Supplement to: Fast Markov chain Monte Carlo algorithms via Lie groups

Steve Huntsman
BAE Systems FAST Labs

1 Proofs

Proof of Lemma 1. $e_{(j, k)} e_{(\ell, m)}=\left(\delta_{k \ell}-\delta_{n \ell}\right) e_{(j, m)}$. Considering $j \leftrightarrow \ell, k \leftrightarrow m$, we are done.

Proof of Lemma 2. Using the rightmost expression in (5) and using $j, k, \ell, m \neq n$ to simplify the product of the innermost two factors, we have that

$$
e_{(j, k)}^{(p)} e_{(\ell, m)}^{(p)}=\left(\delta_{k \ell}+r_{\ell}\right) e_{(j, m)}^{(p)} .
$$

Taking $j=\ell$ and $k=m$ establishes the result for $i \leq 2$. The general case follows by induction on i.

Proof of Theorem 1. Note that

$$
p e_{(j, k)}^{(p)}=\left(p_{j}-r_{j} p_{n}\right)\left(e_{k}^{T}-e_{n}^{T}\right) \equiv 0
$$

Furthermore, linear independence and the commutation relations are obvious, so it suffices to show that $\exp t e_{(j, k)}^{(p)} \in\langle p\rangle$ for all $t \in \mathbb{R}$. By Lemma 2,

$$
\begin{aligned}
& \exp t e_{(j, k)}^{(p)}=\quad I+e_{(j, k)}^{(p)} \sum_{i=1}^{\infty} \frac{t^{i}\left(\delta_{j k}+r_{j}\right)^{i-1}}{i!} \\
&= \\
& I+\frac{e^{t\left(\delta_{j k}+r_{j}\right)}-1}{\delta_{j k}+r_{j}} e_{(j, k)}^{(p)}
\end{aligned}
$$

Proof of Lemma 3. By hypothesis and (5), $-\sum_{j} t_{j} e_{(j, j)}^{(p)}$ has nonpositive diagonal entries and nonnegative off-diagonal entries (i.e., it is a generator matrix for a continuous-time Markov process); the result follows.

Proof of Lemma 4.

$$
\begin{aligned}
\alpha_{(\mathcal{J})}^{(p)} \beta_{(\mathcal{J})}^{(p)} & =\sum_{u, v, w, x} \alpha_{j_{u} j_{v}} \beta_{j_{w} j_{x}} e_{\left(j_{u}, j_{v}\right)}^{(p)} e_{\left(j_{w}, j_{x}\right)}^{(p)} \\
& =\sum_{u, v, w, x} \alpha_{j_{u} j_{v}}\left(\delta_{j_{v} j_{w}}+r_{j_{w}}\right) \beta_{j_{w} j_{x}} e_{\left(j_{u}, j_{x}\right)}^{(p)} \\
& =\sum_{u, x}\left(\alpha_{(\mathcal{J})}\left(I+1 r_{(\mathcal{J})}\right) \beta_{(\mathcal{J})}\right)_{u x} e_{\left(j_{u}, j_{x}\right)}^{(p)} .
\end{aligned}
$$

where the second equality follows from (1) and the third from bookkeeping.

Proof of Theorem 2. The Sherman-Morrison formula (see Horn and Johnson (2013)) gives that

$$
\omega\left(I+1 r_{(\mathcal{J})}\right)^{-1}=\omega\left(I-\frac{1}{1+r_{(\mathcal{J})} 1} 1 r_{(\mathcal{J})}\right)
$$

and the elements of this matrix are precisely the coefficients in (13). Using the notation of Lemma 4, we can therefore rewrite (13) as

$$
A_{(\mathcal{J})}^{(p ; \omega)}=\left(\omega\left(I+1 r_{(\mathcal{J})}\right)^{-1}\right)_{(\mathcal{J})}^{(p)},
$$

whereupon invoking the lemma itself yields $\left(A_{(\mathcal{J})}^{(p ; \omega)}\right)^{i+1}=\omega^{i} A_{(\mathcal{J})}^{(p ; \omega)}$ for $i \in \mathbb{N}$. The result now follows similarly to Theorem 1.

Proof of Lemma 5. Writing $A \equiv A_{(\mathcal{J})}^{(p ; \omega)}$ here for clarity, the result follows from three elementary observations: $\Delta(A) \geq 0, \max \Delta(A)>0$, and $A-\Delta(\Delta(A)) \leq$ 0 .

References

R. A. Horn and C. R. Johnson. Matrix Analysis, $2 n d$. ed. Cambridge, 2013.

