
Constantinos Daskalakis, Andrew Ilyas, Manolis Zampetakis

A Projection to the Feasible Set

As noted in the Section 3, projecting some value of θ to Rα amounts to ensuring that θ>x is in some interval [r, s]
for some r, s ∈ R. The values of r and s can be analytically computed on the type of noise and the truncation
interval [a, b]. To show that we can efficiently project to Rα, however, we demonstrate that we can efficiently
project a given θ0 to any set of the form {θ | maxx∈X x

>θ ≤ C}.

Note that this projection is equivalent to solving the following convex program for a given θ0:

min
θ
‖θ − θ0‖2

θ>x < C ∀ x ∈ X .

Note that this program does have infinite constraints, but it is straightforward to craft an efficient separation
oracle for the set defined by these constraints, simply by maximizing θ>x constrained to X . We can thus exploit
the ellipsoid algorithm [Gup15] in order to efficiently solve the projection step.

Handling approximation. The above methodology provides an efficient routine for projecting parameter
estimates θ into Rα provided it is possible to perform exact arithmetic on real numbers, and solve maxx∈X θ

>x
exactly. In reality, we solve the above programs approximately using, e.g., the central-cut ellipsoid algorithm
(c.f. [GLS80] Section 3.2 and references therein), which only requires a lower bound on the volume of the constraint
set (which in fact follows straightforwardly from the bound B = maxx∈X ‖x‖ and the Cauchy-Schwarz inequality).
In the end, we end up with an approximate projection algorithm which does not discernably change the overall
runtime of SGD or SNGD.

B Omitted Proofs for Probit Regression

B.1 Second derivative for Truncated Probit Regression

Here we give a derivation of ∇2
θ`(θ; y) which is used to show the strong concavity of the log-likelihood.

`(θ; y) = y · log

(∫ b

0

N
(
z; θ>x

)
dz

)
+ (1− y) · log

(∫ 0

a

N
(
z; θ>x

)
dz

)
− log

(∫ b

a

N
(
z; θ>x

)
dz

)
. (16)

In the following, we make use of the change of variables µ = θ>x. Then, we make note of the following identity:

d

dµ
log

[∫
z∈S
N (z;µ) dz

]
=

∫
z∈S(µ− z) · N (z;µ) dz∫

z∈S N (z;µ) dz

Applying this yields the gradient:

∇θ`(θ;x, y) =
d`(θ;x, y)

dµ
· x

=

[
y ·
∫ b
0

(µ− z) · N (z;µ) dz∫ b
0
N (z;µ) dz

+ (1− y) ·
∫ 0

a
(µ− z) · N (z;µ) dz∫ 0

a
N (z;µ) dz

−
∫ b
a

(µ− z) · N (z;µ) dz∫ b
a
N (z;µ) dz

]
· x

=

[
−y ·

∫ b
0
z · N (z;µ) dz∫ b
0
N (z;µ) dz

− (1− y) ·
∫ 0

a
z · N (z;µ) dz∫ 0

a
N (z;µ) dz

+

∫ b
a
z · N (z;µ) dz∫ b
a
N (z;µ) dz

]
· x

To get the second derivative, we make use of the following:

d

dµ

∫
z∈S z · N (z;µ) dz∫
z∈S N (z;µ) dz

=

(∫
z∈S −z

2 · N (z;µ)dz
)(∫

z∈S N (z;µ)dz
)2 +

(∫
z∈S z · N (z;µ)dz

)2(∫
z∈S N (z;µ)dz

)2
= −Var

z
z∈S∼N (·;µ)

[z]

A Theoretical and Practical Framework for Regression and Classification from Truncated Samples

An application of the above identity yields

∇2
θ`(θ;x, y) =

[
y ·Var

z
z∈[0,b]∼N (·;µ)

[z] + (1− y) ·Var
z
z∈[a,0]∼N (·;µ)

[z]−Var
z
z∈[a,b]∼N (·;µ)

[z]

]
· xx>,

which is precisely (11).

B.2 Proofs of Lemmata

Lemma 1. Let θ0 be the probability density function of the normal distribution with zero mean and unit variance,
truncated to a half-open interval (r,∞). Now, we define the function V (s) to be the variance of the left-truncated
distribution when also right-truncated at s > r, that is, V (s) = Varx∼N (0,1)[x|r ≤ x ≤ s]. Then, for any
b1, b2, γ ∈ R such that s > b2 > b1 > r and Px∼N (0,1)([b1, b2]) > γ > 0, we have that

V (b2)− V (b1) > poly(γ, b2 − b1).

Proof. For i ∈ {1, 2, 3}, we define θi recursively as:

θi(x) =

∫ x

−∞
θi−1(z) dz =

∫ x

a

θi−1(z) dz. (17)

For convenience, we write θ′i(x) to denote the derivative of θi with respect to its argument at x, so that
θ′i(x) = θi−1(x).

Now, we define the function V (b) to be the variance of the left-truncated distribution when also right-truncated
at b > a. Via integration by parts one finds that [Bur96]:

V (b2)− V (b1) = 2 ·
∫ b2

b1

θ0(z)

θ1(z)3
·
(
θ′23 (z)− θ′′3 (z) · θ3(z)

)
dz. (18)

Our goal is to show that for b2 > b1, (18) is lower bounded. First, note that the quantity is clearly non-negative.
In particular, by a direct application of the Prekopa-Leindler inequality [Pré73] we find that θi log-concave
=⇒ θi+1 log-concave. Since θ0 is log-concave2 on [b1, b2], so is θ3(·), making (18) non-negative.

To show that (18) is lower bounded, we lower bound the integrand on a subset of the interval [b1, b2]. We show
this inductively—for a given i, suppose that θi(·) is c-strongly log-concave (c > 0) on an interval [αi, βi] ⊂ [b1, b2].
Concretely, this means that for any x, t ∈ [αi, βi] with x > t,

θ′i(x)

θi(x)
≤ θ′i(t)

θi(t)
− c · (x− t) (19)

Note that (19) holds without the c(x−t) term on all of [b1, b2] due to ordinary log-concavity. To prove (19) we need
to start with an [α0, β0] such that θ0 is lower bounded by ρ on [α0, β0], β0 − α0 ≥ τ and Px∼N (0,1)([α0, β0]) > γ′.

To find such an interval we start from the property Px∼N (0,1)([b1, b2]) > γ. It is clear that the interval with the
smallest values of θ0 and total mass γ is the interval [r,∞) for some r such that

∫∞
r
θ0(x)dx = γ. If r ≤ 2, i.e.

then we can set α0 = 2, β0 = 10 and we have that ρ = O(1), τ = O(1) and γ′ = O(1), so we can assume that r > 2.
In this case we know from standard bounds of the error function that exp(−r2) ≤

∫∞
r
θ0(x)dx ≤ exp(−r2/2)

and hence we know that r ≤
√

2 ln(1/γ). We can then set α0 =
√

2 ln(1/γ) and β0 = 4
√

ln(1/γ) and using the
bounds on the error function for r > 2 we get ρ ≥ poly(γ), τ ≥ poly(γ) and γ′ ≥ poly(γ).

Before we continue we also define B to be an upper bound on θ2 which we will bound precisely later. Now, for

2This is clear since θ0 is just a scaled version of the Gaussian PDF, which is strongly log-concave

Constantinos Daskalakis, Andrew Ilyas, Manolis Zampetakis

any x ∈ [αi, βi]:

θ′i(x)

θi(x)
θi+1(x) =

θ′i(x)

θi(x)

(∫ α

−∞
θi(t)dt+

∫ x

α

θi(t)dt

)
(20)

≤
∫ α

−∞

θ′i(t)

θi(t)
θi(t)dt+

∫ x

α

(
θ′i(t)

θi(t)
− c · (t− x)

)
θi(t) dt (21)

≤ θi(x)− c ·
∫ x

α

(t− x) · θi(t) dt (22)

θ′i(x)θi+1(x) ≤ θi(x)2 − c · θi(x) ·
∫ x

α

(t− x) · θi(t) dt (23)

θ′i(x)θi+1(x)− θi(x)2

θi+1(x)2
≤ − c · θi(x)

θi+1(x)2

∫ x

α

(t− x) · θi(t) dt (24)

(25)

We begin with i = 0 and c = 1 (since ∂2

∂x2 log φ(x) = 1). We define αi = αi−1 + ε and βi = βi−1, such that for all
x ∈ [α1, β1]:

θ
′′

1 (x)θ1(x)− θ′1(x)2

θ1(x)2
≤ −1

2
ρ2 · ε2, (26)

and so θ1 is in fact strongly log-concave on the interval [α1, α1]. Also note that by definition, θ1 ≥ ε · ρ on this
interval (and in turn, θ2 ≥ ε2 · ρ on [α2, β2]). Iterating again on the interval [α2, β1] then [α3, β3] yields:

θ
′′

2 (x)θ2(x)− θ′2(x)2

θ2(x)2
≤ −ρ

2 · ε2 · (ρ · ε)2 · ε2

4 · θ2(x)2
≤ −ρ

4 · ε6

4 ·B2
(27)

θ
′′

3 (x)θ3(x)− θ
′

3(x)2 ≤
(
ρ4 · ε6

4 ·B2

)
(ε2ρ)2ε2

2
= −ρ

6 · ε12

8 ·B2
. (28)

Observe that setting ε = 1
4 (β0 − α0) allows us to lower bound the difference in variance:

V (b2)− V (b1) = 2 ·
∫ b2

b1

θ0(z)

θ1(z)3
·
(
θ′23 (z)− θ′′3 (z) · θ3(z)

)
dz (29)

≥ 2 ·
∫ β0

α0

θ0(z)

θ1(z)3
·
(
θ′23 (z)− θ′′3 (z) · θ3(z)

)
dz (30)

≥ 2 ·
∫ β0

3
4α0+

1
4β0

θ0(z) ·
(
θ′23 (z)− θ′′3 (z) · θ3(z)

)
dz (31)

≥ poly
(
ρ, (b2 − b1),

1

B

)
. (32)

Where both inequalities follow from the positiveness of the integrand. To conclude the proof, it suffices to note
that by the construction of α0, β0 it holds that ρ = Θ(poly(γ)), and max(α0, β0) = Θ(poly(ln(1/γ))). Finally, we
can compute

θ2(x) =
x · (Φ(x)− Φ(a)) + (φ(x)− φ(a))∫∞

a
φ(z − µ) dz

≤ O(x),

which means that B ∈ poly(1/γ), proving the desired statement.

C Omitted Proofs for Logistic Regression

C.1 Definition of Strong Local Quasi-Convexity

Here we present the definition of Strong Local Quasi-Convex (SLQC) functions, for which Hazan, Levy, and
Shalev-Shwartz [HLS15] provides stochastic convergence guarantees.

A Theoretical and Practical Framework for Regression and Classification from Truncated Samples

Definition 3 (SLQC functions). Let x, z ∈ Rd, κ, ε > 0. We say that f : Rd → R is (ε, κ, z)-Strictly-Locally-
Quasi-Convex (SLQC) in x, if at least one of the following applies:

1. f(x)− f(z) ≤ ε.

2. ‖∇f(x)‖ > 0, and for every y ∈ B(z, ε/κ) it holds that 〈∇f(x), y − x〉 ≤ 0.

C.2 Closed-form Gradient for Logistic Regression

We begin with the following form of the gradient of the population log-likelihood:

∇θ ¯̀(θ; θ∗) = 2 ·

 ∑
y∈{0,1}

p∗(x,y) · E
z
φ∼f`(·;θ>x)

[
σ(z − θ>x)

∣∣∣∣ 1z≥0 = y

]− E
z
φ∼f`(·;θ>x)

[
σ(z − θ>x)

]x

To simplify this expression, consider the cumulative distribution function F of the distribution with density
f`(·; θ>x) truncated according to any interval [a, b]:

F (x) =
σ(x− θ>x)− σ(a− θ>x)

σ(b− θ>x)− σ(a− θ>x)
.

This allows us to rewrite the expectations above in terms of F :

E
z

[a,b]∼f`(·;θ>x)

[
σ
(
z − θ>x

)]
= E

z
[a,b]∼f`(·;θ>x)

[
(σ
(
b− θ>x

)
− σ

(
a− θ>x

)
) · F (z) + σ

(
a− θ>x

)]
= (σ

(
b− θ>x

)
− σ

(
a− θ>x

)
) · E

z
[a,b]∼f`(·;θ>x)

[F (z)] + σ
(
a− θ>x

)
=

1

2

(
σ
(
b− θ>x

)
+ σ

(
a− θ>x

))
,

where the last equality is due to the fact that the distribution of z under its own CDF is the uniform distribution
(and thus has expectation 1

2). Now, note that when φ(z) = 1z∈[a,b] (which is the case we consider here), all of the
expectation terms in the population gradient can be expressed in this way. In particular, we have:

∇ =
(
p∗(x,1) ·

[
σ
(
b− θ>x

)
+ σ

(
− θ>x

)]
+ p∗(x,0) ·

[
σ
(
− θ>x

)
+ σ

(
a− θ>x

)]
−
[
σ
(
b− θ>x

)
+ σ

(
a− θ>x

)])
x.

We can simplify this by observing that p∗(x,0) = 1− p∗(x,1), and thus the preceding simplifies to:

∇θ ¯̀(θ; θ∗) =
(
σ
(
− θ>x

)
− p∗(x,1) · σ

(
a− θ>x

)
− (1− p∗(x,1)) · σ

(
b− θ>x

))
x. (33)

Finally, we can write p∗(x,1) as:

p∗(x,1) =
σ(b− θ>∗ x)− σ(−θ>∗ x)

σ(b− θ>∗ x)− σ(a− θ>∗ x)
.

Substituting this into (33) yields:

∇θ ¯̀(θ; θ∗) =
(
σ
(
− θ>x

)
− p∗(x,1) · σ

(
a− θ>x

)
− (1− p∗(x,1)) · σ

(
b− θ>x

))
x (34)

=
(
σ
(
− θ>x

)
− σ

(
b− θ>x

)
− p∗(x,1) ·

(
σ
(
a− θ>x

)
− σ

(
b− θ>x

)))
x (35)

=
(
σ
(
a− θ>x

)
− σ

(
b− θ>x

))(σ
(
b− θ>x

)
− σ

(
− θ>x

)
σ (b− θ>x)− σ (a− θ>x)

− p∗(x,1)

)
x (36)

=
(
σ
(
a− θ>x

)
− σ

(
b− θ>x

))(σ
(
b− θ>x

)
− σ

(
− θ>x

)
σ (b− θ>x)− σ (a− θ>x)

− σ(b− θ>∗ x)− σ(−θ>∗ x)

σ(b− θ>∗ x)− σ(a− θ>∗ x)

)
x. (37)

This concludes the derivation.

Constantinos Daskalakis, Andrew Ilyas, Manolis Zampetakis

C.3 Local quasi-convexity of the population likelihood

Lemma 3. The population log-likelihood from logistic regression truncated to the interval [a, b] is strictly quasi-
concave—in particular, we have that for any θ ∈ Rα:

〈¯̀(θ; θ∗), θ − θ∗〉 ≤ −
α2 · ε2

4 ·B2
· (1− ea)(eb − 1)

eb − ea
,

where B is an upper bound on ‖x‖2.

Proof. We first define a function f , whose domain is the set S = {θ>x|θ ∈ Rα, x ∈ X}:

f(x) =
σ(b− x)− σ(−x)

σ(b− x)− σ(a− x)
,

so that the derivative

f ′(x) =
(1− ea)(eb − 1)

eb − ea
· σ(x) · (1− σ(x))

can be bounded as follows for any x ∈ S:

0 ≤ α

2
· (1− ea)(eb − 1)

eb − ea
≤ f ′(x) ≤ 1

4

(1− ea)(eb − 1)

eb − ea
.

Here, the first inequality comes from a < 0 and b > 0 (otherwise the truncation set removes all the elements from
one class and inference is impossible). The second inequality comes from the fact that by construction of Rα, we
have that for any θ ∈ Rα and any x ∈ X ,

α ≤ min
y∈{0,1}

Pθ(z · y ≥ 0) ≤ min
{
σ(θ>x), 1− σ(θ>x)

}
.

(Note that the second inequality in the above is due to the fact that we omit terms due to truncation, which
only make the bounds stronger). For convenience, we denote the lower and upper bounds on f ′ as C0 and C1

respectively. Now, we can write the gradient of the population log-likelihood in the following more convenient
form:

∇θ ¯̀(θ; θ∗) =
(
σ
(
a− θ>x

)
− σ

(
b− θ>x

)) (
f(θ>x)− f(θ>∗ x)

)
x (38)

〈∇θ ¯̀(θ; θ∗), θ − θ∗〉 =
(
σ
(
a− θ>x

)
− σ

(
b− θ>x

)) (
f(θ>x)− f(θ>∗ x)

)
(θ>x− θ>∗ x). (39)

The intermediate value theorem gives us that f(α)−f(β)
α−β > C0 for any α, β, and thus we can write (39) as:

〈∇θ ¯̀(θ; θ∗), θ − θ∗〉 =
(
σ
(
a− θ>x

)
− σ

(
b− θ>x

)) (
f(θ>x)− f(θ>∗ x)

)
(θ>x− θ>∗ x)

< C0 ·
(
σ
(
a− θ>x

)
− σ

(
b− θ>x

))
· (θ>x− θ>∗ x)2

Now, note that the likelihood ¯̀(θ; θ∗) is at most 2B-Lipschitz (where B is an upper bound on ‖x‖, as the gradient
(c.f. (6)) is twice the difference of two sigmoid functions (which is bounded between 1 and −1), multiplied by the
covariate vector x which by assumption has norm at most B. Thus, either ¯̀(θ; θ∗) > ¯̀(θ∗; θ∗)− ε, for some ε > 0,
or else (θ>x− θ>∗ x)2 ≥ (ε

2B)2. Making use of this and also bounding (σ
(
a− θ>x

)
− σ

(
b− θ>x

)
) via α (as in

fact the former is the probability of observing the sample x, and the latter is the same probability conditioned on
a specific class):

〈∇θ ¯̀(θ; θ∗), θ − θ∗〉 < C0 ·
(
σ
(
a− θ>x

)
− σ

(
b− θ>x

))
· (θ>x− θ>∗ x)2

< −C0 · α · ε2

4 ·B2
.

= −α
2 · ε2

4 ·B2
· (1− ea)(eb − 1)

eb − ea
.

This concludes the proof.

A Theoretical and Practical Framework for Regression and Classification from Truncated Samples

C.4 Quasiconvexity of empirical log-likelihood via concentration

Lemma 4. For a minibatch size b ≥ Θ̄
(
poly(B, 1

α) · 1
ε2

)
, the minibatch log-likelihood, `b(θ; θ∗) =

∑b
i=1 `(θ;xi, yi),

is (ε, κ, θ∗)-SLQC where κ ∈ Θ
(
1
ε · poly

(
B, 1

α

))
.

Proof. Note that in this proof we carry forward our notation, and in particular see Appendix C.3 for the definition
of C0. Our approach is to use concentration of measure to show that for large enough batch size, the empirical
log-likelihood exhibits quasi-convexity properties similar to those of the population log-likelihood. We can use α
to bound the difference θ>x− θ>∗ x as follows:

〈∇θ ̂̀(θ, x, y), θ − θ∗〉 ≤ 2 · log

(
1

α
− 1

)
≤ 2 · log(1/α).

Also note that by definition for any fixed θ,∑
xi∈X

Eyi
[
〈∇θ ̂̀(θ, x, y), θ − θ∗〉

]
= 〈∇θ ¯̀(θ; θ∗), θ − θ∗〉.

To this end, we define Kn as the inner product 〈
∑n
i=1∇θ ̂̀(θ, xi, yi), θ − θ∗〉 for samples (xi ∈ X , yi). We can thus

apply Hoeffding’s inequality as follows:

P
(
Kn ≥ 〈∇θ ¯̀(θ; θ∗), θ − θ∗〉+ t

)
≤ exp

{
− nt2

2 log2(1/α)

}

Based on the result of Lemma 3 in the last section, we set t = ε2·α·C0

8·B2 , we set n ≥ 64·B4·log2(1/α)
α2·C2

0 ·ε2
· δ such that

P
(
Kn ≥ −

ε2 · α · C0

8 ·B2
.

)
≤ exp {−δ}

Now, to prove that the log-likelihood is locally quasiconvex, we once again use the fact that the likelihood is
2B-Lipschitz, and thus 〈∇θ ¯̀(θ, θ∗), θ − θ̂〉 ≤ 2B · ‖θ − θ̂‖2. Thus, for any θ̂ satisfying

‖θ̂ − θ‖2 ≤
ε2 · α · C0

16 ·B3
,

we have that
〈∇θ ¯̀(θ, θ∗), θ̂ − θ∗〉 ≤ 0 w.p. exp{−δ}.

We next bound C0 as follows:

C0 =
α

2
· (1− ea)(eb − 1)

eb − ea
=
α

2
· (1− ea)(1− e−b)

By definition, σ(−a) ≥ α+
1

2
=⇒ −a ≥ log

(
α+ 1

2
1
2 − α

)
ea ≤

1
2 − α
1
2 + α

=⇒ 1− ea ≥ 2α
1
2 + α

By symmetry, C0 ≥
2 · α3

(1
2 + α)2

≥ 8

9
· α3.

This implies that `b(θ, θ∗) with b ≥ Θ̄
(
poly(1

α , B), 1
ε2

)
· δ samples is (ε, 9·B3

4·ε·α4 , θ∗)-SLQC in θ so long as θ ∈ Rα.

Constantinos Daskalakis, Andrew Ilyas, Manolis Zampetakis

D Detailed Experimental Setup

D.1 Synthetic Data

The data generation model: We start by computing X0 = {x1, . . . , xn : xi ∼ U ([0, 100])
2}, an 10000 × 2

randomly generated data matrix. A “ground-truth” θ∗ is selected at random (θ∗ ∼ U([−1, 1])), then for each xi, a
latent zi is sampled according to zi = θ>∗ xi + ε, where ε is a standard Gaussian (Logistic) random variable in
the case of probit (logistic) regression. Finally, we remove all (x, z) pairs where z ≤ C for some predetermined
threshold C (truncation) and label each xi with yi = 1zi≥0.

Methodology: In both cases, we use gradient descent with 1000 iterations in order to find the estimated
parameter—in all cases the training loss plateaus. Since the data was generated according to a ground-truth θ∗,
we evaluate each method based on cosine similarity between the estimated parameter θ and the true parameter
θ∗.

D.2 Neural Network: Rotation Prediction

Here we give further detail on the experimental setup for the rotation prediction experiment in Section 4. In this
experiment, we sample images x uniformly from the CIFAR-10 training set. A random rotation of d = U([0, 360])
degrees is then applied to the image, and the corresponding label is z = d +N (0, σ) for some value of σ. We
then discard all of the points for which z 6∈ [0, 180], and train on the remaining points with the hyperparameters
given in Table 1. We train both minimizing standard squared loss between the predicted angle and the true
angle, as well as a custom implemented loss whose gradient is implemented to be the analog for the truncated
log-likelihood case.

D.3 Neural Network: Class Truncation

Here we give further detail on the experimental setup for the CNN classification experiment. We begin by training
a base model on the binary task of classifying CIFAR-10 dogs vs. cats (with the cross-entropy loss and the
hyperparameters given in Table 1. Let hθ represent the function mapping images to the log-probability assigned
to “dog” by the base model (i.e. the output of the model pre-sigmoid). Then, for each image xi, we calculate
zi = hθ(xi) +N (0, 1). For some varying truncation parameter C, we remove all the samples with zi < C, and
label the remaining samples with yi = 1zi≥0. We then train models using both the standard cross-entropy loss
and a custom version implementing the truncated likelihood gradient. We vary the truncation parameter C and
train the networks with the hyperparameters given in Table 1. We then test on the original dogs vs. cats task.

Rotation Classification

Learning Rate 5e-6 0.1
Weight decay 5e-4 5e-4
Epochs 20 150
LR drop frequency 8 50
Momentum 0.9 0.9
Data augmentation Y Y

Table 1: Hyperparameters for neural network experiments.

A Theoretical and Practical Framework for Regression and Classification from Truncated Samples

E Code for Regression and Classification

1 PREDICATE = ... # boolean function
2

3 class TruncatedMSE(ch.autograd.Function):
4 @staticmethod
5 def forward(ctx , pred , targ):
6 ctx.save_for_backward(pred , targ)
7 return 0.5 * (pred.float () - targ.float ()).pow(2).mean()
8

9 @staticmethod
10 def backward(ctx , grad_output):
11 pred , targ = ctx.saved_tensors
12 # Make args.num_samples copies of pred , N x B x 1
13 stacked = pred[None ,...]. repeat(args.num_samples ,1,1)
14 # Add random noise to each copy
15 noised = stacked + ch.randn_like(stacked)
16 # Filter out the copies where pred is in bounds
17 filtered = PREDICATE(noised).float ()
18 # Average over truncated indices
19 out = (noised * filtered).sum(dim=0) / (filtered.sum(dim =0) + args.eps)
20 grad = ch.where(out > 0, out , targ) - targ
21 return grad / pred.shape [0], \
22 (targ - pred) / pred.shape [0]

Listing 1: Truncated version of the mean squared-error loss

1 import torch as ch
2 from torch . nn import f un c t i o n a l as F
3 from torch import s igmoid as s i g
4 from torch . d i s t r i b u t i o n s import transforms , Uniform , Trans formedDist r ibut ion
5

6 base_d i s t r ibu t i on = Uniform (0 , 1)
7 t rans forms = [t rans forms . SigmoidTransform () . inv]
8 l o g i s t i c = Trans formedDistr ibut ion (base_di s t r ibut ion , t rans forms)
9

10 c l a s s TruncatedBCE(ch . autograd . Function) :
11 @staticmethod
12 de f forward (ctx , pred , targ) :
13 pred , targ = pred , targ . f l o a t ()
14 ctx . save_for_backward (pred , targ)
15 re turn F . binary_cross_entropy_with_logits (pred , targ)
16

17 @staticmethod
18 de f backward (ctx , grad_output) :
19 pred , targ = ctx . saved_tensors
20 s tacked = pred [None , . . .] . r epeat (args . num_samples , 1 , 1)
21 no i sed = stacked + l o g i s t i c . sample ()
22 f i l t e r e d = (no i sed > args .C) . f l o a t ()
23 out = (no i sed ∗ f i l t e r e d) . sum(dim=0) / (f i l t e r e d . sum(dim=0) + 1e−5)
24 grad = ch . where (ch . abs (out) > 1e−5, s i g (out) , targ) − targ
25

26 N = pred . shape [0]
27 re turn grad / N, −grad / N

Listing 2: Truncated version of the binary cross-entropy loss

	Introduction
	A General Framework for Learning from Truncated Data
	Preliminaries
	Approach
	Instantiations: Linear, Logistic, and Probit Regression

	Theoretical Analysis for Probit and Logistic Regression
	Probit Regression
	Logistic Regression

	Experimental Results
	Conclusion
	Acknowledgements
	Projection to the Feasible Set
	Omitted Proofs for Probit Regression
	Second derivative for Truncated Probit Regression
	Proofs of Lemmata

	Omitted Proofs for Logistic Regression
	Definition of Strong Local Quasi-Convexity
	Closed-form Gradient for Logistic Regression
	Local quasi-convexity of the population likelihood
	Quasiconvexity of empirical log-likelihood via concentration

	Detailed Experimental Setup
	Synthetic Data
	Neural Network: Rotation Prediction
	Neural Network: Class Truncation

	Code for Regression and Classification

