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Abstract

From basic considerations of the Lie group
that preserves a target probability measure,
we derive the Barker, Metropolis, and en-
semble Markov chain Monte Carlo (MCMC)
algorithms, as well as variants of waste-
recycling Metropolis-Hastings and an alto-
gether new MCMC algorithm. We illustrate
these constructions with explicit numerical
computations, and we empirically demon-
strate on a spin glass that the new algorithm
converges more quickly than its siblings.

1 Introduction

The basic problem that Markov chain Monte Carlo
(MCMC) algorithms solve is to estimate expected val-
ues using a Markov chain that has the desired prob-
ability measure as its invariant measure. Originally
developed to solve problems in computational physics,
MCMC algorithms have since become omnipresent in
statistical inference and machine learning. Indeed, it
is reasonable to suggest in line with Richey (2010) and
Brooks et al. (2011) that MCMC algorithms comprise
the most ubiquitous and important class of high-level
numerical algorithms discovered to date.

Consequently, the literature on MCMC algorithms is
vast. However, the mostly unexplored interface of
MCMC algorithms and the theory of Lie groups and
Lie algebras holds a surprise. As we shall see, the space
of transition matrices with a given invariant measure is
a monoid that is closely related to a Lie group. Search-
ing for elements of this monoid with closed form ex-
pressions naturally leads to the classical Barker and
Metropolis MCMC samplers. Generalizing this search
leads to higher-order versions of these samplers which
respectively correspond to the ensemble MCMC al-
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gorithm of Neal (2011) and an algorithm of Delmas
and Jourdain (2009). Further generalizing this search
leads to an algorithm which we call the higher-order
programming solver and whose convergence appears
to improve on the state of the art. For each of these
algorithms (only treated for finite state spaces), the
acceptance mechanism is specified, but the proposal
mechanism is not (though one can always extend any
proposal mechanism for single states to multiple states
by repeated sampling).

In this paper, we first review the basics of MCMC,
Lie theory, and related work in §2. Next, we intro-
duce the Lie group generated by a probability mea-
sure in §3. Here, Lemma 1 exhibits a convenient basis
of the stochastic Lie algebra. Lemma 2 and Theorem
1 next yield a convenient basis of the Lie subalgebra
that annihilates a target probability measure p. Crit-
ically, this basis only requires knowledge of p up to
a multiplicative factor. In §4, we consider a closely
related monoid, and Lemma 3 shows how we can ana-
lytically produce nonnegative transition matrices that
leave p invariant. We then exhibit the construction of
the Barker and Metropolis samplers from Lie-theoretic
considerations in §5. In §6, Lemma 4 extends Lemma
2, and Theorem 2 extends Theorem 1 in such a way as
to yield generalizations of the preceding samplers that
entertain multiple proposals at once. These higher-
order Barker and Metropolis samplers are explicitly
constructed in §7. We then demonstrate their behav-
ior on a simple example of a spin glass in §8. In §9,
Theorem 3 yields multiple-proposal transition matri-
ces that are closest in Frobenius norm to the “ideal”
transition matrix 1p: in this section we introduce and
demonstrate the resulting higher-order programming
solver. Finally, we close with remarks in §10. Proofs,
though brief, are relegated to supplementary material.

2 Background

2.1 Markov chain Monte Carlo

As mentioned in §1 and Brémaud (1999), the basic
problem of MCMC is to estimate expected values of
functions with respect to a probability measure p that
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is infeasible to construct. A common instance is where
pj ≡ Lj/Z, where it is easy to compute L but hard to
compute the normalizing constant Z due to the scale of
the problem. The approach of MCMC is to construct
an irreducible, ergodic Markov chain that has p as its
invariant measure without using global information.

If now Xt is the state of such a chain at time t, then
in the limit we have Xt ∼ p for any initial condition.
For f suitable, Epf(X) = limt→∞

1
t

∑t
j=1 f(Xj) even

though the Xj are correlated.

A MCMC algorithm typically depends on respective
proposal and acceptance probabilities qjk := P(X ′ =
k|Xt = j) and αjk := P(Xt+1 = k|X ′ = k,Xt = j),
which yield Pjk := P(Xt+1 = k|Xt = j) = qjkαjk for
the elements of the chain transition matrix.

The Hastings algorithm uses a symmetric matrix s to
accept a proposal with probability αjk =

sjk
1+tjk

, where

tjk :=
pjqjk
pkqkj

. This requires sjk ≤ 1 + min(tjk, tkj).

Taking sjk = 1 yields the Barker sampler; Peskun
(1973) shows that the optimal choice sjk = 1 +
min(tjk, tkj) yields the Metropolis-Hastings sampler.

2.2 Lie groups and Lie algebras

For general background on Lie groups and algebras,
we refer to Onishchik and Vinberg (1990) and Kirillov
(2008). Here, we briefly restate the basic concepts in
the real and finite-dimensional setting.

A Lie group is a group that is also a manifold, and
for which the group operations are smooth. The tan-
gent space of a Lie group G at the identity is a Lie
algebra that we denote by lie(G). Besides its vector
space structure, this Lie algebra inherits a version of
the Lie group structure through a bilinear antisym-
metric bracket [·, ·] that satisfies the Jacobi identity

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

In particular, Ado’s theorem implies that a real finite-
dimensional Lie group is isomorphic to a subgroup of
the group GL(n,R) of invertible n × n matrices over
R. Meanwhile, the corresponding Lie algebra is iso-
morphic to a Lie subalgebra of real n × n matrices,
for which the bracket is the usual matrix commutator:
[X,Y ] := XY − Y X. In the other direction, the usual
matrix exponential gives a map from a matrix Lie alge-
bra to the corresponding Lie group that respects both
the algebra and group structures.

2.3 Related work

Our higher-order Barker and Metropolis samplers re-
spectively correspond to constructions in Neal (2011)
and Delmas and Jourdain (2009). Besides ensemble

algorithms, Robert et al. (2018) details a large body
of work on accelerating MCMC algorithms by tech-
niques such as multiple try algorithms as in Liu et al.
(2000), Martino (2018), and Martino et al. (2018); or
by parallelization, as in Calderhead (2014).

Work by Niepert (2012a), Niepert (2012b), Bui et al.
(2013), Shariff et al. (2015), Van den Broeck and
Niepert (2015) and Anand et al. (2016) dealt with
accelerating MCMC algorithms by exploiting discrete
symmetries that preserve the (exact or approximate)
level sets of a target measure. In a related vein, “group
moves” for MCMC algorithms were considered by Liu
and Wu (1999) and Liu and Sabatti (2000). There is
also a long tradition of learning and exploiting symme-
tries in data representations for machine learning (see,
e.g. Lüdtke et al. (2018), and Anselmi et al. (2019)):
including for neural networks, for which see Cohen and
Welling (2016) and Cohen et al. (2018). However, to
our knowledge, the present paper is the first attempt
to consider continuous symmetries that preserve a tar-
get measure in the context of MCMC.

The study of Markov models on groups has been stud-
ied in considerable depth, as in Saloff-Coste (2001)
and Ceccherini-Silberstein et al. (2008). However, al-
though the idea of applying Lie theory to Markov mod-
els motivates work on the stochastic group, actual ap-
plications themselves are few and far between, with
Sumner et al. (2012) serving as an exemplar.

If we sacrifice analytical tractability and/or computa-
tional convenience, it is possible to consider generic
MCMC algorithms that optimize some criterion over
the relevant monoid. Optimal control considerations
lead to algorithms such as those of Suwa and Todo
(2010), Chen and Hwang (2013), Bierkens (2016), and
Takahashi and Ohzeki (2016) that optimize conver-
gence at the cost of reversibility/detailed balance. Al-
ternatively, Frigessi et al. (1992), Pollet et al. (2004),
Chen et al. (2012), Wu and Chu (2015), and Huang
et al. (2012) try to optimize the asymptotic variance.

3 The Lie group generated by a
measure

For 1 < n ∈ N, let p be a probability measure on [n] :=
{1, . . . , n}. Relying on context to resolve ambiguity,
write 1 = (1, . . . , 1)T ∈ Rn. Following Johnson (1985),
Poole (1995), Boukas et al. (2015), and Guerra and
Sarychev (2018), define the stochastic group

STO(n) := {P ∈ GL(n,R) : P1 = 1} (1)

as the stabilizer fixing 1 on the left in GL(n,R), and

〈p〉 := {P ∈ STO(n) : pP = p} (2)
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as the stabilizer fixing p on the right: we call 〈p〉 the
group generated by p. STO(n) and 〈p〉 are Lie groups
of respective dimension n(n− 1) and (n− 1)2.

If P ∈ STO(n) is irreducible and ergodic, then it has
a unique invariant measure that we write as 〈P 〉 :=
1T (P − I+11T )−1, so that pP = p iff 〈p〉 = 〈〈P 〉〉. We
have that 〈p〉 − I ⊂ lie(〈p〉) ⊂ lie(STO(n)).

For (j, k) ∈ [n]× [n− 1], define

e(j,k) := ej(e
T
k − eTn ), (3)

where {ej}j∈[n] is the standard basis of Rn.

Lemma 1. The matrices {e(j,k)}(j,k)∈[n]×[n−1] form a

basis of lie(STO(n)) and
[
e(j,k), e(`,m)

]
equals

(δk` − δn`)e(j,m) − (δmj − δnj)e(`,k). (4)

This basis has the obvious advantage of computation-
ally trivial decompositions.

For j, k ∈ [n− 1], define rj := pj/pn and

e
(p)
(j,k) := e(j,k) − rje(n,k) = (ej − rjen) (eTk − eTn ). (5)

Observe that if pj ≡ Lj/Z, then rj = Lj/Ln does not
depend on Z. This is why MCMC methods allow us
to avoid computing such normalization factors, which
in turn is why MCMC methods are useful.

For future reference, we define r := (r1, . . . , rn−1, 1)
and r− := (r1, . . . , rn−1).

Lemma 2. For i ∈ N,(
e
(p)
(j,k)

)i
=

{
I, i = 0;

(δjk + rj)
i−1

e
(p)
(j,k), i > 0.

(6)

Theorem 1. The e
(p)
(j,k) form a basis for lie(〈p〉) and[

e
(p)
(j,k), e

(p)
(`,m)

]
= (δk` + r`) e

(p)
(j,m) − (δmj + rj) e

(p)
(`,k).

(7)

For later convenience, we write

f
(p)
(j,k)(t) :=

e−t(δjk+rj) − 1

δjk + rj
.

4 The positive monoid of a measure

Most of the elements of STO(n) are not bona fide
stochastic matrices because they have negative entries;
meanwhile, stochastic matrices need not be invertible.
We therefore consider the monoids (i.e., semigroups
with identity; cf. Hilgert and Neeb (1993))

STO+(n) := {P ∈M(n,R) : P1 = 1 and P ≥ 0},
(8)

where P ≥ 0 is interpreted per entry, and

〈p〉+ := {P ∈ STO+(n) : pP = p}. (9)

Note that STO+(n) 6⊂ STO(n) and 〈p〉+ 6⊂ 〈p〉 ow-
ing to the noninvertible elements on the LHSs. Also,
STO+(n) and 〈p〉+ are bounded convex polytopes.

Lemma 3. If tj ≥ 0, then exp
(
−
∑
j tje

(p)
(j,j)

)
∈ 〈p〉+.

In particular, for t ≥ 0 we have that

exp
(
−te(p)(j,j)

)
= I + f

(p)
(j,j)(t) · e

(p)
(j,j) ∈ 〈p〉

+. (10)

Unfortunately, aside from (10), Lemma 3 does not give
a way to construct explicit elements of 〈p〉+ in closed
form, or even algorithmically. This situation is an ana-
logue of the quantum compilation problem (see Daw-
son and Nielsen (2006)), which is by no means trivial.

Indeed, even if the sum in the lemma’s statement has
only two terms, we are immediately confronted with
the formidable Zassenhaus formula (see Casas et al.

(2012)). While exp
(
−t(j,k)e

(p)
(j,k) − t(`,m)e

(p)
(`,m)

)
can be

evaluated in closed form with a computer algebra pack-
age, the results involve many pages of arithmetic for
the case corresponding to Lemma 3, and the other pos-
sibilities all yield some negative entries.

5 Barker and Metropolis samplers

Despite the weak foothold that Lemma 3 affords for
explicit analytical constructions, we can still use (10)
to produce a MCMC algorithm parametrized by t. We
use a simple trick of relabeling the current state as n
and then reversing the relabeling, so that the transi-

tion n → j becomes generic. For P = exp
(
−te(p)(j,j)

)
,

we have Pjj = 1 + f
(p)
(j,j)(t), Pjn = −f (p)(j,j)(t), Pnj =

−f (p)(j,j)(t)rj , and Pnn = 1 + f
(p)
(j,j)(t)rj . In particular,

Pjn
Pnj

=
1

rj
=
pn
pj
.

That is, detailed balance is automatic.

From the point of view of convergence, the optimal
value for t is the one that maximizes the off-diagonal
terms, i.e., t = ∞. Here we get Pjj =

rj
1+rj

, Pjn =
1

1+rj
, Pnj =

rj
1+rj

, and Pnn = 1
1+rj

. The correspond-

ing MCMC algorithm is a Barker sampler.

In light of (10), we can improve on the Barker sampler

almost trivially. We have that I − τe
(p)
(j,j) ∈ 〈p〉

+ iff

0 ≤ τ ≤ min(1, r−1j ). But(
I −min(1, r−1j ) · e(p)(j,j)

)
nj

= min(1, rj) (11)
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Algorithm 1 Metropolis

Input: Runtime T and oracle for r
Initialize t = 0 and X0

repeat
Relabel states so that Xt = n
Propose j ∈ [n− 1]
Accept Xt+1 = j with probability (11)
Undo relabeling; set t = t+ 1

until t = T
Output: {Xt}Tt=0 ∼ p×(T+1) (approximately)

is just the Metropolis acceptance ratio. That is, we
have derived the Barker and Metropolis samplers from
basic considerations of symmetry and (in the latter
case) optimality.

Note that the proposal mechanism that selects the
state j is unspecified and unconstrained by our con-
struction (i.e., J can be drawn from an arbitrary joint
distribution on the subset of [n−1]d without duplicate
entries). That is, our approach separates concerns be-
tween the proposal and acceptance mechanisms, and
only focuses on the latter. In later sections of this
paper, the proposal mechanism that selects a set of
states will similarly be unspecified and unconstrained.
However, in §8 we select the elements of proposal sets
uniformly at random without replacement for illustra-
tive purposes. That said, a good proposal mechanism
is of paramount importance for MCMC algorithms.

6 Some algebra

The Barker and Metropolis samplers can be regarded
as among the very “simplest” MCMC methods in the
sense that (10) is among the very sparsest possible
nontrivial matrices in 〈p〉+. This suggests the ques-
tion: what happens if we are willing to sacrifice some
sparsity? In other words, what if we consider possible
transitions to more than one state? It is natural to ex-
pect both better convergence and increased complex-
ity. The (utterly impractical and degenerate) limiting
case is the matrix 1p, and the practical starting case is
the Barker and Metropolis samplers. Meanwhile, it is
also natural to wonder how (or if) we can analytically
construct more general elements of 〈p〉+ than (10).

The following generalization of Lemma 2 is the first
step toward an answer to the preceding questions.
For J := {j1, . . . , jd} ⊆ [n − 1] and a matrix α ∈
Mn−1,n−1, define α(J ) ∈ Md,d by (α(J ))uv := αjujv ,

α
(p)
(J ) :=

∑d
u,v=1 αjujve

(p)
(ju,jv)

∈ lie(〈p〉), and r(J ) :=

(rj1 , . . . , rjd).

Lemma 4. Let J := {j1, . . . , jd} ⊆ [n− 1]. If γ
(p)
(J ) =

α
(p)
(J )β

(p)
(J ), then

γ(J ) = α(J )(I + 1r(J ))β(J ). (12)

We remark that introducing heavy notation for
Lemma 4 is worth it: the proof takes just three lines,
whereas the case d = 2 takes about a page of algebra
to check otherwise. Using Lemma 4, we can readily
construct an analytically convenient matrix in lie(〈p〉).
Theorem 2. Let J := {j1, . . . , jd} ⊆ [n − 1], ω ∈ R
and

A
(p;ω)
(J ) := ω

∑
u,v

(
δjujv −

1

1 + r(J )1
rjv

)
e
(p)
(ju,jv)

. (13)

Then

exp tA
(p;ω)
(J ) = I +

eωt − 1

ω
A

(p;ω)
(J ) . (14)

Moreover, exp
(
−tA(p;ω)

(J )

)
∈ 〈p〉+ ∩GL(n,R) if t ≥ 0.

In particular, the Barker matrix

B(p)(J ) := I − ω−1A(p;ω)
(J ) (15)

is in 〈p〉+, and does not depend on ω.

Let ∆ denote the map that takes a matrix to the vector
of its diagonal entries, and indicate the boundary of a
set using ∂.

Lemma 5. The Metropolis matrix

M(p)
(J ) := I − 1

max ∆
(
A

(p;ω)
(J )

)A(p;ω)
(J ) (16)

is in ∂〈p〉+ and does not depend on ω.

6.1 Example

As an example, consider p = (1, 2, 3, 4, 10)/20 and J =
{1, 2, 3}. Now (13) is given by

A
(p;ω)
(J ) =

ω

16

( 15 −2 −3 0 −10
−1 14 −3 0 −10
−1 −2 13 0 −10
0 0 0 0 0
−1 −2 −3 0 6

)
.

For ω = 1 and t = − log 2, (14) is given by

exp
(

log 2 ·A(p;1)
(J )

)
=

1

32

(
17 2 3 0 10
1 18 3 0 10
1 2 19 0 10
0 0 0 32 0
1 2 3 0 26

)
.

Finally, (15) and (16) are respectively given by

B(p)(J ) =
1

16

(
1 2 3 0 10
1 2 3 0 10
1 2 3 0 10
0 0 0 16 0
1 2 3 0 10

)
; M(p)

(J ) =
1

15

(
0 2 3 0 10
1 1 3 0 10
1 2 2 0 10
0 0 0 15 0
1 2 3 0 9

)
.



Steve Huntsman

Algorithm 2 HOMS

Input: Runtime T and oracle for r
Initialize t = 0 and X0

repeat
Relabel states so that Xt = n
Propose J = {j1, . . . , jd} ⊆ [n− 1]
Accept Xt+1 = ju with probability (19)
Undo relabeling; set t = t+ 1

until t = T
Output: {Xt}Tt=0 ∼ p×(T+1) (approximately)

7 Higher-order samplers

The idea now is to let n → j ∈ J correspond to a
generic transition as in §5. (Again, we do not specify
or constrain a proposal that produces J .) This yields
novel MCMC algorithms using (15) and (16) which we
respectively call higher-order Barker and Metropolis
samplers and abbreviate as HOBS and HOMS.

The corresponding matrix elements are readily ob-
tained with a bit of arithmetic: we have that

1

ω

(
A

(p;ω)
(J )

)
juju

= 1− rju
1 + r(J )1

;

1

ω

(
A

(p;ω)
(J )

)
nju

= − rju
1 + r(J )1

;

1

ω

(
A

(p;ω)
(J )

)
nn

=
r(J )1

1 + r(J )1
, (17)

which yields the HOBS:(
B(p)(J )

)
nju

=
rju

1 + r(J )1
;
(
B(p)(J )

)
nn

=
1

1 + r(J )1
.

(18)

Meanwhile,

1

ω
max ∆

(
A

(p;ω)
(J )

)
=

1 + r(J )1−min{1,min r(J )}
1 + r(J )1

which yields the HOMS:(
M(p)

(J )

)
nju

=
rju

1 + r(J )1−min{1,min r(J )}
;(

M(p)
(J )

)
nn

= 1−
r(J )1

1 + r(J )1−min{1,min r(J )}
.

(19)

The HOBS turns out to be equivalent to the ensem-
ble MCMC algorithm of Neal (2011) as described in
Martino (2018) and Martino et al. (2018). While in §8
the proposal mechanism we use for the HOBS essen-
tially (apart from non-replacement, which technically
induces jointness) amounts to the independent ensem-
ble MCMC sampler, in general this is not the case.

A more sophisticated proposal mechanism with joint
structure will be more powerful. That said, we reiter-
ate that our approach is agnostic with respect to the
details of proposals.

On the other hand, the HOMS is different than a
multiple-try Metropolis sampler (MTMS), including
the independent MTMS described in Martino (2018).
In the HOMS, we sample from J ∪ {n} to perform
a state transition in a single step according to (19),
whereas a MTMS first samples from J and then ac-
cepts or rejects the result. The HOMS (and for that
matter, also the HOBS) turns out to be a slightly spe-
cial case of a construction in §2.3 of Delmas and Jour-
dain (2009). This work uses a “proposition kernel”
that is defined by assigning a probability distribution
on the power set of the state space to each element
of the state space. Roughly speaking, the HOMS and
HOBS result if this distribution is independent of the
individual element (i.e., varying only with the subset).

8 Behavior

As d = |J | increases and/or p becomes less uniform
(e.g., in a low-temperature limit), the difference be-
tween the HOBS and HOMS decreases, since in ei-
ther limit we have min{1,min r(J )} � 1 + r(J )1. Al-
though these limits are where one might hope to gain
the most utility from improved MCMC algorithms, the
HOMS can still provide an advantage in, e.g. the high-
temperature part of a parallel tempering scheme (see
Earl and Deem (2005)) or for d > 1 but small, with
elements chosen in complementary ways (uniformly at
random, near current/previous states, etc.).

We exhibit the the behavior of the HOBS and HOMS
on a Sherrington-Kirkpatrick (SK) spin glass in Figure
1. As Bolthausen and Bovier (2007) and Panchenko
(2012) remark, the SK spin glass is the distribution

p(s) := Z−1 exp
(
− β√

N

∑
jk Jjksjsk

)
(20)

over spins s ∈ {±1}N , where J is a symmetric N ×N
matrix with IID standard Gaussian entries and β is
the inverse temperature.

The disordered landscape of the SK model suits a
straightforward evaluation of higher-order samplers:
more detailed benchmarks seem to require specific as-
sumptions (e.g., exploiting the particular form of a
spin Hamiltonian for Swendsen-Wang updates) and/or
parameters (e.g., the choice of additional temperatures
for parallel tempering or of a vorticity matrix for non-
reversible Metropolis-Hastings). In particular, we do
not consider sophisticated or diverse ways to generate
elements of proposal sets J : instead, we merely select
the elements of J uniformly at random without re-
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placement. We also use the same pseudorandom num-
ber generator initial state for the HOBS and HOMS
simulations in order to highlight their relative behav-
ior, and pick β low enough (1/4 and 1) so that the
behavior of a single run is sufficiently representative
to make qualitative judgments.

Figure 1: Total variation distance between the
HOBS/HOMS with proposal sets J (elements dis-
tributed uniformly without replacement) of varying
sizes d and (20) with 9 spins and β = 1/4. Inset: the
same data and window, with horizontal axis normal-
ized by d. Not shown: for β = 1, the HOMS visibly
outperforms the HOBS, but only for d = 1.

The inset figure shows that although higher-order sam-
plers converge more quickly, this requires more evalu-
ations of probability ratios. Parallelism is therefore
necessary to make higher-order samplers worthwhile.

As noted above, the HOMS gives results very close
to the HOBS except for small values of d or a more
uniform target distribution p. Increasing the number
of spins and/or considering an Edwards-Anderson spin
glass also gives qualitatively similar results.

9 A linear program

We can push these ideas further by using a linear pro-
gram to (implicitly) construct transition matrices with
the desired invariant measure and that are optimal
in some sense, though the regime of utility then nar-
rows to situations where computing likelihoods is hard
enough and parallel resources are sufficient to justify
the added computational costs. For example, the par-

ticular objective function −1TJ τ
(p)
(J )r

T
J considered im-

mediately after (25) yields an optimal sparse approx-
imation of the “ultimate” transition matrix 1p. (To

the best of our knowledge, this construction has not
been considered elsewhere.)

Toward this end, define 1J ∈ Rn by

(1J )j :=

{
1 if j ∈ J ∪ {n}
0 otherwise,

1−J := ((1J )1, . . . , (1J )n−1)T , rJ := r�1TJ , and r−J :=

r− � (1−J )T , where � is the entrywise or Hadamard

product (note that rJ ∈ Rn, while r(J ) ∈ R|J | has
been defined previously).

Writing ∆ for the matrix diagonal map, using the no-
tation of Lemma 4, and noting that

τ
(p)
(J ) =

(
In−1
−r−J

)
τ
(
In−1 −1−J

)
, (21)

we have that I − τ (p)(J ) ∈ 〈p〉
+ iff

0 ≤ In−1 −∆(1−J )τ∆(1−J ) ≤ 1; (22a)

0 ≤ τ1−J ≤ 1; (22b)

0 ≤ r−J τ ≤ 1; (22c)

0 ≤ r−J τ1−J ≤ 1. (22d)

Constraints (22b)-(22d) respectively force the first n−
1 entries of the last column, the first n − 1 entries of
the last row, and the bottom right matrix entry of

τ
(p)
(J ) to be in the unit interval; (22a) forces the relevant

entries of the “coefficient matrix” τ (as an upper left

submatrix of τ
(p)
(J )) to be in the unit interval.

Furthermore, it is convenient to set to zero the irrel-
evant/unspecified rows and columns of τ that do not

contribute to τ
(p)
(J ) via the constraints

∆(1− 1−J )τ = τ∆(1− 1−J ) = 0. (23)

If we impose (23), then (22a) can be replaced with

0 ≤ In−1 − τ ≤ 1. (24)

The “diagonal” case corresponding to Lemma 3 shows
that the constraints (22) and (23) jointly have nontriv-
ial solutions. It is therefore natural to consider suitable
objectives and the corresponding linear programs for

optimizing the MCMC transition matrix I− τ (p)(J ). To-

ward this end, we introduce the vectorization map vec
that sends a matrix to the vector obtained by stack-
ing the matrix columns in order, and which obeys the
useful identity vec(XY ZT ) = (Z ⊗ X)vec(Y ), where
⊗ denotes the tensor product.

A reasonably generic objective to maximize is

xT τ
(p)
(J )y = (yT ⊗ xT )vec

(
τ
(p)
(J )

)
(25)
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for suitable vectors x and y. In practice, we shall take
x = 1J and y = −rTJ , so that our objective maximizes

the Frobenius inner product of I − τ (p)(J ) and 1J rJ as

a consequence of the equality

tr

((
I − τ (p)(J )

)T
1J rJ

)
= rJ 1J − 1TJ τ

(p)
(J )r

T
J .

Alternatives such as x = en, y = en (which discourages
self-transitions) can result in convergence that slows
catastrophically as d = |J | increases, because high-
probability states are less likely to remain occupied.
More surprisingly, the same sort of slowing down oc-
curs for x = en, y = −rTJ and even for variations upon
the nth component of y: we suspect that the cause
is the same, though mediated indirectly through an
objective that “overfits” the proposed transition prob-
abilities to the detriment of remaining in place (or in
some cases “underfits” by yielding the identity ma-
trix). In general, it appears nontrivial to select better
choices for x and y than our defaults.

By (21) we get

vec
(
τ
(p)
(J )

)
=

[(
In−1
−(1−J )T

)
⊗
(
In−1
−r−J

)]
vec(τ), (26)

and in turn (yT ⊗ xT )vec
(
τ
(p)
(J )

)
equals[

yT
(

In−1
−(1−J )T

)
⊗ xT

(
In−1
−r−J

)]
vec(τ). (27)

At this point both the constraints and the objective of
the linear program are explicitly specified in terms of
the “coefficient” matrix τ . We can rephrase the con-
straints into a more computationally convenient form,
respectively rephrasing (22b)-(22d), (23), and (24) as

0 ≤


(
1−J
)T ⊗ In−1

In−1 ⊗ r−J(
1−J
)T ⊗ r−J

 vec(τ) ≤ 1, (28)

(
In−1 ⊗∆(1− 1−J )
∆(1− 1−J )⊗ In−1

)
vec(τ) = 0, (29)

vec(In−1)− 1 ≤ vec(τ) ≤ vec(In−1). (30)

Therefore, writing

U
(p)
(J ) :=

(
I2n−1
−I2n−1

)
(
1−J
)T ⊗ In−1

In−1 ⊗ r−J(
1−J
)T ⊗ r−J

 ;

v :=

(
12n−1
02n−1

)
;

w
(p)
(J ) := − yT

(
In−1
−(1−J )T

)
⊗ xT

(
In−1
−r−J

)
,

and

U
(0)
(J ) :=

(
In−1 ⊗∆(1− 1−J )
∆(1− 1−J )⊗ In−1

)
, (31)

we can at last write the desired linear program (not-

ing the inclusion of a minus sign in w
(p)
(J ) and a min-

imization versus a maximization as a result) in the
MATLAB-ready form

min
τ
w

(p)
(J )vec(τ) s.t.

U
(p)
(J )vec(τ) ≤ v; (32a)

U
(0)
(J )vec(τ) = 0; (32b)

vec(τ) ≥ vec(In−1)− 1; (32c)

vec(τ) ≤ vec(In−1). (32d)

As a result of the preceding discussion, we have

Theorem 3. For any x, y ∈ Rn, the linear program
(32) has a solution in 〈p〉+.

9.1 Example

As in §6.1, consider p = (1, 2, 3, 4, 10)/20 and J =
{1, 2, 3}. The solution of the linear program with x =
1J and y = −rTJ yields the following element of 〈p〉+:(

0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 1 0
0.1 0.2 0.3 0 0.4

)
.

For comparison, we recall that the last row of M(p)
(J )

equals (0.06̄, 0.13̄, 0.2, 0, 0.6).

9.2 The higher-order programming sampler

Call the sampler obtained from (25) and (32) with
x = −1J and y = rTJ the higher-order programming
sampler (HOPS). In figures 2 and 3, we compare the
HOMS and HOPS (cf. Figure 1). It is clear from
the figures that the HOPS improves upon the HOMS,
which in turn improves upon the HOBS.

10 Remarks

Aside from providing a framework that unifies several
different MCMC algorithms, our perspective has un-
covered the apparently new HOPS algorithm of §9,
which may enhance existing MCMC techniques specif-
ically tailored for parallel computation, as in Conrad
et al. (2018). In particular, the Bayesian approach to
inverse problems detailed in Dashti and Stuart (2015)
offers fertile ground for useful applications.

As we have already indicated, the present paper is ag-
nostic with respect to proposals, and focuses on ac-
ceptance mechanisms. However, the proposal arguably
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Algorithm 3 HOPS

Input: Runtime T and oracle for r
Initialize t = 0 and X0

repeat
Relabel states so that Xt = n
Propose J = {j1, . . . , jd} ⊆ [n− 1]
Compute τ solving (32) with x = 1J and y = −rTJ
Set P = I − τ (p)(J ) using (21)

Accept Xt+1 = ju with probability Pnju
Undo relabeling; set t = t+ 1

until t = T
Output: {Xt}Tt=0 ∼ p×(T+1) (approximately)

plays a more important role in practice than the accep-
tance mechanism, particularly for differentiable distri-
butions. In any practical application, a stateful and/or
problem-specific proposal mechanism with joint struc-
ture would likely confer significant additional power
to our approach, though we leave investigations along
these lines open for now (one possibility is suggested by
particle MTMS algorithms as in Martino (2014) and
exploiting tensor product structure in transition ma-
trices and 〈p〉). It is also tempting to try to incorporate
some limited proposal mechanism into the objective of
(32), but it is not clear how to usefully do this in gen-
eral. We used the SK spin glass to illustrate our ideas
precisely because its highly disordered structure (and
discrete state space) are suited for separating concerns
about proposals and acceptance.

Figure 2: Total variation distance between the
HOPS/HOMS with proposal sets J (elements sam-
pled uniformly without replacement) of varying sizes
d and (20) with 9 spins and β = 1/4. Inset: same data
and window, with horizontal axis normalized by d.

Figure 3: As in Figure 2 with β = 1.

It would obviously be interesting to extend the con-
siderations of this paper to continuous variables. How-
ever, this seems to require a much more technical treat-
ment, as infinite-dimensional Lie theory, distributions,
etc. would inevitably arise at least in principle. We
leave this for future work. In a complementary vein,
it would be interesting to see if the full construction
of Delmas and Jourdain (2009) can be recovered from
considerations of symmetry/Lie theory alone.

While Barker and Metropolis samplers are reversible,
it is not clear if the HOPS is, though Bierkens (2016)
points out ways to transform reversible kernels into
irreversible ones and vice versa.

We note that is possible to produce transiton matri-
ces (as it turns out, even in closed form) in which the
nth row is nonnegative but other rows have negative
entries. It is not immediately clear if using such a ma-
trix inevitably poisons a MCMC algorithm. Though
our experiments in this direction were not encourag-
ing, we have not found a compelling argument that
rules out the use of such matrices.

It is tempting to try to sample from the vertices of the
polytope 〈p〉+. However, (even approximately) uni-
formly sampling vertices of a polytope is NP-hard by
Theorem 1 of Khachiyan (2001); see also Khachiyan
et al. (2008).
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