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1 Proofs

Proof of Lemma 1. e(j,k)e(`,m) = (δk` − δn`)e(j,m).
Considering j ↔ `, k ↔ m, we are done.

Proof of Lemma 2. Using the rightmost expression in
(5) and using j, k, `,m 6= n to simplify the product of
the innermost two factors, we have that
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Taking j = ` and k = m establishes the result for
i ≤ 2. The general case follows by induction on i.

Proof of Theorem 1. Note that
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Furthermore, linear independence and the commuta-
tion relations are obvious, so it suffices to show that
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Proof of Lemma 3. By hypothesis and (5),

−
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(j,j) has nonpositive diagonal entries and

nonnegative off-diagonal entries (i.e., it is a generator
matrix for a continuous-time Markov process); the
result follows.

Proof of Lemma 4.
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where the second equality follows from (1) and the
third from bookkeeping.

Proof of Theorem 2. The Sherman-Morrison formula
(see Horn and Johnson (2013)) gives that
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1 + r(J )1
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)
and the elements of this matrix are precisely the co-
efficients in (13). Using the notation of Lemma 4, we
can therefore rewrite (13) as
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,

whereupon invoking the lemma itself yields(
A

(p;ω)
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)i+1

= ωiA
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(J ) for i ∈ N. The result

now follows similarly to Theorem 1.

Proof of Lemma 5. Writing A ≡ A
(p;ω)
(J ) here for clar-

ity, the result follows from three elementary observa-
tions: ∆(A) ≥ 0, max ∆ (A) > 0, and A−∆ (∆ (A)) ≤
0.
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