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1 Proof of Theorem 1 and Corollary 1

We demonstrate the following three lemmas to prove
Theorem 1 and Corollary 1.

Lemma 1. (Donsker and Varadhan, 1975;
McAllester, 2003) Let ϕ : F → R be any mea-
surable function. Then, the following inequality
holds:

E
p(f)

[ϕ(f)] ≤ DKL [p(f)||p′(f)] + log E
p′(f)

[
eϕ(f)

]
. (1)

Here, p and p′ are the probability distributions on F .

Lemma 2. (Simic, 2008) Let h : X → R be a concave
function, where X ∈ [a, b]. p is a probability distribu-
tion with respect to X. We denote the difference of
Jensen’s inequality by J(p,X), that is,

J(p,X) = h(E
p
[X])− E

p
[h(X)]. (2)

Then, the following inequality holds:

J(p,X) ≤ 2h(
a+ b

2
)− h(a)− h(b). (3)

Lemma 3. Let q(f |S) and q(f |S′) be the posteriors
with respect to f given S = (X,Y ) and S′ = (X ′, Y ′),
respectively. We assume that the prior of q(f |S) is the
same as that of q(f |S′). Then, the following inequality
holds:

DKL [q(f |S)||q(f |S′)] = DKL

[
q(fX+ |S))||q(fX+ |S′))

]
,

(4)
where X+ := X ∪X ′.

Proof. Let XΩ be a universal set of input data. We
denote XΩ/X+ by X∗. Then, from the chain rule of
KL divergence (Gray, 2011), the following equation
hold:

DKL [q(f |S)||q(f |S′)] (5)

=DKL

[
q(fX+

|S)||q(fX+
|S′)

]
+ E

q(fX+
|S)

[
DKL

[
q(fX∗ |fX+

, S)||q(fX∗ |fX+
, S′)

]]
.

(6)

We denote the prior of q(fX∗ , fX+ |S) and
q(fX∗ , fX+ |S′) by p(fX∗ , fX+). Then, from the
Bayesian theorem, the following equation holds:

q(fX∗ |fX+
, S)) =

p(fX∗ , fX+
|S)

p(fX+
|S)

(7)

=
p(Y |fX+

, X)p(fX∗ |fX+
)p(fX+

)

p(Y |X)

× p(Y |X)

p(Y |fX+ , X)p(fX+)
(8)

=
p(fX∗ , fX+)

p(fX+)
= p(fX∗ |fX+). (9)

Similarly, q(fX∗ |fX+
, S′) = p(fX∗ |fX+

) also holds.
Therefore, if the prior of q(f |S) is the same as that
of q(f |S′), the second term of Eq. (6) is zero.

Proof of Theorem 1

Proof. By using Lemmas 1 and 2, the upper bound
for R(q(f |S), q(f |S′)) is obtained as follows:

R(q(f |S), q(f |S′)) (10)

≤DKL [q(f |S)||q(f |S′)]

+ log E
q(f |S′)

[
eLD(f)

]
− E

q(f |S′)

[
log eLD(f)

]
(11)

≤DKL [q(f |S)||q(f |S′)] + 2 log
ea + eb

2
− a− b. (12)

By applying Lemma 1 to Eq. (1), we obtain Eq. (11).
Because the sum of the second and third terms
of Eq. (11) is the difference of Jensen’s inequality,
Lemma 2 can be applied to it. Moreover, from l ∈
[a, b], LD(f) ∈ [a, b] holds. Therefore, we obtain
Eq. (12).

Proof of Corollary 1

Proof. The proof is evident from Theorem 1 and
Lemma 3.
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Lemma 4. Let q(f |St) and q(f |St+1) be the GP poste-
riors given St = {(xi, yi)}ti=1 and St+1 = {(xi, yi)}t+1

i=1,
respectively. We assume that the prior of q(f |St) is
the same as that of q(f |St+1). Let µt and σt and β
be the mean and covariance functions of q(f |St) and
accuracy of Gaussian noise, respectively.Then the fol-
lowing equation holds:

DKL [q(f |St)||q(f |St+1)]

=
1

2
βσt(xt+1, xt+1)−

1

2
log (1 + βσt(xt+1, xt+1))

+
1

2

βσt(xt+1, xt+1)

σt(xt+1, xt+1) + β−1
(yt+1 − µt(xt+1))

2. (13)

Proof. From Lemma 3, the following equation holds:

DKL [q(f |St)||q(f |St+1)] = DKL [q(f |St)||q(f |St+1)] ,
(14)

where f := (f(x1), f(x2), · · · , f(xt+1)). When St+1 =
(Xt+1, Yt+1) is observed, q(f |St+1) can be described as
follows:

q(f |St+1) =
p(Yt+1|f , Xt+1)p(f)

p(Yt+1|Xt+1)

=
p(yt+1|f , xt+1)p(Yt|f , Xt)p(f)∫

p(yt+1|f ′, xt+1)p(Yt|f ′, Xt)p(f ′)df ′

=
p(yt+1|f , xt+1)p(Yt|Xt)q(f |St)∫
p(yt+1|f ′, xt+1)p(Yt|Xt)q(f ′|St)df ′

=
p(yt+1|f , xt+1)q(f |St)

p(yt+1|xt+1)
. (15)

From this equation, DKL [q(f |St−1)||q(f |St)] can be
rewritten as follows:

DKL [q(f |St)||q(f |St+1)]

= E
q(f |St)

[
log

q(f |St)p(yt+1|xt+1)

p(yt+1|f , xt+1)q(f |St)

]
= log p(yt+1|xt+1)− E

q(f |St)
[log p(yt+1|f , xt+1)]

= log

∫
p(yt+1|ft+1)q(ft+1|St)dft+1

−
∫

q(ft+1|St) log p(yt+1|ft+1)dft+1, (16)

where ft+1 := f(xt+1). The first term of Eq. (16)
becomes logarithm of a normal distribution since
p(yt+1|ft+1) and q(ft+1|St) are normal distributions.
Specifically, from p(yt+1|ft+1) = N (yt+1|ft+1, β

−1)
and p(ft+1|St) = N (ft+1|µt(xt+1), σt(xt+1, xt+1)), the

following equation holds:

log

∫
p(yt+1|ft+1)q(ft+1|St)dft+1

= logN (yt+1|µt(xt+1), σt(xt+1, xt+1) + β−1) (17)

The second term can be rewritten as follows:

−
∫

q(ft+1|St) log p(yt+1|ft+1)dft+1

= E
q(ft+1|St)

[
β

2
(yt+1 − ft+1)

2

]
+

1

2
log 2πβ−1

=
β

2

(
y2t+1 − 2yt+1E[ft+1] + E[f2

t+1]
)
+

1

2
log 2πβ−1

=
β

2
(yt+1 − µt(xt+1))

2 +
β

2
σt(xt+1, xt+1) +

1

2
log 2πβ−1

(18)

From the above, the lemma is derived as follows:

DKL [q(f |St)||q(f |St+1)]

=− (yt+1 − µt(xt+1))
2

2(σt(xt+1, xt+1) + β−1)
− 1

2
log 2π(σt(xt+1, xt+1) + β−1)

+
β

2
(yt+1 − µt(xt+1))

2 +
β

2
σt(xt+1, xt+1) +

1

2
log 2πβ−1

=
1

2
βσt(xt+1, xt+1)−

1

2
log (1 + βσt(xt+1, xt+1))

+
1

2

βσt(xt+1, xt+1)

σt(xt+1, xt+1) + β−1
(yt+1 − µt(xt+1))

2. (19)

3 Tightness of the proposed upper
bound

We experimentally evaluated the tightness of the pro-
posed upper bound of a gap between expected gener-
alization errors before and after adding a new sample
by comparing to the true gap approximated by using
a large amount of test data.

For the regression task, we used the artificial data
used in the experiment of Section 5, while, for the
classification task, we used the generated data yi =
sgn(sin(2πxi)), where sgn(·) is the sign function. The
kernel function and its hyperparameter are determined
in the same manner explained in Section 5.

Figures 1 (a) and 1 (b) show the gaps between the
expected generalization errors and their upper bounds
for (a) regression and (b) classification tasks. We see
that (1) increasing the data size leads to a tight upper
bound in both cases of regression and classification,
and the KL-divergence term converges to zero. More-
over, (2) the bound could be trivial when the KL diver-
gence takes a large value (> 1), particularly in classi-
fication setting. Also, as the KL-divergence is always
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Figure 1: Gap between the expected generalization
errors, and its upper bound for (a) regression and (b)
classification settings.

non-negative, when the gap of the expected general-
ization error is negative, the bound is meaningless. As
can be seen from Fig. 1 (a), the bound works well in a
regression setting and the offers reasonable tightness.
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