Fast Noise Removal for k-Means Clustering

Sungjin Im Mahshid Montazer Qaem Benjamin Moseley
University of California at Merced University of California at Merced Carnegie Mellon University

Xiaorui Sun Rudy Zhou
University of Illinois at Chicago Carnegie Mellon University

Abstract

This paper considers k-means clustering in the presence of noise. It is known that k-means clustering is highly sensitive to noise, and thus noise should be removed to obtain a quality solution. A popular formulation of this problem is called k-means clustering with outliers. The goal of k-means clustering with outliers is to discard up to a specified number z of points as noise/outliers and then find a k-means solution on the remaining data. The problem has received significant attention, yet current algorithms with theoretical guarantees suffer from either high running time or inherent loss in the solution quality. The main contribution of this paper is two-fold. Firstly, we develop a simple greedy algorithm that has provably strong worst case guarantees. The greedy algorithm adds a simple preprocessing step to remove noise, which can be combined with any k-means clustering algorithm. This algorithm gives the first pseudo-approximation-preserving reduction from k-means with outliers to k-means without outliers. Secondly, we show how to construct a coreset of size $O(k \log n)$. When combined with our greedy algorithm, we obtain a scalable, near linear time algorithm. The theoretical contributions are verified experimentally by demonstrating that the algorithm quickly removes noise and obtains a high-quality clustering.

1 Introduction

Clustering is a fundamental unsupervised learning method that offers a compact view of data sets by grouping similar input points. Among various clustering methods, k-means clustering is one of the most popular clustering methods used in practice, which is defined as follows: given a set X of n points in Euclidean space \mathbb{R}^d and a target number of clusters k, the goal is to choose a set C of k points from \mathbb{R}^d as centers, so as to minimize the ℓ_2-loss, i.e., the sum of the squared distances of every point $x \in X$ to its closest center in C.

Due to its popularity, k-means clustering has been extensively studied for decades both theoretically and empirically, and as a result, various novel algorithms and powerful underlying theories have been developed. In particular, because the clustering problem is NP-hard, several constant-factor approximation algorithms have been developed (Charikar and Guha, 1999; Kumar et al., 2004; Feldman et al., 2007), meaning that their output is always within an $O(1)$ factor of the optimum. One of the most successful algorithms used in practice is k-means++ (Arthur and Vassilvitskii, 2007). The algorithm k-means++ is a preprocessing step used to set the initial centers when using Lloyd’s algorithm (Lloyd, 1982). Lloyd’s algorithm is a simple local search heuristic that alternates between updating the center of every cluster and reassigning points to their closest centers. k-means++ has a provable approximation guarantee of $O(\log k)$ by carefully choosing the initial centers.

k-means clustering is highly sensitive to noise, which is present in many data sets. Indeed, it is not difficult to see that the k-means clustering objective can vary significantly even with the addition of a single point that is far away from the true clusters. In general, it is

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS) 2020, Palermo, Italy. PMLR: Volume 108. Copyright 2020 by the author(s).
a non-trivial task to filter out noise; without knowing the true clusters, we cannot identify noise, and vice versa. While there are other clustering methods, such as density-based clustering (Ester et al., 1996), that attempt to remove noise, they do not replace k-means clustering because they are fundamentally different than k-means.

Consequently, there have been attempts to study k-means clustering in the presence of noise. The following problem formulation is the most popular formulation in the theory (Chen, 2008; Charikar et al., 2001; McCutchen and Khuller, 2008; Guha et al., 2017), machine learning (Malkomes et al., 2015; Chawla and Gionis, 2013; Li and Guo, 2018) and database communities (Gupta et al., 2017). Note that traditional k-means clustering is a special case of this problem when $z = 0$. Throughout, for $x, y \in \mathbb{R}^d$, we let $d(x, y)$ denote the ℓ_2 distance between x and y. For a subset of points Y, let $d(x, y) := \min_{y \in Y} d(x, y)$.

Definition 1 (k-Means with Outliers). In this problem we are given as input a subset X of n points in \mathbb{R}^d, a parameter $k \in \mathbb{N}$ (number of centers), and a parameter $z \in \mathbb{N}$ (number of outliers). The goal is to choose a collection of k centers, $C \subseteq \mathbb{R}^d$, to minimize: $\sum_{x \in X} d^2(x, C)$, where $X(C) \subseteq X$ is the subset of $n - z$ input points with the smallest distances to C.

Because this problem generalizes k-means clustering, it is NP-hard, and in fact, turns out to be significantly more challenging. The only known constant approximations (Chen, 2008; Krishnaswamy et al., 2018) are highly sophisticated and are based on complicated local search or linear program rounding. They are unlikely to be implemented in practice due to their runtime and complexity. Therefore, there have been strong efforts to develop simpler algorithms that offer good approximation guarantees when allowed to discard more than z points as outliers (Charikar et al., 2001; Meyerson et al., 2004; Gupta et al., 2017), or heuristics (Chawla and Gionis, 2013). Unfortunately, all existing algorithms with theoretical guarantees suffer from either high running time or inherent loss in solution quality.

1.1 Our Results and Contributions

The algorithmic contribution of this paper is two-fold, and further these contributions are validated by experiments. In this section, we state our contributions and discuss it in detail compared to the previous work.

Simple Preprocessing Step for Removing Outliers with Provable Guarantees: In this paper we develop a simple preprocessing step, which we term NK-MEANS, to effectively filter out outliers. NK-MEANS stands for noise removal for k-means. Our proposed preprocessing step can be combined with *any* algorithm for k-means clustering. Despite the large amount of work on this problem, we give the first reduction to the standard k-means problem. In particular, NK-MEANS can be combined with the popular k-means++. The algorithm is the fastest known algorithm for the k-means with outliers problem. Its speed and simplicity gives it the potential to be used in practice. Formally, given an α-approximation for k-means clustering, we give an algorithm for k-means with outliers that is guaranteed to discard up to $O(\alpha)z$ points such that the cost of remaining points is at most $O(\alpha)$ times the optimum that discards up to exactly z points. While the theoretical guarantee on the number of outliers is larger than z on worst-case inputs, we show that NK-MEANS removes at most $O(z)$ outliers under the assumption that every cluster in an optimal solution has at least $3z$ points. We believe that this assumption captures most practical cases since otherwise significant portions of the true clusters can be discarded as outliers. In actual implementation, we can guarantee discarding exactly z points by discarding the farthest z points from the centers we have chosen. It is worth keeping in mind that all (practical) algorithms for the problem discard more than z points to have theoretical guarantees (Charikar et al., 2001; Meyerson et al., 2004; Gupta et al., 2017).

New Coreset Construction: When the data set is large, a dominant way to speed up clustering is to first construct a coreset and then use the clustering result of the coreset as a solution to the original input. Informally, a set of (weighted) points Y is called a coreset of X if a good clustering of Y is also a good clustering of X (see Section 4.1 for the formal definition of coreset.)

The idea is that if we can efficiently construct such Y, which is significantly smaller than X, then we can speed up any clustering algorithm with little loss of accuracy. In this paper, we give an algorithm to construct a coreset of size $O(k \log n)$ for k-means with outliers. Importantly, the coreset size is independent of z and d - the number of outliers and dimension, respectively.

Experimental Validation: Our new coreset enables the implementation and comparison of all potentially practical algorithms, which are based on primal-dual (Charikar et al., 2001), uniform sampling (Meyerson et al., 2004), or local search (Chawla and Gionis, 2013; Gupta et al., 2017). It is worth noting that, to the best of our knowledge, this is the first paper to implement the primal-dual based algorithm (Charikar et al., 2001) and test it for large data sets. We also
implemented natural extensions of \(k\)-means++ and our algorithm NK-MEANS. We note that for fair comparison, once each algorithm chose the \(k\) centers, we considered all points and discarded the farthest \(z\) points. Our experiments show that our NK-MEANS consistently outperforms other algorithms for both synthetic and real-world data sets with little running time overhead as compared to \(k\)-means++.

1.2 Comparison to the Previous Work

Algorithms for \(k\)-Means with Outliers: To understand the contribution of our work, it is important to contrast the algorithm with previous work. We believe a significant contribution of our work is the algorithmic simplicity and speed as well as the theoretical bounds that our approach guarantees. In particular, we will discuss why the previous algorithms are difficult to use in practice.

The first potentially practical algorithm developed is based on primal-dual (Charikar et al., 2001). Instead of solving a linear program (LP) and converting the solution to an integer solution, the primal-dual approach only uses the LP and its dual to guide the algorithm. However, the algorithm does not scale well and is not easy to implement. In particular, it involves increasing variables uniformly, which requires \(\Omega(n^2)\) running time and extra care to handle precision issues of fractional values. As mentioned before, this algorithm was never implemented prior to this paper. Our experiments show that this algorithm considerably under-performs compared to other algorithms.

The second potentially practical algorithm is based on uniform sampling (Meyerson et al., 2004). The main observation of Meyerson et al. (2004) is that if every cluster is large enough, then a small uniform sample can serve as a coreset. This observation leads to two algorithms for \(k\)-means clustering with outliers: (i) (implicit) reduction to \(k\)-means clustering via conservative uniform sampling and (ii) (explicit) aggressive uniform sampling plus primal-dual (Charikar et al., 2001). In (i) it can be shown that a constant approximate \(k\)-means clustering of a uniform sample of size \(n/(2z)\) is a constant approximation for \(k\)-means clustering with outliers, under the assumption that every cluster has size \(\Omega(z \log k)\). Here, the main idea is to avoid any noise by sampling conservatively. Although this assumption is reasonable as discussed before, the real issue is that conservative uniform sampling doesn’t give a sufficiently accurate sketch to be adopted in practice. For example, if there are 1\% noise points, then the conservative uniform sample has only 50 points. In (ii), a more aggressive uniform sampling is used and followed by the primal dual (Charikar et al., 2001). It first obtains a uniform sample of size \(\Theta(k(n/z) \log n)\); then the (expected) number of outliers in the sample becomes \(\Theta(k \log n)\). This aggressive uniform sampling turns out to have very little loss in terms of accuracy. However, as mentioned before, the primal-dual algorithm under-performs compared to other algorithms in speed and accuracy.

Another line of algorithmic development has been based on local search (Chawla and Gionis, 2013; Gupta et al., 2017). The algorithm in Chawla and Gionis (2013) guarantees the convergence to a local optimum, but has no approximation guarantees. The other algorithm (Gupta et al., 2017) is an \(O(1)\)-approximation but theoretically it may end up with discarding \(O(kz \log n)\) outliers. These local search algorithms are considerably slower than our method and the theoretical guarantees require discarding many more points.

To summarize, there is a need for a fast and effective algorithm for \(k\)-means clustering with outliers.

Coresets for \(k\)-Means with Outliers: The other main contribution of our work is a coreset for \(k\)-means with outliers of size \(O(k \log n)\) - independent of the number of outliers \(z\) and dimension \(d\).

The notion of coreset we consider is related to the concept of a *weak coreset* in the literature - see e.g. Feldman and Langberg (2011) for discussion of weak coresets and other types of coresets. Previous coreset constructions (some for stronger notions of coreset) have polynomial dependence on the number of outliers \(z\) (Gupta et al., 2017), inverse polynomial dependence on the fraction of outliers \(\frac{z}{n}\) (Meyerson et al., 2004; Huang et al., 2018), or polynomial dependence on the dimension \(d\) (Huang et al., 2018). Thus, all coresets constructed in the previous work can have large size for some value of \(z\), e.g. \(z = \Theta(\sqrt{n})\), or for large values of \(d\). In contrast, our construction is efficient for all values of \(z \in [0, n]\) and yields coresets of size with no dependence on \(d\) or \(z\).

1.3 Overview of Our Algorithms: NK-MEANS and SAMPLECORESET

Our preprocessing step, NK-MEANS, is reminiscent of density-based clustering. Our algorithm tags an input point as light if it has relatively few points around it. Formally, a point is declared as light if it has less than \(2z\) points within a certain distance threshold \(r\), which can be set by binary search. Then a point is discarded if it only has light points within distance \(r\). We emphasize that the threshold is chosen by the algorithm, not by the algorithm user, unlike in density-based clustering. While our preprocessing step looks similar to the algorithm for \(k\)-center clustering (Charikar et al., 2001),
which optimizes the \(\ell_\infty \)-loss, we find it surprising that a similar idea can be used for \(k \)-means clustering.

It can take considerable time to label each point light or not. To speed up our algorithm, we develop a new corest construction for \(k \)-means with outliers. The idea is relatively simple. We first use aggressive sampling as in Meyerson et al. (2004). The resulting sample has size \(O(\frac{kn}{\epsilon^2} \log n) \) and includes \(O(k \log n) \) outliers with high probability. Then we use \(\text{K-means}^+ \) to obtain \(O(k \log n) \) centers. As a result, we obtain a high-quality coreset of size \(O(k \log n) \). Interestingly, to our best knowledge, combining aggressive sampling with another corest for \(k \)-means with outliers has not been considered in the literature.

1.4 Other Related Work

Due to the vast literature on clustering, we refer the reader to Aggarwal and Reddy (2013); Kogan et al. (2006); Jain et al. (1999) for an overview and survey of the literature. \(k \)-means clustering can be generalized by considering other norms of loss, and such extensions have been studied under different names. When the objective is \(\ell_1 \)-norm loss, the problem is called \(k \)-medians. The \(k \)-median and \(k \)-mean clustering problems are closely related, and in general the algorithm and analysis for one can be readily translated into one for the other with an \(O(1) \) factor loss in the approximation ratio. Constant approximations are known for \(k \)-medians and \(k \)-means based on linear programming, primal-dual, and local search (Arya et al., 2004; Charikar et al., 2002; Charikar and Guha, 1999). While its approximation ratio is \(O(\log k) \), the \(k \)-means++ algorithm is widely used in practice for \(k \)-means clustering due to its practical performance and simplicity. When the loss function is \(\ell_\infty \), the problem is known as \(k \)-centers and a 3-approximation is known for \(k \)-centers clustering with outliers (Charikar et al., 2001). For recent work on these outlier problems in distributed settings, see Malkomes et al. (2015); Li and Guo (2018); Guha et al. (2017); Chen et al. (2018).

2 Preliminaries

In this paper we will consider the Euclidean \(k \)-means with outliers problem as defined in the introduction. Note that the \(\ell_2 \)-distance satisfies the triangle inequality, so for all \(x, y, z \in \mathbb{R}^d \), \(d(x, z) \leq d(x, y) + d(y, z) \). Further, the approximate triangle inequality will be useful to our analyses (this follows from the triangle inequality): \(d^2(x, z) \leq 2d^2(x, y) + 2d^2(y, z) \quad \forall x, y, z \in \mathbb{R}^d \). Given a set of centers \(C \subset \mathbb{R}^d \), we say that the assignment cost of \(x \in X \) to \(C \) is \(d^2(x, C) \). For \(k \)-means with outliers, a set, \(C \), of \(k \) centers naturally defines a clustering of the input points \(X \) as follows:

Definition 2 (Clustering). Let \(C = \{c_1, \ldots, c_k\} \subset \mathbb{R}^d \) be a set of \(k \) centers. A clustering of \(X \) defined by \(C \) is a partition \(C_1 \cup \cdots \cup C_k \) of \(X \) satisfying: For all \(x \in X \) and \(c_i \in C \), \(x \in C_i \iff d(x, C) = d(x, c_i) \), where ties between \(c_i \)'s are broken arbitrarily but consistently.

In summary, for the \(k \)-means with outliers problem, given a set \(C \) of \(k \) centers, we assign each point in \(X \) to its closest center in \(C \). Then we exclude the \(z \) points of \(X \) with the highest assignment cost from the objective function (these points are our outliers.) This procedure defines a clustering of \(X \) with outliers.

Notations: For \(n \in \mathbb{N} \), we define \([n] := \{1, \ldots, n\}\). Recall that as in the introduction, for any finite \(Y \subset \mathbb{R}^d \), \(x \in \mathbb{R}^d \), we define: \(d(x, Y) := \min_{y \in Y} d(x, y) \).

For any \(x \in \mathbb{R}^d \), \(X \subset \mathbb{R}^d \), \(r > 0 \), we define the \(X \)-ball centered at \(x \) with radius \(r \) by \(B(x, r) := \{y \in X \mid d(x, y) \leq r\} \).

For a set of \(k \) centers, \(C \subset \mathbb{R}^d \), and \(z \in \mathbb{N} \), we define the \(z \)-cost of \(C \) by \(f^z_C := \sum_{x \in X} d^2(x, C) \) . Recall that we define \(X \subset \mathbb{R}^d \) to be the subset of points of \(X \) excluding the \(z \) points with highest assignment costs. Thus the \(z \)-cost of \(C \) is the cost of clustering \(X \) with \(C \) while excluding the \(z \) points with highest assignment costs. As shorthand, when \(z = 0 \) so when we consider the \(k \)-means problem without outliers – we will denote the \(0 \)-cost of clustering \(X \) with \(C \) by \(f^0_C := f^0_X(C) \).

Further, we say a set of \(k \) centers \(C \) is an optimal \(z \)-solution if it minimizes \(f^z_C \) over all choices of \(k \) centers, \(C \). Then we define \(\text{Opt}(X, k, z) := f^z_C \) to be the optimal objective value of the \(k \)-means with outliers instance \((X, k, z) \). Analogously, for the \(k \)-means without outliers problem, we denote the optimal objective value of the \(k \)-means instance \((X, k) \) by \(\text{Opt}(X, k) \).

3 NK-Means Algorithm

In this section, we will describe our algorithm, NK-MEANS, which turns a \(k \)-means algorithm without outliers to an algorithm for \(k \)-means with outliers in a black-box fashion. We note that the algorithm naturally extends to \(k \)-medians with outliers and general metric spaces. For the remainder of this section, let \(X = \{x_1, \ldots, x_n\} \subset \mathbb{R}^d \), \(k \in \mathbb{N} \), and \(z \in \mathbb{N} \) define an instance of \(k \)-means with outliers.

Algorithm Intuition: The guiding intuition behind our algorithm is as follows: We consider a ball of radius \(r > 0 \) around each point \(x \in X \). If this ball contains many points, then \(x \) is likely not to be an outlier in the optimal solution.

More concretely, if there are more than \(2z \) points in \(x \)'s
ball, then at most \(z \) of these points can be outliers in the optimal solution. This means that the majority of \(x \)'s neighbourhood is real points in the optimal solution, so we can bound the assignment cost of \(x \) to the optimal centers. We call such points heavy.

There are 2 main steps to our algorithm. First, we use the concept of heavy points to decide which points are real points and those that are outliers. Then we run a \(k \)-means approximation algorithm on the real points.

Formal Algorithm: Now we formally describe our algorithm \(\text{NK-MEANS} \). As input, \(\text{NK-MEANS} \) takes a \(k \)-means with outliers instance \((X, k, z)\) and an algorithm for \(k \)-means without outliers, \(\mathcal{A} \), where \(\mathcal{A} \) takes an instance of \(k \)-means as input.

We will prove that if \(\mathcal{A} \) is an \(O(1) \)-approximation for \(k \)-means and the optimal clusters are sufficiently large with respect to \(z \), then \(\text{NK-MEANS} \) outputs a good clustering that discards \(O(z) \) outliers. More precisely, we will prove the following theorem about the performance of \(\text{NK-MEANS}\):

Theorem 1. Let \(C \) be the output of \(\text{NK-MEANS}(X, k, z, \mathcal{A}) \). Suppose that \(\mathcal{A} \) is an \(\alpha \)-approximation for \(k \)-means. If every cluster in the clustering defined by \(C \) has size at least \(3z \), then \(f_2^X(C) \leq 9\alpha \cdot \text{Opt}(X, k, z) \).

Corollary 1. Let \(C \) be the output of \(\text{NK-MEANS}(X, k, z, \mathcal{A}) \). Suppose that \(\mathcal{A} \) is an \(\alpha \)-approximation. Then \(f_{3kz+2z}^X(C) \leq 9\alpha \cdot \text{Opt}(X, k, z) \).

In other words, \(\text{NK-MEANS} \) gives a pseudo-approximation-preserving reduction from \(k \)-means with outliers to \(k \)-means, where any \(\alpha \) approximation for \(k \)-means implies a \(9\alpha \) pseudo-approximation for \(k \)-means with outliers that throws away \(3kz + 2z \) points as outliers.

3.1 Implementation Details

Here we describe a simple implementation of \(\text{NK-MEANS} \) that achieves runtime \(O(n^2d) + T(n) \) assuming we know the optimal objective value, \(\text{Opt} \), where \(T(n) \) is the runtime of the algorithm \(\mathcal{A} \) on inputs of size \(n \). This assumption can be removed by running that algorithm for many guesses of \(\text{Opt} \), say by trying all powers of 2 to obtain a 2-approximation of \(\text{Opt} \) for the correct guess.

For our experiments, we implement the loop in Line 3 by enumerating over all pairs of points and computing their distance. This step takes time \(O(n^2d) \). We implement the loop in Line 9 by enumerating over all elements in \(B(x, r) \) and checking if it is heavy for each \(x \in X \). This step takes \(O(n^2) \). Running \(\mathcal{A} \) on \((X \setminus Y, k)\) takes \(T(n) \) time. We summarize the result of this section in the following lemma:

Lemma 1. Assuming that we know \(\text{Opt} \) and that \(\mathcal{A} \) takes time \(T(n) \) on inputs of size \(n \), then \(\text{NK-MEANS} \) can be implemented to run in time \(O(n^2d) + T(n) \).

4 Coreset of Near Linear Size in \(k \)

In this section we develop a general framework to speed up any \(k \)-means with outliers algorithm, and we apply this framework to \(\text{NK-MEANS} \) to show that we can achieve near-linear runtime. In particular, we achieve this by constructing what is called a coreset for the \(k \)-means with outliers problem of size \(O(k \log n) \), which is independent of the number of outliers, \(z \).

4.1 Coresets for \(k \)-Means with Outliers

Our coreset construction will leverage existing constructions of coresets for \(k \)-means with outliers. A coreset gives a good summary of the input instance in the following sense:

Definition 3 (Coreset for \(k \)-Means with Outliers). Let \((X, k, z)\) be an instance of \(k \)-means with outliers and \(Y \) be a (possibly weighted) subset of \(\mathbb{R}^d \). We say the \(k \)-means with outliers instance \((Y, k, z')\) is an \((\alpha, \beta)\)-coreset for \(X \) if for any set \(C \subset \mathbb{R}^d \) of \(k \)-centers sat-

\[\text{\ldots}\]

\[\text{\ldots}\]
isifying $f^Y_{\alpha_1, \beta}(C) \leq \kappa_2 \text{Opt}(Y, k, z')$ for some $\kappa_1, \kappa_2 > 0$, we have $f^X_{\alpha_1, \beta}(C) \leq \beta \kappa_2 \text{Opt}(X, k, z)$.

In words, if (Y, k, z') is an (α, β) coreset for (X, k, z), then running any (κ_1, κ_2)-approximate k-means with outliers algorithm on (Y, k, z') (meaning the algorithm throws away $\kappa_2 z$ outliers and outputs a solution with cost at most $\kappa_2 \text{Opt}(Y, k, z')$) gives a $(\alpha \kappa_1, \beta \kappa_2)$-approximate solution to (X, k, z).

Note that if Y is a weighted set with weights $w: Y \rightarrow \mathbb{R}_+$, then the k-means with outliers problem is analogously defined, where the objective is a weighted sum of assignment costs: $\min_C \sum_{y \in Y_i(C)} w(y)d^2(y, C)$. Further, note that NK-means generalizes naturally to weighted k-means with outliers with the same guarantees.

The two coresets we will utilize for our construction are $\mathrm{k-means}++$ (Aggarwal et al., 2009) and Meyerson’s sampling coreset (Meyerson et al., 2004). The guarantees of these coresets are as follows:

Theorem 2 (k-means++). Let $\mathrm{k-means}++(X, k)$ denote running $\mathrm{k-means}++$ on input points X to obtain a set $Y \subset X$ of size k. Further, let Y_1, \ldots, Y_k be the clustering of X with centers $y_1, \ldots, y_k \in Y$, respectively. We define a weight function $w: Y \rightarrow \mathbb{R}_+$ by $w(y_i) = |Y_i|$ for all $y_i \in Y$. Suppose $Y = \mathrm{k-means}++(X, 32(k + z))$. Then with probability at least 0.03, the instance (Y, k, z) where Y has weights w is an $(1, 124)$-coreset for the k-means with outliers instance (X, k, z).

Theorem 3 (Sampling). Let S be a sample from X, where every $x \in X$ is included in S independently with probability $p = \max(\frac{36}{k} \log(\frac{4nk^2}{z}), \frac{36k}{z} \log(2k^3))$. Then with probability at least $1 - \frac{1}{n^2}$, the instance $(S, k, 2.5pz)$ is a $(16, 29)$-coreset for (X, k, z).

Observe that $\mathrm{k-means}++$ gives a coreset of size $O(k + z)$, and uniform sampling gives a coreset of size $O(\frac{k}{z} \log n)$ in expectation. If z is small, then $\mathrm{k-means}++$ gives a very compact coreset for k-means with outliers, but if z is large – say $z = \Omega(n)$ – then $\mathrm{k-means}++$ gives a coreset of linear size. However, the case where z is large is exactly when uniform sampling gives a small coreset.

In the next section, we show how we can combine these two coresets to construct a small coreset that works for all z.

4.2 Our Coreset Construction: SampleCoreset

Using the above results, our strategy is as follows: Let (X, k, z) be an instance of k-means with outliers. If $p > 1$, then we can show that $z = O(k \log n)$, so we can simply run $\mathrm{k-means}++$ on the input instance to get a good coreset. Otherwise, z is large, so we first subsample approximately $\frac{k^2}{z}$ points from X. Let S denote the resulting sample. Then we compute a coreset on S of size $32(k + 2.5pz)$, where we scale down the number of outliers from X proportionally.

Algorithm 2 formally describes our coreset construction. We will prove that SampleCoreset outputs with constant probability a good coreset for the k-means with outliers instance (X, k, z) of size $O(k \log n)$. In particular, we will show:

Theorem 4. With constant probability, SampleCoreset outputs an $(O(1), O(1))$-coreset for the k-means with outliers instance (X, k, z) of size $O(k \log n)$ in expectation.

4.3 A Near Linear Time Algorithm for k-Means With Outliers

Using SampleCoreset, we show how to speed up NK-means to run in near linear time: Let Y be the result of SampleCoreset(X, k, z). Then, to choose k centers we run NK-means(Y, k, z, A) if $p > 1$; otherwise, run NK-means$(Y, k, 2.5pz, A)$, where A is any $O(1)$-approximate k-means algorithm with runtime $T(n)$ on inputs of size n.

Theorem 5. There exists an algorithm that outputs with a constant probability an $O(1)$-approximate solution to k-means with outliers while discarding $O(kz)$ outliers in expected time $O(kdn \log^2 n) + T(k \log n)$.

5 Experiment Results

This section presents our experimental results. The main conclusions are:

- Our algorithm NK-means almost always has the best performance and finds the largest proportion of ground truth outliers. In the cases where NK-means is not the best, it is competitive within 5%.
• Our algorithm results in a stable solution. Algorithms without theoretical guarantees have unstable objectives on some experiments.

• Our coreset construction SAMPLECORESET allows us to run slower, more sophisticated, algorithms with theoretical guarantees on large inputs. Despite their theoretical guarantees, their practical performance is not competitive.

The experiments show that for a modest overhead for preprocessing, NK-means makes k-means clustering more robust to noise.

Algorithms Implemented: Our new coreset construction makes it feasible to compare many algorithms for large data sets. Without this, most known algorithms for k-means with outliers become prohibitively slow even on modestly sized data sets. In our experiments, the coreset construction we utilize is SAMPLECORESET. More precisely, we first obtain a uniform sample by sampling each point independently with probability \(p = \min\left(\frac{2^{\frac{k}{z}} \log n}{z}, 1\right) \). Then, we run k-means++ on the sample to choose \(k + pz \) centers – the resulting coreset is of size \(k + pz \).

Next we describe the algorithms tested. Besides the coreset construction, we use k-means++ to mean running k-means++ and then Lloyd’s algorithm for brevity. For more details, see Supplementary Material E. In the following, “on coreset” refers to running the algorithm on the coreset as opposed to the entire input. For fair comparison, we ensure each algorithm discards exactly \(z \) outliers regardless of the theoretical guarantee. At the end of each algorithm’s execution, we discard the \(z \) farthest points from the chosen \(k \) centers as outliers.

Algorithms Tested:

1. **NK-means** (plus k-means++ on coreset): We use NK-means with k-means++ as the input \(A \). The algorithm requires a bound on the objective Opt. For this, we considered powers of 2 in the range of \(\left[n \min_{u,v \in X} d^2(u,v), n \max_{u,v \in X} d^2(u,v) \right] \).

2. **k-means++ (on the original input):** Note this algorithm is not designed to handle outliers.

3. **k-means++ (on coreset):** Same note as the above.

5. **Uniform Sample (conservative uniform sampling plus k-means++):** We run k-means++ on a uniform sample consisting of points sampled with probability \(1/(2z) \).

6. **k-means– (Chawla and Gionis, 2013) on coreset:** This algorithm is a variant of the Lloyd’s algorithm that executes each iteration of Lloyd’s excluding the farthest \(z \) points.

7. **Local search of Gupta et al. (2017) (on coreset):** This is an extension of the well-known k-means local search algorithm.

Experiments: We now describe our experiments which were done on both synthetic and real data sets.

Synthetic Data Experiments We first conducted experiments with synthetic data sets of various parameters. Every data set has \(n \) equal one million points and \(k, d \in \{10, 20\} \) and \(z \in \{10000, 50000\} \). Then we generated \(k \) random Gaussian balls. For the 1st Gaussian we choose a center \(c_i \) from \([-1/2, 1/2]^d\] uniformly at random. These are the true centers. Then, we add \(n/k \) points drawn from \(N(c_i, 1) \) for the 1st Gaussian. Next, we add noise. Points that are noise were sampled uniformly at random either from the same range \([-1/2, 1/2]^d\] or from a larger range \([-5/2, 5/2]^d\] depending on the experiment. We tagged the farthest \(z \) points from the centers \(\{c_1, \ldots, c_k\} \) as ground truth outliers. We consider all possible 16 combinations of \(k, d, z \) values and the noise range.

Each experiment was conducted 3 times, and we chose the result with the minimum objective and measured the total running time over all 3 runs. We aborted the execution if the algorithm failed to terminate within 4 hours. All experiments were performed on a cluster using a single node with 20 cores at 2301MHz and RAM size 128GB. Table 1 shows the number of times each algorithm aborted due to high run time. Also we measured the recall, which is defined as number of ground truth outliers reported by the algorithm, divided by \(z \), the number of points discarded. The recall was the same as the precision in all cases, so we use precision in the remaining text. We choose 0.8 as the threshold for the acceptable precision and counted the number of inputs for which each algorithm had precision lower than 0.8. Our algorithm NK-means, k-means++ on coreset, and k-means++ on the original input all had precision greater than 0.99 for all data sets and always terminated within 4 hours. The k-means++ results are excluded from the table. Details of the quality and runtime are deferred to the Supplementary Material E.

Real Data Experiments For further experiments, we used real data sets. We used the same normalization, noise addition method and the same value of \(k = 10 \) in all experiments. The data sets are SKIN-\(\Delta \), SUSY-\(\Delta \), and POWER-\(\Delta \). We normalized the data such that the mean and standard deviation are 0 and 1 on each
Table 2: Experiment results on real data sets with guarantees shown in Table 2. This gives a candidate NK-means found in Supplementary Material E. As before, we sampling algorithms from Table 2; all results can be in Table 1 and space constraints, we excluded the.

Real Data Sets:
1. **Skin-Δ** (ski). \(n = 245057, d = 3, k = 10, z = 0.01n \). Only the first 3 features were used.
2. **Susy-Δ** (sus). \(n = 5M, d = 18, k = 10, z = 0.01n \).
3. **Power-Δ** (pow). \(n = 2049280, d = 7, k = 10, z = 0.01n \). Out of 9 features, we dropped the first 2, date and time, that denote when the measurements were made.
4. **KddFull** (kdd). \(n = 4898431, d = 34, k = 3, z = 45747 \). Each instance has 41 features and we excluded 7 non-numeric features. This data set has 23 classes and 3 classes account for 98.3% of the data points. We considered the other 45747 data points as ground truth outliers.

Table 2 shows our experiment results for the above real data sets. Due to their high failure rate observed in Table 1 and space constraints, we excluded the primal-dual, local search, and conservative uniform sampling algorithms from Table 2; all results can be found in Supplementary Material E. As before, we executed each algorithm 3 times. It is worth noting that NK-MEANS is the **only** algorithm with the worst case guarantees shown in Table 2. This gives a candidate explanation for the stability of our algorithm’s solution quality across all data sets in comparison to the other algorithms considered.

The result shows that our algorithm NK-MEANS has the best objective for all data sets, except within 5% for Skin-5. Our algorithm is always competitive with the best precision. For KddFull where we didn’t add artificial noise, NK-MEANS significantly outperformed other algorithms in terms of objective. We can see that NK-MEANS pays extra in the run time to remove outliers, but this preprocessing enables stability, and competitive performance.

Table 1: Failure rates due to high run time or low precision.

<table>
<thead>
<tr>
<th></th>
<th>Primal-Dual</th>
<th>k-means-</th>
<th>Local Search</th>
<th>Uniform Sample</th>
<th>NK-MEANS</th>
</tr>
</thead>
<tbody>
<tr>
<td>run time > 4hrs</td>
<td>9/16</td>
<td>1/16</td>
<td>8/16</td>
<td>0/16</td>
<td>0/16</td>
</tr>
<tr>
<td>precision < 0.8</td>
<td>2/16</td>
<td>0/16</td>
<td>0/16</td>
<td>4/16</td>
<td>0/16</td>
</tr>
<tr>
<td>total failure</td>
<td>11/16</td>
<td>1/16</td>
<td>8/16</td>
<td>4/16</td>
<td>0/16</td>
</tr>
</tbody>
</table>

Table 2: Experiment results on real data sets with \(\Delta = 5, 10 \). The top, middle, bottom in each entry are the objective (normalized relative to NK-MEANS), precision, and run time (sec.), resp. Bold indicates the best in the category.

<table>
<thead>
<tr>
<th></th>
<th>Skin-5</th>
<th>Skin-10</th>
<th>Susy-5</th>
<th>Susy-10</th>
<th>Power-5</th>
<th>Power-10</th>
<th>KddFull</th>
</tr>
</thead>
<tbody>
<tr>
<td>NK-MEANS</td>
<td>(0.8065)</td>
<td>(0.9424)</td>
<td>0.8518</td>
<td>0.9774</td>
<td>0.6720</td>
<td>0.9679</td>
<td>0.6187</td>
</tr>
<tr>
<td>56</td>
<td>56</td>
<td>1136</td>
<td>1144</td>
<td>363</td>
<td>350</td>
<td>1027</td>
<td></td>
</tr>
<tr>
<td>k-means-</td>
<td>0.9740</td>
<td>1.5082</td>
<td>1.2096</td>
<td>1.1414</td>
<td>1.0587</td>
<td>1.0625</td>
<td>2.0259</td>
</tr>
<tr>
<td>0.7632</td>
<td>0.9044</td>
<td>0.8151</td>
<td>0.9753</td>
<td>0.6857</td>
<td>0.9673</td>
<td>(0.6436)</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>89</td>
<td>672</td>
<td>697</td>
<td>291</td>
<td>251</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>k-means++</td>
<td>1.0641</td>
<td>1.4417</td>
<td>1.0150</td>
<td>1.0091</td>
<td>1.0815</td>
<td>1.0876</td>
<td>1.5825</td>
</tr>
<tr>
<td>coreset</td>
<td>0.7635</td>
<td>0.9012</td>
<td>(0.8622)</td>
<td>(0.9865)</td>
<td>(0.7247)</td>
<td>(0.9681)</td>
<td>0.3088</td>
</tr>
<tr>
<td>39</td>
<td>37</td>
<td>462</td>
<td>465</td>
<td>177</td>
<td>142</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>k-means+++</td>
<td>(0.9525)</td>
<td>1.6676</td>
<td>1.0017</td>
<td>1.0351</td>
<td>1.0278</td>
<td>1.0535</td>
<td>1.5756</td>
</tr>
<tr>
<td>original</td>
<td>0.7775</td>
<td>0.8975</td>
<td>0.8478</td>
<td>0.9814</td>
<td>0.7116</td>
<td>0.9649</td>
<td>0.3259</td>
</tr>
<tr>
<td>34</td>
<td>43</td>
<td>6900</td>
<td>6054</td>
<td>689</td>
<td>943</td>
<td>652</td>
<td></td>
</tr>
</tbody>
</table>

```
7 Acknowledgments

S. Im and M. Montazer Qaem were supported in part by NSF grants CCF-1617653 and 1844939. B. Moseley and R. Zhou were supported in part by NSF grants CCF-1725543, 1733873, 1845146, a Google Research Award, a Bosch junior faculty chair and an Infor faculty award.

References


Fast Noise Removal for $k$-Means Clustering


