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Abstract

We analyze a sequential decision making
model in which decision makers (or, players)
take their decisions based on their own pri-
vate information as well as the actions of pre-
vious decision makers. Such decision making
processes often lead to what is known as the
information cascade or herding phenomenon.
Specifically, a cascade develops when it seems
rational for some players to abandon their
own private information and imitate the ac-
tions of earlier players. The risk, however, is
that if the initial decisions were wrong, then
the whole cascade will be wrong. Nonethe-
less, information cascade are known to be
fragile: there exists a sequence of revealing
probabilities {p`}`≥1, such that if with prob-
ability p` player ` ignores the decisions of
previous players, and rely on his private in-
formation only, then wrong cascades can be
avoided. Previous related papers which study
the fragility of information cascades always
assume that the revealing probabilities are
known to all players perfectly, which might
be unrealistic in practice. Accordingly, in
this paper we study a mismatch model where
players believe that the revealing probabili-
ties are {q`}`∈N when they truly are {p`}`∈N,
and study the effect of this mismatch on in-
formation cascades. We consider both ad-
versarial and probabilistic sequential decision
making models, and derive closed-form ex-
pressions for the optimal learning rates at
which the error probability associated with
a certain decision maker goes to zero. We
prove several novel phase transitions in the
behaviour of the asymptotic learning rate.
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1 INTRODUCTION

There are myriad economic and social scenarios where
our decisions are influenced by the actions of others.
For example, voters are inclined to vote in favor of
what opinion polls predicts will win. Academic re-
searchers choose to work on topics that are of broad
and current interest. Fertility decisions, e.g., how
many children to have, are known to be influenced by
what other people in the same geographical location
are doing. Opinions we hold, products we buy, and
technologies we use, etc., are all potentially affected
by our surroundings. The above is a non-exhaustive
list of scenarios where our rational behaviour guides
us to follow the actions of others despite the fact
that these may contradict our own information. This
is exactly the situation where information cascades
[Banerjee, 1992, Bikhchandani et al., 1992] develop.

To illustrate the way information cascades evolve
we consider the following simple and classical
herding experiment, proposed and studied in
[Anderson and Holt, 1996, Anderson and Holt, 1997]
(see also [David and Jon, 2010, Ch. 16]). In this
experiment, we place an urn that contains three
marbles in front of a bunch of players. The urn
contains either one red marble and two blue marbles
(majority blue), or, two red marbles and one blue
marble (majority red). Players do not know whether
the urn is majority blue or red, while both urns are
equally likely to be chosen. In a successive manner,
each player randomly draws a single marble from
the urn, memorizes its color, and returns it to the
urn, while not showing it to the other players. Then,
each player in his turn publicly announce his guess
for the urn majority color. The players guesses are
based on both their own private draws as well as the
actions/announcements of previous players.

Next, we explain how the above experiment evolves. It
is clear that the first two players will announce their
private signals as their guesses. Indeed, the first player
gets to see his own draw only, and thus his best guess
for the urn majority color is the color he draw. The
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second player is aware of that, and thus, together with
his own draw he gets to see two independent draws
from the urn. Accordingly, if the colors agree, then
the player announces this color; otherwise, there is a
tie, and in such a case let us assume that the player
follows his own draw. Therefore, it is clear again that
the second player announces the color of the marble
he draw. Continuing, the third player now see three
independent draws from the urn and consequently his
best decision is the majority color among these draws.

The most important observation here is that the ra-
tional guess of any subsequent player may not reflect
its own private information. For example, if the first
two announced colors were blue, then the third player
guess is blue irrespectively of the color of the marble
he picked. Evidently, due to the fact that his guess
will not reveal any information about the urn to any
subsequent player, every subsequent player will guess
the urn to be majority blue. This is where an infor-
mation cascade developed: while no one is under the
impression that every player draw a blue marble, since
the first two guesses were blue, future rational guesses
must be blue as well. To wit, an information cascade
is a sequence of decisions where it is optimal for play-
ers to ignore their own private information and imitate
the decisions of players ahead of them. The problem
with information cascade is that they can be wrong !
Indeed, if for instance in the above example the urn is
majority red, then everyone wrongly announced blue
as their guesses. In fact, in the above experiment, it
can be shown that with probability 1/5, a wrong cas-
cade develops, in which case, most players will guess
the urn majority color wrongly.

The experiment above illustrates that information cas-
cades can be wrong because they rely on very little ac-
tual information–the actions of the first few players can
determine the actions of all future players. Nonethe-
less, this hints that information cascades can also be
fundamentally very fragile. Indeed, suppose that in
the above experiment two consecutive players ` and
` + 1 draw red marbles, and they cheat (or, act irra-
tionally) by announcing their marbles despite the fact
that a majority-blue cascade was already developed
(say, the first two players announced blue). Then, it
is clear that the wrong cascade can be broken: player
` + 2 sees four informative draws (two blues and two
reds), and he will announce his own private signal as
his guess. The conclusion is that infusion of new in-
formation can overturn/brake wrong information cas-
cades even after they have persisted for a long time.

Motivated by the above observation, we consider a
simple sequential decision making model in which
not all players are rational, but rather certain play-
ers act irrationally, by revealing their own private

signal and discarding the actions of previous play-
ers. More specifically, we focus on a recent model
proposed by [Peres et al., 2018], where it is assumed
that the `th player is irrational/revealer with some
probability p`, and is rational/Bayesian with com-
plementary probability. While players do not know
whether other players before them were rational or
not, it is assumed in [Peres et al., 2018] nonetheless
that players know the revealing probabilities {p`}`∈N.
As mentioned in [Peres et al., 2018], this model is
prompted by both empirical laboratory experiments
[Anderson and Holt, 1997, Huck and Oechssler, 2000,
Weizscker, 2010], as well as several theoretical reasons
[Bernardo and Welch, 2001]. One of the intriguing
questions here, is whether wrong information cascades
are broken in the above model? Or, stated differently,
do people eventually learn the correct action? As was
shown in [Peres et al., 2018], the answer to this ques-
tion is positive. Namely, it can be shown that there ex-
ists a sequence of revealing probabilities {p`}`∈N such
that learning occurs. In particular, the optimal policy
minimizing the probability of error is for the `th player
to reveal its private signal with probability p` = c/`,
which in turn implies a learning rate of c′/`, where
c and c′ are explicit constants. While these results
are neat, as mentioned in [Peres et al., 2018] they rely
heavily on the assumption that players are fully co-
ordinated, i.e., they know the revealing probabilities
exactly, which might be unrealistic in practice. This
sets precisely the main goal of our paper: we aim to
understand how this coordination affects information
cascades. To this end, we introduce a mismatch model
where players believe that the revealing probabilities
are {q`}`∈N when they truly are {p`}`∈N. We are in-
terested in understanding whether asymptotic learning
occur in this case? and if so, under what conditions
and at what learning rate? In particular, what is the
cost of this mismatch?

The above mismatch model might be relevant in many
real-world applications, such as, rumor spreading over
social networks, online movie rating, etc., where it is
well-documented that human behavior is sometimes
irrational (e.g., [Kahneman and Tversky, 1973]). Fur-
thermore, it is well-known in the social learning litera-
ture that a fully rational model often places unreason-
able computational demands on Bayesian players (e.g.,
[Mossel and Tamuz, 2017]), hence understanding the
impact of simpler more efficient strategies is desir-
able. As we explain in the paper, this situation can be
partially captured by our model, since our mismatch
framework allow for a family of sub-optimal strategies
parameterized by the mismatch sequence {q`}`∈N.

Main Contributions. The main contributions of
this paper are as follows. We start by formulat-
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ing a general adversarial/worst-case model where the
placement of irrational players is arbitrary, and not
being governed by any probabilistic/statistical rule.
We show that this kind of model is in fact too
stringent leading to trivial results. Combined with
[Peres et al., 2018], this fact motivates us to study
the more flexible probabilistic model described above.
For this model we characterize the asymptotic learn-
ing rate exactly, which turns out to exhibit several
novel interesting phase transitions. Specifically, we
first show that for either too “optimistic” or “pes-
simistic” assumptions, i.e., qt = o(pt) or qt = ω(pt),
asymptotic learning does not occur, namely, the error
probability is high, and the total number of wrong de-
cisions is significant. We then consider the case where
qt = Θ(pt), and show that asymptotic learning occurs,
but at a reduced rate which loosely speaking depends
on the ratio between the `1-norms of the matched and
mismatched revealing probabilities. This is true, as
long as the magnitude of this ratio is moderate laying
between two thresholds, otherwise, asymptotic learn-
ing does not occur!

Related work. Sequential decision making has
been studied in various areas including politics,
economics and computer science. In particu-
lar, the case where all players are Bayesian (i.e.,
p` = 0,∀`) was considered in [David and Jon, 2010,
Banerjee, 1992, Bikhchandani et al., 1992]. Notably,
[Bikhchandani et al., 1992] gives many interest-
ing real-world examples from diverse fields, where
information cascades develop and are fragile. Sim-
ilarly to [Peres et al., 2018], our paper provides
a more detailed theoretical study of the fragility
phenomenon. In practice, however, it is well
documented, that human behavior deviates from
rationality, and rather irrational decisions are made
often, see, e.g., [Kahneman and Tversky, 1973,
Huck and Oechssler, 2000] and [Weizscker, 2010].
Indeed, several laboratory experiments in
[Anderson and Holt, 1996] illustrate that many
individuals act irrationally, by ignoring the actions
of other individuals and relying mainly on their
own private information. Our model captures this
empirically observed behavioral phenomenon.

In [Bernardo and Welch, 2001], a model which com-
bines both rational and partially irrational (who put
more weight on their private signal) types of individ-
uals, as in our model, was studied. It is assumed,
however, that players know which of the previous
players were revealers. Using simulations it was sug-
gested that learning is achievable only when com-
pletely irrational individuals exist, and that their frac-
tion should vanish. These observations were rigorously
proved in [Peres et al., 2018], showing that the opti-

mal number of revealers is logarithmic in the size of
the group. Our results show that in many cases learn-
ing is possible even if there is a mismatch. Recently,
[Cheng et al., 2018] also considered a model with ir-
rational players, but assume that each agent knows
which agents were revealers. While they show that
asymptotic learning occurs, the optimal learning rate
was not characterized, which is another contribution
of our paper when there is a mismatch. Sequential
decision models with unbounded private signals (e.g.,
Gaussian) were studied in [Smith and Srensen, 1996,
Hann-Caruthers et al., 2017]. We also mention the
study of sequential decision making models over
social random graphs, e.g., [Acemoglu et al., 2011,
Anunrojwong and Sothanaphan, 2018]. Finally, we
mention another somewhat related literature which
studies the situation where agents take repeated de-
cisions (rather than just a single decision) based on
their own private information and the actions of oth-
ers, e.g., [Harel et al., 2018], and one is interested in
understanding whether all decision makers learn the
correct state eventually, and if so at what speed.

2 PROBLEM SETUP

In this section, we present our model and formulate
the problem of interest. To convey neatly the main
ideas of this paper, we focus on a simple setting of
the information cascade model. Nonetheless, several
generalizations listed at the end of this paper, can be
derived using the same techniques used in this paper.
Let θ ∈ {1, 2} denote the state of the world, chosen
uniformly at random. At times t = 1, 2, 3, . . ., players
one by one try to guess θ, relying on their own private
signals, as well as the global actions (guesses) of players
who played before them.

We next describe the way private signals are formed.
There is an urn that contains two types of mar-
bles: Type–I marbles are blue, and Type–II are red.
There are two hypotheses depending on the value of
θ. Specifically, given θ, there are α marbles of type θ
in the urn, and β marbles of the other type, where we
assume that α > β > 0. We conduct the following ex-
periment: each player draws a single marble from the
urn and replace it. The color he draw is his private sig-
nal. Thus, the private signals denoted by X1, X2, . . .
are i.i.d., and:

P1(Xt = 1) =
α

α+ β
; P1(Xt = 2) =

β

α+ β
,

P2(Xt = 1) =
β

α+ β
; P2(Xt = 2) =

α

α+ β
,

where Pi(·) , P(·|θ = i), and t ∈ N. It is clear that the
ratio α/β, rather than the actual values of α and β,
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is important. We denote this ratio by γ , α/β. Note
that an alternative equivalent description of the above
setting is that at each time t, the tth player private sig-
nal is Xt = θ with some probability, and Xt = 3 − θ,
with the complementary probability. With θ being
latent, the players goal is to guess the type of the mar-
bles in the urn correctly. We denote by Zt the guess
of the tth player. As mentioned in the introduction,
if all players act rationally by announcing their ma-
jority decision, then with positive probability (wrong)
information cascade will occur. Accordingly, to break
this wrong information cascade, we assume that each
player, can operate in either one of the following two
modes:

• A revealer/irrational player, whose guess is simply
its private signal, i.e., Zt = Xt.

• A Bayesian/rational player, whose guess is its best
estimate given his private signal, previous guesses
by other players, and any additional auxiliary in-
formation.

Given the two modes above, it is left to specify the
way players are “chosen” to be in either one of the
above modes, which is the last aspect of our model.
We start with a general adversarial/worst-case ma-
chinery, which turns out to be too stringent, and as a
consequence leads to trivial results. Nonetheless, this
model will motivate our second probabilistic setting,
which is the focus of this paper.

In the adversarial setting, we assume that out of a
total of N ∈ N players VN ∈ N are irrational, and are
chosen in an arbitrary manner. We let ΠN be the set of
these irrational players. Players do not know whether
previous players were rational or not, but they do have
the value of VN in advance. We define the probability
of incorrect decision of the tth player, assuming that
he is rational, as follows,

Padv,t(VN) , inf
θ̂t∈Θ̂

sup
ΠN⊂[N]: |ΠN|=VN

Pe,t(θ̂t,ΠN), (1)

and

Pe,t(θ̂t,ΠN) , P
[
θ̂t(Z

t−1
1 , Xt) 6= θ

∣∣∣RevN = ΠN

]
, (2)

where Zt−1
1 is a shorthand notation for the sequence

(Z1, Z2, . . . , Zt−1), RevN designates the set of reveal-
ers, the maximum is taken over all possible sets of re-
vealers of size VN, and the minimum is over the set of
all possible estimators Θ̂, which are the Boolean maps
{1, 2}t → {1, 2}. To wit, we look at the worst-case er-
ror probability over all possible choices of VN irrational
players out of N players. An alternative objective is to

minimize the expected total number of errors, that is,

TE(VN) , inf
θ̂∈Θ̂

sup
ΠN⊂[N]: |ΠN|=VN

N∑
t=1

Pe,t(θ̂t,ΠN). (3)

For both objectives, it is a-priori unclear what is the
optimal strategy θ̂t. One option, which is simple and
widely used in practice, is to assume that each rational
player guesses the value of θ using the majority deci-
sion, denoted by Maj(Zt−1

1 , Xt). A more complicated
approach is to minimize over the Boolean functions
used by the rational players, i.e., to solve a minimax
problem. We would like to find the asymptotic be-
haviour of Padv,t(VN) and TE(VN), as a function of VN

and t. In particular, it is interesting to understand
the structure of the worst-case choice of the set of
the irrational players ΠN. It turns out that the above
model/objective, however, is too stringent. Specifi-
cally, we show in Appendix C.4 that the error prob-
ability in (1) associated with any estimator is lower
bounded by a constant, and accordingly, the total
number of errors in (3) is proportional to the number
of players N. This implies that there are no guessing
strategies that are robust against an arbitrary adver-
sarial revealers assignment. Therefore, a more flexible
model is needed.

To this end, we consider the probabilistic setting
introduced in [Peres et al., 2018]. Here, we as-
sume that the tth player is irrational with proba-
bility pt, independently of the other players. Ac-
cordingly, this means that if player t is irrational,
then Zt = Xt, while if he is rational, then Zt =
θ̂t(Z1, . . . , Zt−1, Xt), where θ̂ is a certain estimator
for θ. The main important ingredient of our model
is that we assume that players are completely obliv-
ious to whether previous players were revealers or
not. To wit, contrary to previous related works
(e.g., [Bernardo and Welch, 2001, Cheng et al., 2018,
Peres et al., 2018]), we assume that revealers neither
know the exact positioning of revealers, nor the un-
derlying probabilistic law of their placements. Instead,
players assume that other players can be revealers with
probabilities Q ≡ {qt}∞t=1, which might be different
than the actual underlying probabilities P ≡ {pt}∞t=1.
In that case, we say that there is a mismatch. Thus,
estimators θ̂t might be in fact a function of Q as well.
The matched case case where P = Q was considered
in [Peres et al., 2018].

Whenever a player is rational we assume that he tries
to do his best in guessing θ under the knowledge of Q.
Namely, a rational player employs the (mismatched)
maximum a posteriori probability (MAP) estimator,
which is simply the MAP estimator, but with P re-
placed by Q. Specifically, for i ∈ {1, 2} and t ≥ 1,
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define the distributions:

W t
i (zt1) , Pi

(
Zt1 = zt1

)
, (4)

Ht
i (z

t−1
1 , xt) , Pi

(
Zt−1

1 = zt−1
1 , Xt = xt

)
, (5)

and the corresponding likelihood r.v.s by

Lti ,W t
i (Zt1), (6)

Dti , Ht
i (Z

t−1
1 , Xt), (7)

with L0
i = D0

i = 1, for i ∈ {1, 2}. Note that player
t can compute the likelihoods Dti, for i = 1, 2. The
likelihoods L0

i = D0
i = 1, for i ∈ {1, 2}, can be com-

puted by a “genie” who observes the decisions of the
first t players. The above probabilities and likelihoods
are certain quite complicated functions of P. We let
Ŵ t
i and Ĥt

i be the corresponding probabilities with P
replaced by Q. We also define L̂ti and D̂ti in the same

way, but with W t
i and Ht

i replaced by Ŵ t
i and Ĥt

i ,
respectively. With these definitions, the mismatched
MAP estimate, denoted by Zt = MAPQ(Zt−1

1 , Xt), is:

MAPQ(Zt−1
1 , Xt) ,


1, D̂t1 > D̂t2,

2, D̂t1 < D̂t2,

Xt, D̂t1 = D̂t2.

(8)

Thus, the mismatch aspect in our setup lies in the fact
that the tth player estimator function depends on Q,
and more importantly, independent of P. We mention
here that the above estimator in fact provides a family
of possible estimators indexed by Q. For instance,
Q ≡ 1 corresponds to majority decisions, for which
rational players guesses are simply the majority color
of their own private and previously announced signals.

Players try to guess the urn majority color. We define
the probability of incorrect guess by the tth player, as
follows,

Pe,t(P,Q) , P (Zt 6= θ) . (9)

Our goal is to understand the asymptotic learning rate
at which the above error probability decays to zero as
a function of t (i.e., learning occurs). To motivate and
define our objective precisely, we recall the following
recent result which deals with the matched case where
P = Q.

Theorem 1 [Peres et al., 2018, Theorem 1.1] Let

κ(γ) ,

[
1 +

γ − 1

log γ

(
log

γ − 1

log γ
− 1

)]−1

. (10)

Then,

inf
P

lim sup
t→∞

t · Pe,t(P,P) = κ(γ). (11)

Moreover, one can be arbitrarily close to the optimum
by taking,

p?t = (1 + ε) · (1 + γ)κ(γ)

t
∧ 1, (12)

for t ≥ 1 and arbitrary ε > 0.

Theorem 1 states that the optimal learning rate is
Θ(1/t), and furthermore provides the exact leading
constant in (10). To achieve this optimal learning rate,
the revealing probabilities should also decay as Θ(1/t).
The intuitive reasoning behind these findings can be
found in [Peres et al., 2018, Sec. 1.2]. With this result
in mind, in the mismatch case where Q 6= P, we focus
on the following scenario. We assume that P = P?,
where P? is defined in (12). In other words, the un-
derlying revealing probabilities sequence is the opti-
mal one, while players assume a (possibly) different
sequence of revealing probabilities Q. For simplicity
of demonstration, we opted to focus on this special
case since we found it to be the most natural one.
Nonetheless, our techniques apply also for the more
general case where P 6= P?, and at the end of the fol-
lowing section we cover with this case too. It is then in-
teresting to understand whether such a mismatch has
any effect whatsoever on the achieved learning rate.
In particular, does asymptotic learning always occur?
or, perhaps there is a sequence of revealing probabil-
ities Q for which learning is impossible. To answer
these questions, we aim to characterize the polynomial
learning rate, defined as follows,

E(P,Q) , lim inf
t→∞

− logPe,t(P,Q)

log t
. (13)

To lower bound E(P,Q) we upper bound the error
probability Pe,t(P,Q), which in turn can be used to
upper bound the expected total number of errors:

TEt , E

[
t∑
`=1

1 [Z` 6= θ]

]
. (14)

Accordingly, a positive polynomial decaying learning
rate implies that TEt = o(t), i.e., the number of er-
rors is negligible compared to the total number of
players participated thus far. It is clear that Theo-
rem 1 implies that E(P?,P?) = 1, and in fact that
0 ≤ E(P?,Q) ≤ 1, for any Q. We would like to un-
derstand when it is possible or impossible to obtain a
positive polynomial decaying learning rate, i.e., when
E(P?,Q) > 0. Note that an interesting question is to
characterize the specific constant in front of the poly-
nomial decaying term by evaluating limt→∞ tE(P,Q) ·
Pe,t(P,Q), which we leave as an open question for fu-
ture research. Finally, note that Theorem 1 gives a
simple lower bound on Pe,t(P?,Q) because of the triv-
ial inequality Pe,t(P?,Q) ≥ Pe,t(P?,P?). Indeed, for
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each player seeking to minimize the error probability,
its best action is to output the (matched) MAP deci-
sion. It is interesting to note that this observation also
follows from

Pe,t(P?,Q) ≥ β

α+ β
· p?t =

κ(γ)

t
, (15)

for t large enough, and the first inequality follows be-
cause β

α+β p
?
t is the error probability when player t acts

on its private information only (i.e., revealer), while
we ignore the error resulted when player t is rational.
This lower bound, however, is not tight as we show in
the following section. For the rest of this paper, we let
Pt , (p1, p2, . . . , pt), and ‖·‖ denotes the `1-norm.

3 MAIN RESULTS

In this section, we study the probabilistic setting de-
scribed in the previous section. According to Theo-
rem 1, to achieve the optimal learning rate the reveal-
ing probabilities should decay as Θ(t−1). Note that it
is clear that the revealing probabilities cannot decay
to zero too quickly. Indeed, if for example ‖P‖ < ∞,
then by the Borel-Cantelli lemma there will be only
a finite number of revealers almost surely, which is
equivalent to the situation where no revealers exist.
This in turn implies a non-vanishing error probability.
The situation is somewhat similar when the revealing
probabilities decay to zero too slowly. Intuitively, in
this case, it can be shown that the error probability
is dominated by the probability that the tth player
is a revealer and announce a wrong decision, namely,
β

α+β pt. Therefore, if for example pt = Θ(t−c), for some

c ∈ (0, 1), then E(P,P) = c < E(P?,P?).

The optimal scaling of the revealing probabilities
suggests that with high probability there should be
‖Pt‖ ∼ log t revealers, as t → ∞. Accordingly, in
terms of mismatch, it makes sense that “wise” play-
ers will assume that the revealing probabilities decay
at the same order, but perhaps with a different con-
stant in front, e.g., qt = ρ · pt, and ρ 6= 1. Nonethe-
less, as mentioned above, rather than modeling the
imperfect knowledge of players about the revealing
probabilities, our mismatched MAP can also model
the situation where players intentionally employ sub-
optimal strategies (e.g., in order to reduce computa-
tional complexity), such as when Q ≡ 1, which results
in majority decisions. While it is clear from the above
that in the matched case it is strictly worse to assume
that the revealing probabilities P decay to zero too
quickly/slowly, it is a-priori unclear if this is true for
Q as well. The following result shows that if the as-
sumed revealing probabilities Q are either too small or
too large, then asymptotic learning does not occur at

all! In particular, E(P?,Q) = 0. We have the following
result.

Theorem 2 (Too quick/slow) For any sequence of mis-
matched revealing probabilities Q such that,

lim inf
t→∞

‖Qt‖
log t

= 0 or lim sup
t→∞

‖Qt‖
log t

=∞, (16)

we have E(P?,Q) = 0.

Theorem 2 implies, for example, that if qt = o(t−1) or
qt = ω(t−1), then the error probability cannot decay
to zero polynomially fast. In fact, our proof gives a
general lower bound on the probability of error which
implies for instance that when ‖Q‖ < ∞, then the
probability of error is lower bounded by a constant.
Indeed, as will be seen in the proofs, to analyze the
error probability one needs to track the dynamics of

the likelihood ratio Rt ,
Lt1
Lt2

. In particular, Rt < β/α

(Rt > α/β) implies that the tth player MAP decision
is “2” (“1”). Accordingly, given that θ = 1, the main
observation in the proof of Theorem 2, is based on the
realization that when ‖Qt‖ = O(1), even in the worst-
case scenario where the majority of the decisions before
player t were θ̂i = 1, only a finite number of wrong
decisions (namely, θ̂i = 2) suffice to mislead player

t and output θ̂t = 2. This happens to be the case
because of the fact that the likelihood ratio depends on
Q only through ‖Q‖, and therefore, it cannot diverge.
The intuitive explanation for the obtained result when
‖Qt‖ � log t is given after Theorem 3.

We next consider the more interesting case where
qt = ρ · pt, for t ∈ N and ρ ∈ R+, or, more gener-
ally, ‖Qt‖ / ‖P?t ‖ → ρ, as t→∞. To present our main
result we establish first some notation. Let

ρ0 ,
log γ

γ − 1
, (17)

and ρ1 , γ · ρ0. Also, define

δ(γ, ρ) ,
γ log γ − ρ(γ − 1)

[
1 + log γ log γ

ρ(γ−1)

]
(1 + γ) log γ

. (18)

Theorem 3 (Multiplicative mismatch) For any se-
quence of mismatched revealing probabilities Q such
that,

lim sup
t→∞

‖Qt‖
‖P?t ‖

= ρ ∈ R+, (19)

we have:

• If ρ ≤ ρ0 or ρ ≥ ρ1,

E(P?,Q) = 0.
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Figure 1: The learning rate E(P?,Q) in Theorem 3 as
a function of ρ, for different values of γ. The maximal
learning rate is achieved at ρ = 1 for any γ, as ex-
pected. Also, as γ increases the range of ρ’s for which
the learning rate is positive increases.

• If ρ0 ≤ ρ ≤ 1,

E(P?,Q) = (1 + γ)

[
δ(γ, ρ)− γ − 1

γ + 1
(1− ρ)

]
κ(γ).

• If 1 ≤ ρ ≤ ρ1,

E(P?,Q) = (1 + γ)δ(γ, ρ)κ(γ).

It can be checked that E(P?,Q) is continuous in (ρ, γ).
Theorem 3 suggests a clear phase transition in the be-
haviour of the learning rate (see Fig. 1 for a numer-
ical illustration). To wit, even when players assume
that the revealing probabilities decay at the same or-
der of the optimal revealing assignments, albeit with a
different constant, there are regimes where the learn-
ing rate is zero (i.e., when ρ ≤ ρ0 and ρ ≥ ρ1). We
next give a heuristic explanation as to why the learn-
ing rate is zero in these regimes. We start with the
case where ρ ≥ ρ1. First, note that there are two
main sources for wrong action: 1) the tth player is ir-
rational, which happens with probability p?t , and his
draw is of minority color type, or, 2) the tth player is
rational, which happens with probability 1−p?t , but his
mismatched MAP estimate is wrong. Therefore, it is
clear that the error probability can be lower bounded
by Pe,t(P?,Q) ≥ (1− p?t ) · P1

(
MAPQ(Zt−1

1 , Xt) = 2
)
.

We show in the proof that the MAP error probabil-
ity can be further lower bounded by the probability
that the likelihood ratio Rt−1 , Lt−1

1 /Lt−1
2 , at time

t− 1, is less than β/α, namely, we have Pe,t(P?,Q) ≥
(1 − p?t ) · P1 (Rt−1 < β/α). To further lower bound
the probability term on the r.h.s. of the above in-
equality, we construct a particular trajectory that en-
sures that the likelihood ratio Rt−1 stays always be-
low the threshold β/α. The main observation is then

that when the likelihood ratio is bellow β/α, the corre-
sponding log-likelihood ratio process logRt as a func-
tion of t, performs a random walk with a downward
drift when ρ ≥ ρ1, and thus intuitively the proba-
bility that the likelihood ratio will stay bellow some
fixed value is high. Technically speaking, we show that
this random walk is a supermartingale, and by using
well-known tail probability bounds for such processes,
we show that P1 (Rt−1 < β/α) can not decay too fast.
Establishing this result, and proving a certain mono-
tonicity property of the error probability w.r.t. Q, we
show that E(P?,Q) = 0 when ‖Qt‖ � log t as well, as
claimed in Theorem 2. On other hand, when ρ < ρ1,
the previously mentioned random walk has an upward
drift, and thus, the probability that this walk stays
always bellow β/α is intuitively small, and in fact, de-
cays at the polynomial rate given in Theorem 3.

The reason for the learning rate being zero for ρ ≤ ρ0

is similar. Contrary to the case where ρ ≥ ρ1, in this
regime, it can be shown that bellow log(β/α) the log-
likelihood ratio process performs a random walk with
an upward drift, and thus the approach used before
for lower bounding the error probability is not going
to work. It turns out, however, that above log(α/β),
the log-likelihood ratio process has a downward drift.
Moreover, we can show that in this case the walk can-
not diverge, or, more precisely, go beyond a certain
finite value. Among other things, this implies that it
takes only a finite number of timestamps to drive the
log-likelihood ratio bellow log(β/α), which in turn en-
tails that the error probability is finite as well. Specif-
ically, to lower bound the error probability, we show
that it is suffice to look at all trajectories for which the
private signals of the last t? ∈ N revealers are opposite
to the majority (e.g., Xi = 2, for if θ = 1). Indeed, this
way we can assure that the likelihood ratio decreases
by a multiplicative factor of β/α. Accordingly, since
we argue that the maximal value that likelihood ratio
can attain is finite, it is clear that there exists a finite
value of t? which will drive Rt bellow β/α (note that t?

revealers decrease the likelihood by an exponential fac-
tor of (β/α)t

?

). Finally, when ρ0 ≤ ρ ≤ 1, the random
walk has now an upward drift, and thus, the proba-
bility that it will go bellow β/α is small, and in fact,
decaying at the polynomial rate given in Theorem 3.

The above results characterize E(P?,Q). As men-
tioned in the previous section, the same techniques
exactly can be used to derive the learning rate E(P,Q)
for any P, and we present our main findings bel-
low. Proof sketches can be found in Appendix C.
First, as was mentioned at the beginning of this sec-
tion whenever P is such that ‖P‖ < ∞, then Borel-
Cantelli lemma implies that there will be only a fi-
nite number of revealers almost surely, which is equiv-
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Figure 2: The learning rate E(P,Q) in Theorem 5 as
a function of ρ, for different values of Cp, and γ = 10.

alent to the situation where no revealers exist. This
in turn implies a non-vanishing trivial error probabil-
ity, and asymptotic learning does not occur. In fact,
if ‖Pt‖ = o(log t), then E(P,Q) = 0, as we show in
Appendix C.

Theorem 4 For any sequence of revealing probabili-
ties P such that ‖Pt‖ = o(log t), and any sequence
of mismatched revealing probabilities Q, it holds that
E(P,Q) = 0.

Next, we consider the case where ‖Pt‖ / log t→ Cp, as
t → ∞, which happens to be the case, for example,
when pt = Cp/t ∧ 1, for some Cp ∈ R+. Recall the
definitions of ρ0, ρ1, and δ(γ, ρ) in (17)–(18). We have
the following result.

Theorem 5 For any sequence of revealing probabilities
P such that ‖Pt‖ / log t→ Cp, for some Cp ∈ R+, and
mismatched revealing probabilities Q such that,

lim sup
t→∞

‖Qt‖
‖Pt‖

= ρ ∈ R+, (20)

we have:

• If ρ ≤ ρ0 or ρ ≥ ρ1, then E(P,Q) = 0.

• If ρ0 ≤ ρ ≤ 1,

E(P,Q) = 1 ∧
[
Cp ·

(
δ(γ, ρ)− γ − 1

γ + 1
(1− ρ)

)]
.

• If 1 ≤ ρ ≤ ρ1, then E(P,Q) = 1 ∧ [Cp · δ(γ, ρ)].

From Theorem 5 it can be seen that conceptually the
learning rate behaves similarly to the learning rate
when P = P?. In particular, the learning exhibits
the same phase transitions as in Theorem 3. Fig. 2

presents a numerical calculation of the rate in Theo-
rem 5, for several values of Cp. Note that for ρ = 1,
when Cp < (1+γ)κ(γ), we get that E(P,Q) < 1, while,
for any Cp ≥ (1 + γ)κ(γ), we get that E(P,Q) = 1.
This might seem counterintuitive because Theorem 1
claims that Cp = (1 +γ)κ(γ) is the optimal value min-
imizing the error probability, while the above suggests
that any value Cp ≥ (1 + γ)κ(γ) suffices. Note, how-
ever, that while indeed any value Cp ≥ (1 + γ)κ(γ)
gives a unit polynomial learning rate, the choice of
Cp = (1 + γ)κ(γ) minimizes the leading coefficient
in front of the decaying term, namely, lim supt→∞ t ·
Pe,t(P?,P?) < lim supt→∞ t · Pe,t(P,P), for any P
with Cp > (1+γ)κ(γ). This explains also why E(P,Q)
in Theorem 5 is increasing as a function of Cp. Specif-
ically, it is seen that when Cp > (1 + γ)κ(γ), there
are values of ρ for which E(P?, ρ · P?) < E(P, ρ · P).
Indeed, in case of mismatch, taking P? to be the un-
derlying revealing probabilities might be sub-optimal,
and choosing a different set of probabilities which com-
bat the mismatch results in a higher rate. Finally, we
consider the case where ‖Pt‖ = ω(log t), for which we
have the following result.

Theorem 6 Let P be such that ‖Pt‖ / log t → ∞. If
the mismatched revealing probabilities Q is such that,

lim sup
t→∞

‖Qt‖
‖Pt‖

= ρ ∈ R+, (21)

with ρ ≤ ρ0 or ρ ≥ ρ1, or

lim inf
t→∞

‖Qt‖
‖Pt‖

= 0 or lim sup
t→∞

‖Qt‖
‖Pt‖

=∞,

then E(P,Q) = 0. Otherwise, if ρ0 < ρ < ρ1, then

E(P,Q) = lim
t→∞

− log pt
log t

.

Theorem 6 states that if the number of revealers is
significantly bigger than log t, then the error probabil-
ity is dominated by the probability that the tth player
is a revealer and announce a wrong decision, namely,
β

α+β pt. Therefore, if for example pt = Θ(t−c), for

some c ∈ (0, 1), then E(P,Q) = c, as long as the mis-
match is not too “severe”, namely, ‖Qt‖ / ‖Pt‖ → ρ,
and ρ0 < ρ < ρ1. Otherwise, learning does not occur
and E(P,Q) = 0.

Finally, we mention here that in Appendix D we list
many interesting directions for future study of both
theoretical and practical significance.
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