By in-

duction, we can easily see that there exists a constant
C such that for any λ1, λ2 ∈ [0, 1],

E1

[(
R

(1)
t

)−λ1

ehλ1
Γpt+gλ1

Γqt

(
R

(2)
t

)−λ2

efλ2
(‖Pt‖−Γpt )−gλ2

(‖Qt‖−Γqt )

]
≤ eC

∑t
i=1(p2

i+q
2
i ), (59)

and since
∑t
i=1(p2

i + q2
i ) is finite, we can upper bound

the r.h.s. of (59) by a constant C0. Now, as was shown

in [Peres et al., 2018, Appendix A], the condition Rt ≤
α
β implies that R

(1)
t ≤ 1. Thus, we may write

P1

(
Rt ≤

α

β

)
≤ P1

(
Rt ≤

α

β
, t−C1 ≤ R

(1)
t ≤ 1

)
+ P1

(
R

(1)
t ≤ t−C1

)
. (60)

A simple application of multiplicative Chrenoff’s
bound shows that the second term on the r.h.s. of
the above inequality is upper bounded by t−2, for
some constant C1 < ∞. We next upper bound the
first term on the r.h.s. of the above inequality. Since

Rt = R
(1)
t · R

(2)
t , we can write

P1

(
Rt ≤

α

β
, t−C1 ≤ R

(1)
t ≤ 1

)
≤
C1 log t∑
x=0

P1

(
R

(1)
t ∈

[
e−(x+1), e−x

]
,R

(2)
t ≤ ex+C3

)
≤
C1 log t∑
x=0

P1

(
R

(1)
t ≤ e−x,R

(2)
t ≤ ex+C3

)
, (61)

where C3 , 1 + log α
β . Then, for any λ1, λ2 ∈ [0, 1], we

have

P1

(
R

(1)
t ≤ e−x,R

(2)
t ≤ ex+C3

)
= P1

[(
R

(1)
t

)−λ1

≥ eλ1x,
(
R

(2)
t

)−λ2

≥ e−λ2(x+C3)

]
,

(62)

and then,

P1

(
R

(1)
t ≤ e−x,R

(2)
t ≤ ex+C3

)
= P1

[(
R

(1)
t

)−λ1

ehλ1
Γpt+gλ1

Γqt ≥ eλ1x+hλ1
Γpt+gλ1

Γqt ,(
R

(2)
t

)−λ2

efλ2
(‖Pt‖−Γpt )−gλ2

(‖Qt‖−Γqt )

≥ e−(x+C3)λ2+fλ2
(‖Pt‖−Γpt )−gλ2

(‖Qt‖−Γqt )
]
.

(63)

Now using the facts that P[X1 ≥ X2, X3 ≥ X4] ≤
P[X1 ·X3 ≥ X2 ·X4], for non-negative random variables
X4

1 , and Markov inequality along with (59), we get

P1

(
R

(1)
t ≤ e−x,R

(2)
t ≤ ex+C3

)
≤ C0 · E1

[
e−λ1x−hλ1

Γpt−gλ1
Γqt+λ2(x+C3)

e−fλ2
(‖Pt‖−Γpt )+gλ2

(‖Qt‖−Γqt )
]
. (64)
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Using the facts that ‖Qt‖ = ρ · ‖Pt‖ and Γqt = ρ · Γpt ,
we obtain,

P1

(
R

(1)
t ≤ e−x,R

(2)
t ≤ ex+C3

)
≤ C0 · E1

[
ex(λ2−λ1)+λ2C3−(fλ2

−ρgλ2
)‖Pt‖

e(fλ2
−ρgλ2

−hλ1
−ρgλ1

)Γpt

]
. (65)

By symmetry, we can get the above upper bound with
(λ2 − λ1) replaced by (λ1 − λ2). Indeed, to show this
we replace (62) with

P1

(
R

(1)
t ≤ e−x,R

(2)
t ≤ ex+C3

)
= P1

[(
R

(1)
t

)−(1−λ1)

≥ e(1−λ1)x,(
R

(2)
t

)−(1−λ2)

≥ e−(1−λ2)(x+C3)

]
, (66)

and follow the (63)–(64). Therefore, we may write

P1

(
R

(1)
t ≤ e−x,R

(2)
t ≤ ex+C3

)
≤ C0 · E1

[
e−x|λ2−λ1|+λ2C3−(fλ2

−ρgλ2
)‖Pt‖

e(fλ2
−ρgλ2

−hλ1
−ρgλ1

)Γpt

]
. (67)

We can now optimize our choices of λ1 and λ2 to min-
imize the above upper bound. We take λ1 + λ2 = 1.
For such a pair it is easy to check that,

fλ2 − ρgλ2 − hλ1 − ρgλ1 =
α− β
α+ β

(1− ρ). (68)

We next consider the case where ρ ≥ 1, for which the
r.h.s. of (68) is negative, and so,

P1

(
R

(1)
t ≤ e−x,R

(2)
t ≤ ex+C3

)
≤ C0 · E1

[
e−x|2λ1−1|+λ2C3−(f1−λ1

−ρg1−λ1
)‖Pt‖

e
α−β
α+β (1−ρ)Γpt

]
(69)

≤ C0 · e−x|2λ1−1|+(1−λ1)C3−(f1−λ1
−ρg1−λ1

)‖Pt‖. (70)

In the interval λ1 ∈ [0, 1], it can be checked that
f1−λ1 − ρg1−λ1 is maximized at

λ?1 = min

1,
log
(
ρ · α/β−1

logα/β

)
logα/β

 . (71)

We mention here that λ?1 satisfies the following equal-
ity (

α

β

)λ?1
=

(α− β)ρ

β log α
β

, (72)

which proves to be useful. It can be shown that λ?1 ≥
1/2. Thus, whenever λ?1 < 1, which happens to be the
case exactly when ρ ≤ ρ1, we have

P1

(
R

(1)
t ≤ e−x,R

(2)
t ≤ ex+C3

)
≤ C0 · e−x|2λ

?
1−1|+(1−λ?1)C3−(f1−λ?1

−ρg1−λ?1
)‖Pt‖. (73)

It can be checked that

f1−λ?1 − ρg1−λ?1

=
α log α

β − ρ(α− β)

(α+ β) log α
β

− ρα− β
α+ β

(1− λ?1) (74)

=
α log α

β − ρ(α− β)

(α+ β) log α
β

− ρ(α− β)

α+ β

1−
log
[
ρ(α/β−1)

log α
β

]
log α

β

 (75)

=

α
β log α

β − ρ(αβ − 1)
[
1 + log

α
β log α

β

ρ(αβ−1)

]
(1 + α

β ) log α
β

(76)

= δ(α/β, ρ), (77)

where δ(α/β, ρ) is defined (18). Combining the above
result with (60), we get

P1

(
Rt ≤

α

β

)
≤ C ′0e(1−λ?1)C3−δ(α/β,ρ)‖Pt‖ +

1

t2
, (78)

where we have used the fact that
∑C1 log t
x=0 e−x|2λ

?
1−1|

is finite, and absorbed its value in the constant C ′0.
Then, substituting the above result in (43) and then
in (42), we obtain

Pe,t(P,Q) ≤
[
C ′0e

(1−λ?1)C3−δ(γ,ρ)‖Pt‖ +
1

t2

]
· (1− pt)

+
β

α+ β
· pt. (79)

Therefore, taking pt = (1+γ)κ(γ)
t ∧ 1 = p?t , we obtain

that for 1 ≤ ρ ≤ ρ1,

E(P?,Q) = lim inf
t→∞

− logPe,t(P?,Q)

log t
(80)

≥ δ(α/β, ρ) · lim inf
t→∞

‖Pt‖
log t

(81)

= δ(γ, ρ) [(1 + γ)κ(γ)] , (82)



Wasim Hueihel, Ofer Shayevitz

as claimed. Next, we consider the case where ρ < 1.
In this case, the the r.h.s. of (68) is positive, and so,

P1

(
R

(1)
t ≤ e−x,R

(2)
t ≤ ex+C3

)
≤ C0 · E1

[
e−x|2λ1−1|+λ2C3−(f1−λ1

−ρg1−λ1
)‖Pt‖

e
α−β
α+β (1−ρ)Γpt

]
(83)

≤ C0 · e−x|2λ1−1|+(1−λ1)C3−(f1−λ1
−ρg1−λ1

)‖Pt‖

· e
α−β
α+β (1−ρ)‖Pt‖. (84)

Again, f1−λ1
− ρg1−λ1

is maximized at

λ?1 =
log
(
ρ · α/β−1

logα/β

)
logα/β

, (85)

and note that for ρ < 1 it is always the case that
λ?1 < 1. Also, for ρ0 < ρ ≤ 1, we have that λ?1 ∈ [0, 1].
Hence, we may write

P1

(
R

(1)
t ≤ e−x,R

(2)
t ≤ ex+C3

)
≤ C0e

−x|2λ?1−1|+(1−λ?1)C3−[δ(α/β,ρ)−α−βα+β (1−ρ)]‖Pt‖.
(86)

Combining the above result with (60), we get

P1

(
Rt ≤

α

β

)
≤ C ′0e

(1−λ?1)C3−[δ(γ,ρ)−α−βα+β (1−ρ)]‖Pt‖

+
1

t2
. (87)

Then, substituting the above result in (43) and then
in (42), we obtain

Pe,t(P,Q) ≤ β

α+ β
· pt+[

C ′0e
(1−λ?1)C3−[δ(γ,ρ)−α−βα+β (1−ρ)]‖Pt‖ +

1

t2

]
· (1− pt).

(88)

Therefore, taking pt = α+β
β

κ(α,β)
t ∧ 1 = p?t , we obtain

that for ρ0 ≤ ρ ≤ 1,

E(P?,Q) = lim inf
t→∞

− logPe,t(P?,Q)

log t

≥
[
δ(γ, ρ)− (1− ρ)

γ − 1

γ + 1

]
· lim inf
t→∞

‖P?t ‖
log t

=

[
δ(γ, ρ)− (1− ρ)

γ − 1

γ + 1

]
(1 + γ)κ(γ),

(89)

as claimed.

B.2 Upper Bound: ρ ≥ ρ1 and ‖Qt‖ � log t

We prove that for ρ ≥ ρ1 we have E(P?,Q) = 0. We

show that this is correct also when lim inft→∞
‖Qt‖
log t =

∞ as stated in Theorem 2. To this end, first note that
from (8), we have

P
(
MAPQ(Zt−1

1 , Xt) 6= θ
)

= P1

(
MAPQ(Zt−1

1 , Xt) 6= 1
)

≥ P1 (R′t < 1)

≥ P1

(
Rt−1 <

β

α

)
, (90)

and so it is suffice to lower bound the r.h.s. of (90).
It is clear that

P1

(
Rt <

β

α

)
≥ P1

(
Ri <

β

α
, ∀i ∈ [t]

)
. (91)

Accordingly, in order to obtain a lower bound on
(91) we define three events that together imply that
Rt < β/α. We note that the derivations bellow follow
[Peres et al., 2018, Sec. 2.2], with modifications which
handle the mismatch aspect of our model. We need a
few definitions. Let τ(s) , min{t ≥ 1 : ‖Qt‖ ≥ s},
and t0 , τ(2α−βα+β log α

β + 2). Define

E0 ,
{
Rt0 < (β/α)

4
}
. (92)

The above initial event takes the mismatched likeli-
hood ratio below β/α, and the events we define be-
low ensure that it always stays below this bar. Let
Jt , logRt, and define the stopping time T , min{s ≥
t0 : Js 6∈ [− log t, 2 log(β/α)]}. We define the events

E1 , {JT ≤ − log t} , (93)

and

E2 ,

{
min
s∈[t]

Js ≥ − log3/4 t

}
. (94)

We observe that E0 ∩ E1 ∩ E2 imply together that Js ∈[
− log3/4 t, 2 log β

α

]
, for all s ∈ [t0, t], which in turn

implies that Rt < β/α. Thus,

P1

(
Rt ≤

β

α

)
≥ P1 (E0 ∩ E1 ∩ E2) . (95)

We next lower bound the probability of the event E0
which is easier to handle. Note that according to our
setting the first two individuals follow their private
signal, and hence if X1 = X2 = 2, we have Z1 = Z2 =
2. This in turn implies that R2 = (β/α)2. Now, ifXi =
2 for all i ∈ {3, 4, . . . , t0}, then it is clear that Zi = 2,
for all i ∈ {3, 4, . . . , t0} as well. Accordingly, using
(25)–(26), this implies that the mismatched likelihood
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ratio at time t0 is given by

Rt0 =

(
β

α

)2 t0∏
i=3

1− α
α+β qi

1− β
α+β qi

(96)

≤
(
β

α

)2

exp

(
−α− β
α+ β

t0∑
i=3

qi

)
. (97)

However, by the definition of t0, we know that

t0∑
i=3

qi ≥ ‖Qt0‖ − 2 ≥ 2
α+ β

α− β
log

α

β
, (98)

which together with (97) implies that Rt0 ≤ (β/α)4.
Thus,

P1 (E0) ≥ P1 (Xi = 2 ∀i ∈ [t0]) =

(
β

α+ β

)t0
. (99)

Therefore, because t0 is a constant it is suffice to lower
bound the probability P1(E1 ∩ E2|E0). Given E0, the
log-likelihood ratio Jt performs a random walk from
time t0 until the stopping time T . Specifically, using
(25)–(26), and (46), for s ≥ t0, we may write

Js∧T = Jt0 +

s∧T∑
i=t0+1

ξi (100)

where {ξi} are statistically independent random vari-
ables such that

P1

(
ξi = log

α

β

)
=

α

α+ β
pi, (101)

and

P1

(
ξi = log

1− α
α+β qi

1− β
α+β qi

)
= 1− α

α+ β
pi. (102)

Now, note that

E1 [ξi] =
α

α+ β
log

α

β
pi −

α− β
α+ β

qi + Θ(q2
i + p2

i )

=
ρ+ γ(log γ − ρ)

1 + γ
pi + Θ(p2

i ) (103)

where γ = α/β. The important observation here is
that ρ ≥ ρ1 is equivalent ρ + γ(log γ − ρ) ≤ 0, which
implies that the log-likelihood ratio has a downward
(non-positive) drift. More precisely, it can be seen
that the expectation can be written as E1[ξi] = −η ·
pi+Θ(p2

i ), for some η > 0. Since pi is decaying with i,
it is clear that there exists a finite index i0 ∈ N, such
that E1[ξi] ≤ 0, for all i ≥ i0. Accordingly, letting
t̄0 , t0 ∨ i0, we obtain that under P1, the random
walk {Js∧T }s≥t̄0 is a supermartingale. For simplicity
of notation, for the rest of the proof we use t0 in place

of t̄0. Therefore, by the optional stopping theorem we
have

E1[JT |E0] ≤ E1[Jt0 ] ≤ 4 log
β

α
. (104)

On the other hand, by the definition of T , it is
either the case that JT > 2 log β

α , in which case

JT ∈ (2 log β
α , log β

α ], or JT < − log t, and then JT ∈
[− log t− log β

α ,− log t). Thus, we can write

E1[JT |E0] = E1

[
JT1

[
JT > 2 log

β

α

]
|E0
]

+ E1 [JT1 [JT < − log t] |E0] (105)

≥ [1− P1(E1|E0)] 2 log
β

α

− P1(E1|E0) ·
(

log t+ log
β

α

)
(106)

≥ 2 log
β

α
− P1(E1|E0) · log t, (107)

which together with (104) implies that

P1(E1|E0) ≥ 2 log γ

log t
. (108)

Finally, using classical results on the tails of
supermartingales (see, e.g., [Freedman, 1975,
Fan et al., 2015]), we have

P
(

min
s∈[t]

Js < − log3/4 t

∣∣∣∣ E0) ≤ e−c√log t, (109)

and thus

P1 (E1 ∩ E2|E0) ≥ log γ

log t
, (110)

for t large enough. Combining (27), (90), (95), (99),
and (110), we obtain

E(P?,Q) = lim inf
t→∞

− logPe,t(P?,Q)

log t
(111)

≤ lim inf
t→∞

− logP1 (E1 ∩ E2|E0)

log t
= 0, (112)

which concludes the proof. Finally, using the
above arguments we prove that when Q̄ satisfies

lim inft→∞
‖Q̄t‖
log t = ∞, then E(P?, Q̄) = 0, as stated

in Theorem 2. Specifically, let Q be any sequence of
assumed revealing probabilities such that qt = ρ · p?t ,
with ρ > ρ1. Let RQ̄t and RQt designate the likelihoods
corresponding to the revealing probabilities Q̄ and Q,
respectively. Then, from (91) it is clear that

P
(
MAPQ̄(Zt1, Xt+1) 6= θ

)
≥ P1

(
RQ̄t <

β

α

)
(113)

≥ P1

(
RQ̄i <

β

α
, ∀i ∈ [t]

)
.

(114)
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Now, note that for large enough t it must be the case
that q̄t > qt. The log-likelihood ratio JQ̄t performs a
random walk with probabilities given in (101)–(102),
with qt replaced by q̄t. Accordingly, it is clear that
the random variables {ξi} can take only smaller values
under Q̄ compared to Q. This in turn implies that
RQ̄ ≤ RQ, and thus,

P
(
MAPQ̄(Zt1, Xt+1) 6= θ

)
≥ P1

(
RQ̄i <

β

α
, ∀i ∈ [t]

)
≥ P1

(
RQi <

β

α
, ∀i ∈ [t]

)
≥ P1(E0 ∩ E1 ∩ E2), (115)

which is the same lower bound we started with for Q.

B.3 Upper Bound: 1 ≤ ρ ≤ ρ1

We consider the case where 1 ≤ ρ ≤ ρ1, and continue
from (103). Indeed, in this regime, the expectation
in (103) is non-negative and thus the log-likelihood
ratio Js has an upward drift. We remove this drift by
defining a new measure P̃1, such that for i > t0,

P̃1

(
ξi = log

α

β

)
= νi, (116)

P̃1

(
ξi = log

1− α
α+β qi

1− β
α+β qi

)
= 1− νi, (117)

where

νi ,
log

1− β
α+β qi

1− α
α+β qi

log

(
α
β

1− β
α+β qi

1− α
α+β qi

) . (118)

Now, under P̃1, the random walk {Js∧T }s≥t0 is a mar-
tingale, and thus using the same steps we used in
(104)–(110), we obtain that

P̃1 (E1 ∩ E2|E0) ≥ log γ

log t
, (119)

for t large enough. Next, performing a change of mea-
sure we may write

P1 (E1 ∩ E2|E0) = Ẽ1

[
dP1(·|E0)

dP̃1(·|E0)
1 [E1 ∩ E2]

∣∣∣∣ E0] ,
(120)

so we need to understand how the Radon-Nikodym
derivative of P1(·|E0) w.r.t. P̃1(·|E0) behaves. Note
that

dP1(·|E0)

dP̃1(·|E0)
=

t∏
i=t0+1

{ α
α+β p

?
i

νi
1

[
ξi = log

α

β

]

+
1− α

α+β p
?
i

1− νi
1

[
ξi = log

1− α
α+β qi

1− β
α+β qi

]}
. (121)

We claim that each factor in the product can be lower
bounded for some C = C(α, β) as follows

α
α+β p

?
i

νi
1

[
ξi = log

α

β

]
+

1− α
α+β p

?
i

1− νi
1

[
ξi = log

1− α
α+β qi

1− β
α+β qi

]
≥ e(1−λ?)ξi ·Ki(ξi) (122)

where λ? = λ?1 is defined in (71), and

Ki(ξi) , e−δ(γ,ρ)p
?
i−C(p?i )2

· 1

[
ξi = log

1− α
α+β qi

1− β
α+β qi

]

+ e
−ρ
(

1
2−

α−β
(α+β) log α

β

)
p?i−C(p?i )2

· 1
[
ξi = log

α

β

]
.

(123)

Indeed, this inequality can be checked for both poten-
tial values of ξ by expanding the expressions in p?i .
Then, multiplying (122) over all i ∈ {t0 + 1, . . . , t},
using the fact that Jt = Jt0 +

∑t
i=t0+1 ξi on the event

E1 ∩ E2, we obtain that

dP1(·|E0)

dP̃1(·|E0)
1 [E1 ∩ E2] ≥ e(1−λ?)(Jt−Jt0 )−C

∑t
i=1(p?i )2

· e
−δ(γ,ρ)

∑
i∈Vc p

?
i−ρ

(
1
2−

α−β
(α+β) log α

β

)∑
i∈V p

?
i
1 [E1 ∩ E2]

≥ e(1−λ?)Jt−C′

· e
−δ(γ,ρ)‖P?t ‖−ρ

(
1
2−

α−β
(α+β) log α

β

)∑
i∈V p

?
i
1 [E1 ∩ E2] ,

(124)

where V , {i ≥ t0 : ξi = log(α/β)}, C ′ ,
C
∑t
i=1(p?i )

2 is finite, and the second inequality
follows because conditioned on E0 we know that
Jt0 < 0. Also, recall that on the event E1 ∩ E2 we have

that Jt ≥ − log3/4 t, and thus

dP1(·|E0)

dP̃1(·|E0)
1 [E1 ∩ E2] ≥ e−(1−λ?) log3/4 t−C′−δ(γ,ρ)‖P?t ‖

· e
−ρ
(

1
2−

α−β
(α+β) log α

β

)∑
i∈V p

?
i
1 [E1 ∩ E2] . (125)

We next show that with high probability |V| is at
most logarithmic in t and thus

∑
i∈V p

?
i is negligible

compared to other contributions in the exponent of

the r.h.s. of (125). Let Z ,
∑t
i=t0+1 1

[
ξi = log α

β

]
.

Then, we already saw that under P̃1 the random vari-
ables {ξ}i>t0 are statistically independent. Specifi-
cally, Z follows a Poisson-Binomial distribution with
success probabilities νi given in (118). Using Cher-
noff’s inequality, for a Poisson-Binomial random vari-
able Z with mean µ, and any s > µ, it can be shown
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that

P [Z ≥ s] ≤ exp

(
s− µ− s log

s

µ

)
. (126)

Accordingly, in our case it is clear that µ =∑t
i=t0+1 νi = C1(1 + o(1)) · log t, as t → ∞, for some

C1(α, β), due to the fact that νi ∝ qi = Θ(t−1). Tak-
ing s = `·µ, such that (`−1−` log `) ≤ − 2

C1
, we obtain

from (126) that P̃1 [Z ≥ s] ≤ t−2. Thus, with proba-
bility at least 1− O(t−2) we have that |V| ≤ C ′′ log t,
for some constant C ′′. This in turn implies that with
the same probability∑

i∈V
p?i ≤ C2(1 + o(1)) · log(log t) = o(log t). (127)

Therefore, combining (120), (125), and (127), we ob-
tain

P1 (E1 ∩ E2|E0) = Ẽ1

[
dP1(·|E0)

dP̃1(·|E0)
1 [E1 ∩ E2]

∣∣∣∣ E0] (128)

≥ Ẽ1

[
e−(1−λ?) log3/4 t−C′−δ(γ,ρ)‖P?t ‖

·e
−ρ
(

1
2−

α−β
(α+β) log α

β

)∑
i∈V p

?
i
1 [E1 ∩ E2]

∣∣∣∣∣ E0
]

≥
[
1−O(t−2)

]
e−o(log t)−δ(γ,ρ)‖P?t ‖P̃1(E1 ∩ E2|E0)

≥
[
1−O(t−2)

]
log α

β

log t
e−o(log t)−δ(γ,ρ)‖P?t ‖. (129)

Combining (27), (90), (95), (99), and (129), we obtain

E(P?,Q) = lim inf
t→∞

− logPe,t(P?,Q)

log t
(130)

≤ lim inf
t→∞

− logP1 (E1 ∩ E2|E0)

log t
(131)

≤ δ(γ, ρ) lim inf
t→∞

‖P?t ‖
log t

(132)

= δ(γ, ρ)[(1 + γ)κ(γ)], (133)

as claimed.

B.4 Upper Bound: ρ ≤ ρ0

For ρ ≤ ρ0 we use the fact that when the log-likelihood
ratio is above logα/β, it has a downward drift. This
implies that above logα/β, the walk cannot go beyond
a certain value. Recall (90). As before, in order to
obtain a lower bound on (90) we define an event that
implies that Rt < β/α. Now, when the log-likelihood
ratio Jt , logRt is above the line logα/β, using (25)–
(26), and (46), we may write

Js =

s∑
i=1

ξi, (134)

Figure 3: Illustration of a sample path of the random
walk constructed in the lower bound.

for s ≥ 0, where ξi’s are statistically independent ran-
dom variables, and

P1

(
ξi = log

β

α

)
=

β

α+ β
pi, (135)

and

P1

(
ξi = log

1− β
α+β qi

1− α
α+β qi

)
= 1− β

α+ β
pi. (136)

Note that

E1 [ξi] =
(γ − 1)ρ− log γ

1 + γ
pi + Θ(p2

i ). (137)

Thus, we see that for ρ ≤ ρ0, we have E1 [ξi] ≤ 0. We
next show that with high probability max1≤i≤t Ji < τ0,
namely, the maximal value that the log-likelihood ratio
can achieve is bounded by a certain constant τ0. Ac-
cordingly, using the same arguments as in the proof
of Theorem 2 this implies that only a finite num-
ber of timestamps are needed in order to drive log-
likelihood ratio bellow logα/β. Specifically, as in the
proof of Theorem 2 it is suffice to assume that the
last t? + 3 revealers are such that their private infor-
mation is Xi = 2. Indeed, if for example, at time
` = t− (t? + 3) the log-likelihood ratio J` attained its
maximal possible value τ0 (or eτ0 for R`). Then, after
t? timestamps, i.e., at time ` = t − 3, the likelihood

value is at most (β/α)
t?
eτ0 . Accordingly, if we set

t? = 1 ∨ ( τ0
logα/β − 1), then we get that the likelihood

value is (β/α)
t?
eτ0 ≤ α/β, namely, bellow α/β. Thus,

in the worst case, at time ` = t− 3, the likelihood ra-
tio value is in the interval [β/α, α/β]. In this interval,
the MAP estimator outputs the private signal, namely,
Zi = Xi = 2, and accordingly, the likelihood ratio is
multiplied by β/α. Therefore, the remaining 3 times-
tamps simply insure that at time t the likelihood ratio
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value is below β/α, as required. To wit, if the like-
lihood value at time t − 3 is α/β, then at time t it
value will be (β/α)2 < β/α. Thus, by the above ar-
guments, it is clear that we can lower bound the error
probability as follows

P
(
MAPQ(Zt1, Xt+1) 6= θ

)
≥ P1

(
Rt <

β

α

)
(138)

≥
(

β

α+ β

)3+t?

P1

[
max

1≤s≤t
Js ≤ τ0

]
. (139)

We next show that there exists a finite value of τ0 such
that the probability term at the r.h.s. of (139) is lower
bounded by 1/2. Thus, since t? is finite, we obtain

E(P?,Q) = lim inf
t→∞

− logPe,t(P?,Q)

log t
(140)

≤ lim inf
t→∞

−
log

[
1
2

(
β

α+β

)3+t?
]

log t
(141)

= 0, (142)

as claimed. It is only left to prove that the probability
term at the r.h.s. of (139) is lower bounded by 1/2.
To this end, for any λ ≥ 0, we have

E1

[
eλξi

]
=

β

α+ β
eλ log β

α pi

+ e
λ log

1− β
α+β

qi

1− α
α+β

qi

(
1− β

α+ β
pi

)
=

β

α+ β

[
1 +

(
eλ log β

α − 1
)]
pi

+

[
1 + λρ

α− β
α+ β

pi + Θ(p2
i )

](
1− β

α+ β
pi

)
= 1 +

[(
eλ log β

α − 1
) β

α+ β
+ λρ

α− β
α+ β

]
pi + Θ(p2

i )

= 1 +

[(
e−λ log γ − 1

) 1

γ + 1
+ λρ

γ − 1

γ + 1

]
pi + Θ(p2

i ).

(143)

Let us define the map,

ϕ : λ 7→
(
e−λ log γ − 1

) 1

γ + 1
+ λρ

γ − 1

γ + 1
. (144)

For λ� 1, we have ϕ(λ) = (ρ−ρ0)(γ−1)
γ+1 λ+O(λ2), and

since ρ − ρ0 ≤ 0, we may conclude that ϕ(·) has a
negative derivative at 0, hence its minimum, attained
at λ0 > 0, is strictly negative, namely, ϕ(λ0) < 0.
Accordingly, due to statistical independence we may
write,

E1

[
eλ0Js

]
= Cse

ϕ(λ0)‖P?s ‖, (145)

for a certain converging/bounded sequence {Cs}s≥1.
Next, define the random process

Ms ,
exp (λ0Js)

E1 [exp (λ0Js)]
, (146)

for s ≥ 1. It is clear that {Ms}s≥1 is a positive mar-
tingale. Thus, using Doob’s martingale maximal in-
equality, we have for τ > 0,

P1

[
max

1≤s≤t
Ms ≥ τ

]
≤ E1(Mt)

τ
=

1

τ
, (147)

which is equivalent to

P1

[
max

1≤s≤t

eλ0Js

Cseϕ(λ0)‖P?s ‖
≥ τ

]
≤ 1

τ
. (148)

In particular, using the fact that ϕ(λ0) < 0, it is clear
that the above implies that

P1

[
max

1≤s≤t
eλ0Js ≥ τ · max

1≤s≤t
Cs

]
≤ 1

τ
, (149)

or,

P1

[
max

1≤s≤t
Js ≥

log [τ ·max1≤s≤t Cs]

λ0

]
≤ 1

τ
. (150)

The above can be written also as follows

P1

[
max

1≤s≤t
Js ≥ τ

]
≤ e−λ0τ · max

1≤s≤t
Cs. (151)

Therefore, taking τ > τ0 , 2 log max1≤s≤t Cs
λ0

, we have
P1 [max1≤s≤t Js ≥ τ ] < 1/2, as claimed.

B.5 Upper Bound: ρ0 ≤ ρ ≤ 1

For this regime we use similar arguments as in the
previous subsection. The main difference here is that
the log-likelihood ratio random walk now has a positive
drift, and thus is unbounded. However, we claim that
this unbounded value is small compared to log t, and
thus, the number of timestamps t? needed to bring
the random walk bellow log β

α is small compared to
log t, and more importantly will not affect the learning
rate. Specifically, recall (139). Taking τ0 = log3/4 t,
we have,

P
(
MAPQ(Zt1, Xt+1) 6= θ

)
≥ P1

(
Rt <

β

α

)
(152)

≥
(

β

α+ β

)3+t?

P1

[
max

1≤s≤t
Js ≤ log3/4 t

]
, (153)

and since t? = Θ(τ0), we have

E(P?,Q) = lim inf
t→∞

− logPe,t(P?,Q)

log t
(154)

≤ lim inf
t→∞

−
logP1

[
max1≤s≤t Js ≤ log3/4 t

]
log t

.

(155)
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We next upper bound the r.h.s. of the above inequal-
ity. To this end, note that above logα/β, the log-
likelihood ratio process Js forms a random walk as in
(134)–(136), now with a positive drift since ρ ≥ ρ0.
We remove this drift by defining a new measure P̃1,
such that,

P̃1

(
ξi = log

β

α

)
= νi, (156)

P̃1

(
ξi = log

1− β
α+β qi

1− α
α+β qi

)
= 1− νi, (157)

where

νi ,
log

1− β
α+β qi

1− α
α+β qi

log

(
α
β

1− β
α+β qi

1− α
α+β qi

) . (158)

Now, under P̃1, the random walk {Js}s is a martingale,
and thus, using classical results on the tails of martin-
gales (see, e.g., [Freedman, 1975, Fan et al., 2015])

P̃1

(
max

1≤s≤t
Js ≤ log3/4 t

)
≥ 1− e−c

√
log t, (159)

for t large enough. Next, performing a change of mea-
sure we may write

P1

(
max

1≤s≤t
Js ≤ log3/4 t

)
= Ẽ1

[
dP1(·)
dP̃1(·)

1

[
max

1≤s≤t
Js ≤ log3/4 t

]]
, (160)

so we need to understand how the Radon-Nikodym
derivative of P1(·) w.r.t. P̃1(·) behaves. Note that

dP1(·)
dP̃1(·)

=

t∏
i=1

{
β

α+β p
?
i

νi
1

[
ξi = log

β

α

]

+
1− β

α+β p
?
i

1− νi
1

[
ξi = log

1− β
α+β qi

1− α
α+β qi

]}
. (161)

We claim that each factor in the product can be lower
bounded for some C = C(α, β) as follows

β
α+β p

?
i

νi
1

[
ξi = log

β

α

]
+

1− β
α+β p

?
i

1− νi
1

[
ξi = log

1− β
α+β qi

1− α
α+β qi

]
≥ eλ

?ξiK̃i(ξi),

(162)

where λ? = λ?1 is defined in (71), and

K̃i(ξi) , e−[δ(γ,ρ)− γ−1
γ+1 (1−ρ)]p?i−C(p?i )2

· 1

[
ξi = log

1− β
α+β qi

1− α
α+β qi

]

+ e
−ρ
(

1
2−

α−β
(α+β) log α

β

)
p?i−C(p?i )2

· 1
[
ξi = log

β

α

]
.

(163)

Indeed, this inequality can be checked for both poten-
tial values of ξ by expanding the expressions in p?i .
Then, multiplying (162) over all i ∈ {1, . . . , t}, we ob-
tain that

dP1(·)
dP̃1(·)

≥ eλ
?Jt−C

∑t
i=1(p?i )2

e−[δ(γ,ρ)− γ−1
γ+1 (1−ρ)]

∑
i∈Vc p

?
i

· e
−ρ
(

1
2−

α−β
(α+β) log α

β

)∑
i∈V p

?
i

≥ eλ
?Jt−C′e−[δ(γ,ρ)− γ−1

γ+1 (1−ρ)]‖P?t ‖

· e
−ρ
(

1
2−

α−β
(α+β) log α

β

)∑
i∈V p

?
i

≥ eλ
? log α

β−C
′
e−[δ(γ,ρ)− γ−1

γ+1 (1−ρ)]‖P?t ‖

· e
−ρ
(

1
2−

α−β
(α+β) log α

β

)∑
i∈V p

?
i
, (164)

where V , {i ≥ 1 : ξi = log(β/α)}, C ′ , C
∑t
i=1(p?i )

2

is finite. As in (126)–(127), with probability at least
1 − O(t−2), we have

∑
i∈V p

?
i = o(log t). Therefore,

combining this fact with (159), (160), and (164), we
obtain

P1

(
max

1≤s≤t
Js ≤ log3/4 t

)
= Ẽ1

[
dP1(·)
dP̃1(·)

1

[
max

1≤s≤t
Js ≤ log3/4 t

]]
≥ Ẽ1

[
eλ

? log α
β−C

′
e−[δ(γ,ρ)− γ−1

γ+1 (1−ρ)]‖P?t ‖

·e
−ρ
(

1
2−

α−β
(α+β) log α

β

)∑
i∈V p

?
i
1

[
max

1≤s≤t
Js ≤ log3/4 t

]]
≥ [1−O(t−2)]e−o(log t)−[δ(γ,ρ)− γ−1

γ+1 (1−ρ)]‖P?t ‖

· P̃1

[
max

1≤s≤t
Js ≤ log3/4 t

]
≥ [1−O(t−2)](1− e−c

√
log t)

· e−o(log t)−[δ(γ,ρ)− γ−1
γ+1 (1−ρ)]‖P?t ‖. (165)
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Finally, substituting (165) in (155), we finally obtain

E(P?,Q) = lim inf
t→∞

− logPe,t(P?,Q)

log t

≤ lim inf
t→∞

−
logP1

[
max1≤s≤t Js ≤ log3/4 t

]
log t

≤
[
δ(γ, ρ)− γ − 1

γ + 1
(1− ρ)

]
lim inf
t→∞

‖P?t ‖
log t

=

[
δ(γ, ρ)− γ − 1

γ + 1
(1− ρ)

]
(1 + γ)κ(γ),

(166)

as claimed.

C Additional Proofs

C.1 Proof of Theorem 4

Note that the first two individuals follow their private
signal, that is, Zi = Xi, for i = 1, 2. Therefore, if if
X1 = X2 = 2, then it is clear that R2 = (β/α)2, which
implies that the MAP estimator outputs 2 as its deci-
sion. Accordingly, it should be clear that if all future
irrational players draw 2 as their private information,
then the MAP estimator continues to output 2. The
above scenario gives a lower bound on the error proba-
bility. Specifically, let Revt denote the set of revealers
up to time t. It is clear that |Revt| follows a Poisson-
Binomial distribution with mean µ = ‖Pt‖ = o(log t).
Thus, for any c > 1, using (126) we get

P [|Revt| ≥ c ‖Pt‖] ≤ e−(c log c−c+1)‖Pt‖. (167)

Taking any c such that c log c − c + 1 > 0, it is clear
that the r.h.s. of (167) is less than half, and

P
(
MAPQ(Zt1, Xt+1) 6= θ

)
≥ P1(X1 = 2, X2 = 2, Xi = 2,∀i ∈ Revt)

≥ 1

2

(
β

α+ β

)2

P1

( ⋂
i∈Revt

{Xi = 2}

∣∣∣∣∣ |Revt| ≤ c ‖Pt‖
)

≥ 1

2

(
β

α+ β

)2+c‖Pt‖

. (168)

Thus,

E(P,Q) = lim inf
t→∞

− logP (MAPQ(Zt1, Xt+1) 6= θ)

log t

≤ [c log(1 + γ)] · lim inf
t→∞

‖Pt‖
log t

= 0, (169)

as claimed.

C.2 Proof of Theorem 5

Since the proof of Theorem 5 follows the steps of the
proof of Theorem 3 almost exactly, in this subsection

we highlight the few technical differences only. Start-
ing with the lower bounds, using the same steps as in
Subsection B.1, one obtains the same upper bounds on
the error probability as in (79) and (88), for 1 ≤ ρ ≤ ρ1

and ρ0 ≤ ρ ≤ 1, respectively. In particular, for
1 ≤ ρ ≤ ρ1 recall that

Pe,t(P,Q) ≤
[
C ′0e

(1−λ?1)C3−δ(γ,ρ)‖Pt‖ +
1

t2

]
· (1− pt)

+
β

α+ β
· pt. (170)

Therefore, we get

E(P,Q) = lim inf
t→∞

− logPe,t(P?,Q)

log t
(171)

≥ 1 ∧
[
δ(α/β, ρ) · lim inf

t→∞

‖Pt‖
log t

]
(172)

= 1 ∧ [Cp · δ(γ, ρ)] , (173)

as claimed. Similarly, using (88), we get that

E(P,Q) ≥ 1 ∧
[
Cp ·

(
δ(γ, ρ)− γ − 1

γ + 1
(1− ρ)

)]
,

(174)

for ρ0 ≤ ρ1, as stated in Theorem 5.

The upper bounds in Subsections B.2–B.5 remain the
same as well. In fact, the only differences are in Sub-
sections B.3 and B.5. Specifically, for 1 ≤ ρ ≤ ρ1 the
lower bound in (129) still holds true. Then, recall that

Pe,t(P,Q) = P
(
MAPQ(Zt−1

1 , Xt) 6= θ
)
· (1− pt)

+ P(Xt 6= θ) · pt

≥ P (E0 ∩ E1 ∩ E2) · (1− pt) +
β

α+ β
pt,

(175)

and thus combined with (129), we obtain

E(P,Q) = lim inf
t→∞

− logPe,t(P,Q)

log t
(176)

≤ 1 ∧ lim inf
t→∞

− logP1 (E1 ∩ E2|E0)

log t
(177)

≤ 1 ∧
[
δ(γ, ρ) · lim inf

t→∞

‖P?t ‖
log t

]
(178)

= 1 ∧ [Cp · δ(γ, ρ)] , (179)

as claimed. For ρ0 ≤ ρ ≤ 1 we have a similar situation.
Specifically, the lower bound in (165) still hold true
with P? replaced by P. Also, recalling (153) we have

Pe,t(P,Q) = P
(
MAPQ(Zt−1

1 , Xt) 6= θ
)
· (1− pt)

+ P(Xt 6= θ) · pt

≥
(

β

α+ β

)3+t?

P1

[
max

1≤s≤t
Js ≤ log3/4 t

]
· (1− pt) +

β

α+ β
pt. (180)
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Thus, combining (165) and (180), we obtain

E(P,Q) = lim inf
t→∞

− logPe,t(P,Q)

log t

≤ 1 ∧
[
Cp ·

(
δ(γ, ρ)− γ − 1

γ + 1
(1− ρ)

)]
,

as stated in Theorem 5.

C.3 Proof of Theorem 6

The proof of Theorem 6 follows from two facts. First,
recall that a trivial lower bound on the error prob-
ability is Pe,t(P,Q) ≥ β

α+β pt, which implies that

E(P,Q) ≤ − limt→∞ log pt/ log t. We next show that
if Q is such that ‖Qt‖ / ‖Pt‖ → ρ, and ρ0 < ρ < ρ1,
then the above also lower bounds the learning rate.
Indeed, as before, using the same steps as in Ap-
pendix B.1, we get the upper bounds in (79) and (88),
for 1 ≤ ρ ≤ ρ1 and ρ0 ≤ ρ ≤ 1, respectively. How-
ever, since in this case ‖Pt‖ = ω(log t) the terms in
the squared brackets at the r.h.s. of (79) and (88) are
negligible compared to the other β

α+β pt. This implies

that (79) and (88) are dominated by β
α+β pt and thus

E(P,Q) ≥ − limt→∞ log pt/ log t, as well. Finally, it
is left to show that E(P,Q) = 0 in the leftover cases,
which follows from the same arguments as in Appen-
dices B.2 and B.4, and therefore omitted.

C.4 Adversarial Model is Too Stringent

In this section we show that the error probability in
(1) associated with any estimator is lower bounded by
a constant, and accordingly, the total number of errors
in (3) is proportional to the number of players N.

To this end, consider the set of revealers ΠN =
[N − VN + 1 : N] in (3). This choice of ΠN corre-
sponds to the case where all revealers appear at the
end. Assume that VN = o(N), otherwise, TE(VN) is
trivially proportional to Θ(N). Then, since all first
N − VN players are rational, with a positive probabil-
ity a wrong cascade will occur. Indeed, this is just the
classical herding experiment, proposed and studied in
[Anderson and Holt, 1996, Anderson and Holt, 1997]
(see also [David and Jon, 2010, Ch. 16]). In fact, each
player t ∈ [N − VN] is wrong with probability at least
β2

(α+β)2 = (1 + γ)−2, which is the probability that the

decisions of the first two players are wrong (both draw
marbles of minority type). Therefore, the number of
errors in (3) satisfies

TE(VN) = inf
θ̂∈Θ̂

sup
ΠN⊂[N]: |ΠN|=VN

N∑
t=1

Pe,t(θ̂t,ΠN)

≥ N− VN

(1 + γ)2
,

namely, of order Θ(N−VN), which concludes the proof.

D Conclusion and Outlook

In this paper we have studied the effect of mismatch
between players on information cascade, contrary to
related works where full/partial mismatch was taken
for granted. For the mismatch model considered in
this paper we have identified when learning is possible
and when it is not. Consequently, we demonstrated
that the learning rate exhibits several surprising phase
transitions.

We hope our work has opened more doors than it
closes. There are many questions for future work:

1. It would be interesting to generalize our results to
the case where more than two states are possible,
each corresponding to multiple private signals.

2. In this paper we focus on . Studying the asymp-
totic learning rate and the total number of wrong
errors of information cascades over random graphs
(e.g., Erdős-Rényi random graph, stochastic block
models, etc.) is very interesting and of practical
importance.

3. Following our negative result on the worst-case
model, studying minimax learning rates in adver-
sarial models, by assuming a more structured ge-
ometry for the set of revealers in order to avoid
trivial rates is quite challenging and interesting.

4. It is important to check whether rational play-
ers that do not know P can do better then just
assuming some Q. In particular, devising a uni-
versal scheme that attains (or at least does not
lose too much) the optimal learning rate for P,
without knowing P, is an important question.
A reasonable approach would be using the same
qt = Θ(t−1), and adapt the leading constant in
some way.

5. As discussed in the introduction, it is well-
documented in social learning literature that a
fully rational model often places unreasonable
computational demands on Bayesian players (e.g.,
[Mossel and Tamuz, 2017]), hence understanding
the impact of simpler more efficient strategies is
desirable. This situation can be partially cap-
tured by our model, since a sub-optimal mis-
matched MAP, e.g., a majority rule, can be em-
ployed by the players intentionally to reduce com-
putational complexity. There are of course other
computationally efficient strategies that cannot be
covered by our mismatch MAP framework, but we
hope that the results and techniques developed in
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our paper will prove useful in the analysis of other
these strategies as well.


