
Supplementary Material to Paper
”Local Differential Privacy for Sampling”

Abstract

This is the Supplementary Material to Paper ”Local Differential Privacy for Sampling”.
Notation “main file” indicates reference to the submitted draft.

Appendix: table of contents
Proofs and formal results Pg 2
Proof of Lemma 2 Pg 2
Proof of Theorem 4 Pg 2
Proof of Theorem 5 Pg 3
Proof of Theorem 6 Pg 6
Proof of Theorem 7 Pg 7
Additional formal results Pg 9

Additional experiments Pg 12

Additional related work Pg 12

1



1 Proofs and formal results

1.1 Proof of Lemma 2
For any x ∈ X and P, P ′ ∈ D(X), we have Pr[A(P ) = x] ∈ M and Pr[A(P ′) = x] ∈ M by the
fact that A(P ) samples from densities that lie in the mollifier M. By definition of ε-mollifiers, the
density ratio between any two densities in the ε-mollifiers is bounded by exp(ε), meaning we have

Pr[A(P ) = x]

Pr[A(P ′) = x]
≤ exp(ε), (1)

and thus A is an ε-private sampler.

1.2 Proof of Theorem 4
The proof follows from two Lemma which we state and prove.

Lemma 1 For any T ∈ N∗, we have that

T∑
t=1

θt(ε) =
T∑
t=1

(
ε

ε+ 4 log(2)

)t
<

ε

4 log(2)
. (2)

Proof Since (ε/(ε+ 4 log(2)) < 1 for any ε and noting that θt(ε) = (ε/(ε+ 4 log(2))θt−1(ε), we
can conclude that θt(ε) is a geometric sequence. For any geometric series with ratio r, we have
that

T∑
t=1

rt = r

(
1− rT

1− r

)
(3)

=
r

1− r
− rT+1

1− r
(4)

<
r

1− r
(5)

Indeed, r
1−r is the limit of the geometric series above when T → ∞. In our case, we let r =

(ε/(ε+ 4 log(2))) to show that

r

1− r
=

ε
ε+4 log(2)

1− ε
ε+4 log(2)

=

ε
ε+4 log(2)

4 log(2)
ε+4 log(2)

=
ε

4 log(2)
, (6)

which concludes the proof.

Lemma 2 For any ε > 0 and T ∈ N∗, let θ(ε) = (θ1(ε), . . . , θT (ε)) denote the parameters and
c = (c1, . . . , ct) denote the sufficient statistics returned by Algorithm 1, then we have

−ε
2
≤ 〈θ(ε), c〉 − ϕ(θ(ε)) ≤ ε

2
. (7)
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Proof Since the algorithm returns classifiers such that ct(x) ∈ [− log 2, log 2] for all 1 ≤ t ≤ T ,
we have from Lemma 1,

T∑
t=1

θt(ε)ct ≤ log(2)
T∑
t=1

θt(ε) < log(2)
ε

4 log(2)
=
ε

4
, (8)

and similarly,

T∑
t=1

θt(ε)ct ≥ − log(2)
T∑
t=1

θt(ε) > − log(2)
ε

4 log(2)
= −ε

4
. (9)

Thus we have

−ε
4
≤ 〈θ(ε), c〉 ≤ ε

4
. (10)

By taking exponential, integrand (w.r.t Q0) and logarithm of 10, we get

log

∫
X

exp
(
−ε

4

)
dQ0 ≤ log

∫
X

exp (〈θ(ε), c〉) dQ0 ≤ log

∫
X

exp
(ε

4

)
dQ0 (11)

−ε
4
≤ ϕ(θ(ε)) ≤ ε

4
(12)

Since 〈θ(ε), c〉 ∈ [−ε/4, ε/4] and ϕ(θ(ε)) ∈ [−ε/4, ε/4], the proof concludes by considering high-
est and lowest values.

The proof of Theorem 4 now follows from taking the exp of all quantities in (7), which makes
appear QT in the middle and conditions for membership to Mε in the bounds.

1.3 Proof of Theorem 5
We begin by first deriving the KL drop expression. At each iteration, we learn a classifier ct, fix
some step size θ > 0 and multiply Qt−1 by exp(θ · ct) and renormalize to get a new distribution
which we will denote by Qt(θ) to make the dependence of θ explicit.

Lemma 3 For any θ > 0, let ϕ(θ) = log
∫
X

exp(θ · ct)dQt−1. The drop in KL is

DROP(θ) := KL(P,Qt−1)− KL(P,Qt(θ)) = θ ·
∫
X

ctdP − ϕ(θ) (13)

Proof Note that Qt(θ) is indeed a one dimensional exponential family with natural parameter θ,
sufficient statistic ct, log-partition function ϕ(θ) and base measure Qt−1. We can write out the KL
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divergence as

KL(P,Qt−1)− KL(P,Qt(θ)) =

∫
X

log

(
P

Qt−1

)
dP −

∫
X

log

(
P

exp(θ · ct − ϕ(θ))Qt−1

)
dP

(14)

=

∫
X

log

(
exp(θ · ct − ϕ(θ))Qt−1

Qt−1

)
dP (15)

=

∫
X

θ · ct − ϕ(θ)dP (16)

= θ ·
∫
X

ctdP − ϕ(θ) (17)

It is not hard to see that the drop is indeed a concave function of θ, suggesting that there exists an
optimal step size at each iteration. We split our analysis by considering two cases and begin when
γtQ < 1/3. Since θ > 0, we can lowerbound the first term of the KL drop using WLA. The trickier
part however, is bounding ϕ(θ) which we make use of Hoeffding’s lemma.

Lemma 4 (Hoeffding’s Lemma) Let X be a random variable with distribution Q, with a ≤ X ≤
b such that EQ[X] = 0, then for all λ > 0, we have

EQ[exp(λ ·X)] ≤ exp

(
λ2(b− a)2

8

)
(18)

Lemma 5 For any classifier ct satisfying Assumption 3 (WLA), we have

EQt−1 [exp(θt(ε) · ct)] ≤ exp

(
θ2
t (ε) ·

(c∗t )
2

2
− θt(ε) · γtQ · c∗t

)
(19)

Proof Let X = ct − ·EQt−1 [ct], b = c∗t , a = −c∗t and λ = θt(ε) and noticing that

EQt−1 [λ ·X] = EQt−1 [ct − EQt−1 [ct]] = EQt−1 [ct]− EQt−1 [ct] = 0, (20)

allows us to apply Lemma 4. By first realizing that

exp(λ ·X) = exp(θt(ε) · ct) · exp(θt(ε) · EQt−1 [−ct]), (21)

We get that

EQt−1 [exp(θt(ε) · ct)] · exp
(
θt(ε) · EQt−1 [−ct]

)
≤ exp

(
θ2
t (ε) ·

(c∗t )
2

2

)
. (22)

Re-arranging and using the WLA inequality yields

EQt−1 [exp(θt(ε) · ct)] ≤ exp

(
θ2
t (ε) ·

(c∗t )
2

2
− θt(ε) · EQt−1 [−ct]

)
(23)

≤ exp

(
θ2
t (ε) ·

(c∗t )
2

2
− θt(ε) · γtQ · c∗t

)
(24)
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Applying Lemma 5 and Lemma 3 (writing Qt = Qt(ε) ) together gives us

KL(P,Qt) = KL(P,Qt−1)− DROP(θt(ε)) (25)

= KL(P,Qt−1)− θt(ε) ·
∫
X

ctdP + logEQt−1 [exp(θt(ε) · ct)] (26)

≤ KL(P,Qt−1)− c∗t · θt(ε) ·
(

1

c∗t

∫
X

ctdP

)
+

(
θ2
t (ε) ·

(c∗t )
2

2
− θt(ε) · γtQ · c∗t

)
(27)

≤ KL(P,Qt−1)− c∗t θt(ε)
(
γtP + γtQ −

c∗t · θt(ε)
2

)
(28)

Now we move to the case of γtQ ≥ 1/3.

Lemma 6 For any classifier ct returned by Algorithm 1, we have that

EQt−1 [exp(ct)] ≤ exp
(
−Γ(γtQ)

)
(29)

where Γ(z) = log(4/(5− 3z)).

Proof Consider the straight line between (− log 2, 1/2) and (log 2, 2) given by y = 5/4 + (3/(4 ·
log 2))x, which by convexity is greater then y = exp(x) on the interval [− log 2, log 2]. To this
end, we define the function

f(x) =

{
5
4

+ 3
4·log 2

· x, if x ∈ [− log 2, log 2]

0, otherwise
(30)

Since ct(x) ∈ [− log 2, log 2] for all x ∈ X, we have that f(ct(x)) ≥ exp(ct(x)) for all x ∈ X.
Taking EQt−1 [·] over both sides and using linearity of expectation gives

EQt−1 [exp(ct(x))] ≤ EQt−1 [f(ct(x))] (31)

=
5

4
+

3

4 log 2

(
EQt−1 [ct(x)]

)
(32)

=
5

4
− 3

4

(
1

log 2
EQt−1 [−ct(x)]

)
(33)

<
5

4
− 3

4
γtQ (34)

= exp

(
− log

(
5− 3γtQ

4

)−1
)

(35)

= exp

(
− log

(
4

5− 3γtQ

))
(36)

= exp
(
−Γ(γtQ)

)
, (37)

as claimed.
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Now we use Lemma 3 and Jensen’s inequality since θt(ε) < 1 so that

KL(P,Qt) = KL(P,Qt−1)− DROP(θ) (38)

= KL(P,Qt−1)− θt(ε) ·
∫
X

ctdP + logEQt−1 [exp(θt · ct)] (39)

≤ KL(P,Qt−1)− θt(ε) · EP [ct] + θt · logEQt−1 [exp(ct)] (40)

≤ KL(P,Qt−1)− θt(ε)
(
EP [ct]− logEQt−1 [exp(ct)]

)
(41)

= KL(P,Qt−1)− θt(ε)
(
c∗t

(
1

c∗t
EP [ct]

)
− logEQt−1 [exp(ct)]

)
(42)

< KL(P,Qt−1)− θt(ε)
(
c∗tγ

t
P − log

(
exp

(
−Γ(γtQ)

)))
(43)

= KL(P,Qt−1)− θt(ε)
(
c∗tγ

t
P + Γ(γtQ)

)
. (44)

1.4 Proof of Theorem 6
We first note that for any Q ∈Mε,

KL(P,Q) =

∫
X

log

(
P

Q

)
dP (45)

=

∫
X

log

(
P

Q0

Q0

Q

)
dP (46)

=

∫
X

log

(
P

Q0

)
dP −

∫
X

log

(
Q0

Q

)
dP (47)

≥ KL(P,Q0)−
∫
X

ε

2
dP (48)

≥ KL(P,Q0)− ε

2
, (49)
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which completes the proof of the upperbound To show (13), we have that

KL(P,Qt) ≤ KL(P,QT−1)− θt(ε) · Λt (50)

≤ KL(P,Q0)−
T−1∑
t=1

θt(ε) · Λt (51)

= KL(P,Q0)−
T−1∑
t=1

θt(ε) ·
(
c∗tγ

t
P + Γ(γtQ)

)
(52)

≤ KL(P,Q0)−
T−1∑
t=1

θt(ε) · (log 2 · γP + Γ(γQ)) (53)

≤ KL(P,Q0)− (log 2 · γP + log 2 · γQ) ·
T−1∑
t=1

θt(ε) (54)

≤ KL(P,Q0)− (log 2 · γP + log 2 · γQ) ·
T−1∑
t=1

θt(ε) (55)

= KL(P,Q0)− log 2 · (γP + γQ) · θ1(ε) ·
(

1− θt(ε)
1− θ1(ε)

)
(56)

= KL(P,Q0)− ε ·
(
γP + γQ

4

)
· (1− θt(ε)) , (57)

where we used the fact that Γ(x) ≥ log 2 · x and explicit geometric summation expression.

1.5 Proof of Theorems 7
We start by a general Lemma.

Lemma 7 For any region of the support B, we have that∫
B

dQt ≥
∫
B

dP −
∫
B

log

(
P

Qt

)
dP (58)

Proof By first noting that for any region B,∫
B

(dP − dQt) =

∫
B

(
1− dQt

dP

)
dP (59)

we then use the inequality 1− x ≤ log(1/x) to get∫
B

(dP − dQt) =

∫
B

(
1− dP

dQt

)
dP ≤

∫
B

log

(
dP

dQt

)
dP =

∫
B

log

(
P

Qt

)
dP (60)

Re-arranging the above inequality gives us the bound.

Lemma 7 allows us to understand the relationship between two distributions P and Qt in terms
regions they capture. The general goal is to show that for a given region B (which includes the
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highly dense mode regions), the amount of mass captured by the model
∫
B
dQt, is lower bounded

by the target mass
∫
B
dP , and some small quantity. The inequality in Lemma 7 comments on this

precisely with the small difference being a term that looks familiar to the KL-divergence - rather
one that is bound to the specific region B. Though, this term can be understood to be small since
by Theorem 5, we know that the global KL decreases, we give further refinements to show the
importance of privacy parameters ε. We show that the term

∫
B

log(P/Qt)dP can be decomposed
in different ways, leading to our two Theorems to prove.

Lemma 8 ∫
B

log

(
P

Qt

)
dP ≤

∫
B

log

(
P

Q0

)
dP −∆ +

ε

2

(
1−

∫
B

dP

)
. (61)

where ∆ = KL(P,Q0)−KL(P,Qt)

Proof We decompose the space X into B and the complement Bc to get∫
B

log

(
P

Qt

)
dP =

∫
X

log

(
P

Qt

)
dP −

∫
Bc

log

(
P

Qt

)
dP (62)

= KL(P,Qt)−
∫
Bc

log

(
P

Qt

)
dP (63)

≤ KL(P,Q0)−∆−
∫
Bc

log

(
P

Qt

)
dP, (64)

where we used Theorem 5, and letting θ = θ(ε) for brevity, we also have∫
Bc

log

(
P

Qt

)
dP =

∫
Bc

log

(
P

Q0 exp (〈θ, c〉 − ϕ(θ))

)
dP (65)

=

∫
Bc

log

(
P

Q0

)
dP −

∫
Bc

exp (〈θ, c〉 − ϕ(θ)) dP (66)

≥
∫
Bc

log

(
P

Q0

)
dP −

∫
Bc

ε

2
dP (67)

=

∫
Bc

log

(
P

Q0

)
dP − ε

2

(
1−

∫
B

dP

)
(68)

Combining these inequalities together gives us:∫
B

log

(
P

Qt

)
dP ≤ KL(P,Q0)−∆−

(∫
Bc

log

(
P

Q0

)
dP − ε

2

(
1−

∫
B

dP

))
(69)

=

∫
X

log

(
P

Q0

)
dP −

∫
Bc

log

(
P

Q0

)
dP −∆ +

ε

2

(
1−

∫
B

dP

)
(70)

=

∫
B

log

(
P

Q0

)
dP −∆ +

ε

2

(
1−

∫
B

dP

)
(71)
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We are now in a position to prove Theorem 7. Using Lemma 8 into the inequality in Lemma 7
yields ∫

B

dQt ≥
∫
B

dP −
(∫

B

log

(
P

Q0

)
dP −∆ +

ε

2

(
1−

∫
B

dP

))
(72)

=
(

1 +
ε

2

)∫
B

dP − ε

2
−
∫
B

log

(
P

Q0

)
+ ∆. (73)

Reorganising and using the Theorem’s notations, we get

M(B,Q) ≥ M(B,P )−KL(P,Q0;B) +
ε

2
· J(P,Q;B, ε), (74)

where we recall that J(P,Q;B, ε)
.

= M(B,P ) + 2∆(Q)
ε
− 1. Theorem 6 says that we have in the

high boosting regime 2∆(QT )/ε ≥ (γP + γQ)/2− θT (ε) · (γP + γQ)/2. Letting γ .
= (γP + γQ)/2

and K .
= 4 log 2, we have from MBDE in the high boosting regime:

2∆(Q)

ε
≥ γ ·

1−

(
1

1 + K
ε

)T


≥ γ ·

(
1− 1

1 + TK
ε

)
= γ · TK

TK + ε
. (75)

To have J(P,Q;B, ε) ≥ −(2/ε) · αM(B,P ), it is thus sufficient that

M(B,P ) ≥ 1

1 + 2α
ε

·
(

1− γ · TK

TK + ε

)
= ε · ε+ (1− γ)TK

(ε+ 2α)(ε+ TK)
. (76)

In this case, we check that we have from (74)

M(B,Q) ≥ (1− α)M(B,P )−KL(P,Q0;B), (77)

as claimed.

1.6 Additional formal results
One might ask what such a strong model of privacy allows to keep from the accuracy standpoint in
general. Perhaps paradoxically at first sight, it is not hard to show that privacy can bring approx-
imation guarantees on learning: if we learn Qε within an ε-mollifier M (hence, we get ε-privacy
for sampling from Qε), then each time some Qε in M accurately fits P , we are guaranteed that the
one we learn also accurately fits P — albeit eventually more moderately —. We let Qε(; .) denote
the density learned, where . is the dataset argument.
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Lemma 9 Suppose ∃ ε-mollifier M s.t. Qε ∈ M, then (∃P,D′, δ : KL(P,Qε(;P
′)) ≤ δ) ⇒

(∀D,KL(P,Qε(;P )) ≤ δ + ε).

Proof The proof is straightforward; we give it for completeness: for any dataset D, we have

KL(P,Qε(;P )) =

∫
X

log

(
P

Qε(;P )

)
dP (78)

=

∫
X

log

(
P

Qε(;P ′)

)
dP +

∫
X

log

(
Qε(;P )

Qε(;P ′)

)
dP (79)

≤
∫
X

log

(
P

Qε(;P ′)

)
dP + ε ·

∫
X

dP (80)

= KL(P,Qε(;P
′)) + ε (81)

≤ δ + ε, (82)

from which we derive the statement of Lemma 9 assuming A is ε-IP (the inequalities follow from
the Lemma’s assumption).

In the jargon of (computational) information geometry Boissonnat et al. (2010), we can summarize
Lemma 9 as saying that if there exists an eligible1 density in a small KL-ball relatively to P , we
are guaranteed to find a density also in a small KL-ball relatively to P . This result is obviously
good when the premises hold true, but it does not tell the full story when they do not. In fact, when
there exists an eligible density outside a big KL-ball relatively to P , it is not hard to show using
the same arguments as for the Lemma that we cannot find a good one, and this is not a feature of
MBDE: this would hold regardless of the algorithm. This limitation is intrinsic to the likelihood
ratio constraint of differential privacy, as the following Lemma shows. In the context of ε-DP, we
assume that all input datasets have the same size, say m.

Lemma 10 Let A denote an algorithm learning an ε-differentially private density. DenoteD ∼ P
an input of the algorithm and Qε(D) the set of all densities that can be the output of A on input
D, taking in considerations all internal randomisations of A. Suppose there exists an input D′

for which one of these densities is far from the target: ∃D′,∃Q ∈ Qε(D
′) : KL(P,Q(;D′)) ≥ ∆

for some ”big” ∆ > 0. Then the output Q of A obtained from any input D ∼ P satisfies:
KL(P,Q(;D)) ≥ ∆−mε.

Proof Denote D the actual input of A. There exists a sequence D of datasets of the same size,
whose length is at most m, which transforms D into D′ by repeatedly changing one observation
in the current dataset: call it D = {D,D1, D2, ..., Dk, D

′}, with k ≤ m − 1. Denote Q(;D′′) any

1Within the chosen ε-mollifier.
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element of Qε(D′′) for D′′ ∈ D. Since A is ε-differentially private, we have:

∆ ≤ KL(P,Q(;D′)) (83)

=

∫
X

log

(
P

Q(;D′)

)
dP (84)

=

∫
X

log

(
P

Q(;D)

)
dP +

∫
X

log

(
Q(;D)

Q(;D1)

)
dP +

k−1∑
j=1

∫
X

log

(
Q(;Dj)

Q(;Dj+1)

)
dP +

∫
X

log

(
Q(;Dk)

Q(;D′)

)
dP

(85)

= KL(P,Q(;D)) +

∫
X

log

(
Q(;D)

Q(;D1)

)
dP +

k−1∑
j=1

∫
X

log

(
Q(;Dj)

Q(;Dj+1)

)
dP +

∫
X

log

(
Q(;Dk)

Q(;D′)

)
dP

(86)

≤ KL(P,Q(;D)) +mε, (87)

from which we derive the statement of Lemma 10.
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Figure 1: NLL metrics (mean and standard deviation) on the 1D random Gaussian problem for
DPB (left pane) and MBDE (right pane), for a varying number ofm = 1, . . . , 10 random Gaussians.
The lower the better on each metric. Remark the different scales for StDev (see text).
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Figure 2: Randomly placed Gaussian convergence comparison for DPB (upper) against
MBDE (lower).

2 Additional experiments
We provide here additional results to the main file. Figure 1 provides NLL values for the random
1D Gaussian problem. Figure 2 displays that picking Q0 a standard Gaussian does not prevent to
obtain good results — and beat DPB — when sampling random Gaussians.

3 Additional related work
A convenient way to fit a private Q is to approximate it in a specific function space, being Sobolev
(Duchi et al., 2013a; Hall et al., 2013; Wasserman and Zhou, 2010), Bernstein polynomials (Aldà
and Rubinstein, 2017), Chebyshev polynomials (Thaler et al., 2012), and then compute the coef-
ficients in a differentially private way. This approach suffers several drawbacks. First, the sensi-
tivity s depends on the quality of the approximation: increasing it can blow-up sensitivity in an
exponential way (Aldà and Rubinstein, 2017; Rubinstein and Aldà, 2017), which translates to a
significantly larger amount of noise. Second, one always pays the price of the underlying func-
tion space’s assumptions, even if limited to smoothness (Duchi et al., 2013a,b; Hall et al., 2013;
Wainwright, 2014; Wasserman and Zhou, 2010), continuity or boundedness (Aldà and Rubinstein,
2017; Duchi et al., 2013a,b; Thaler et al., 2012). We note that we have framed the general approach
to private density estimation in ε-DP, while the state of the art we consider typically use the relaxed
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(ε, δ)-DP.
Finally, the quality of the approximation of Q with respect to P is much less investigated. The

state of the art investigates criteria of the form J(P,Q)
.

= EI(P,Q) where the expectation involves
all relevant randomizations, including sampling of S, mechanism M , etc. (Duchi et al., 2013a,b;
Wainwright, 2014; Wasserman and Zhou, 2010); minimax rates J∗ .

= infQ supP J(P,Q) are also
known (Duchi et al., 2013a,b; Wainwright, 2014). Pointwise approximation bounds are available
(Aldà and Rubinstein, 2017) but require substantial assumptions on the target density or sensitivity
to remain tractable.
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