Proofs for the paper "Flexible distribution-free conditional predictive bands using density estimators"

Definition 5.1. Whenever \hat{F} is a cdf, \hat{F}^{-1} refers to the generalized inverse of \hat{F} .

Definition 5.2. $U_{\lfloor \alpha \rfloor}$ and $U_{\lceil \alpha \rceil}$ are the $\lfloor n^{-1}(n\alpha) \rfloor$ $\lceil n^{-1}(n\alpha) \rceil$ empirical quantiles of U_1, \ldots, U_n ,

Related to Dist-split

Proof of Theorem 2.2. Let $U_i = \hat{F}(Y_i | \mathbf{X}_i)$. Since (\mathbf{X}_i, Y_i) are i.i.d. continuous random variables and \hat{F} is continuous, obtain that U_i are i.i.d. continuous random variables.

$$1 - \alpha \le \mathbb{P}\left(U_{n+1} \in [U_{[0.5\alpha]}; U_{[1-0.5\alpha]}]\right) \le 1 - \alpha + (n+1)^{-1}.$$

The conclusion follows from noticing that

$$\mathbb{P}\left(U_{n+1} \in [U_{\lfloor 0.5\alpha \rfloor}; U_{\lceil 1-0.5\alpha \rceil}]\right)$$

= $\mathbb{P}\left(Y_{n+1} \in [\widehat{F}^{-1}(U_{\lfloor 0.5\alpha \rfloor} | \mathbf{X}_{n+1}); \widehat{F}^{-1}(U_{\lceil 1-0.5\alpha \rceil} | \mathbf{X}_{n+1})]\right)$
= $\mathbb{P}(Y_{n+1} \in C(\mathbf{X}_{n+1}))$

Lemma 5.3. Let $I_1 = \{i \le n : |\widehat{F}(Y_i|\mathbf{X}_i) - F(Y_i|\mathbf{X}_i)| < \eta_n^{1/3}\}$ and $I_2 = \{1, ..., n\} - I_1$. Under Assumption 2.3, $|I_2| = o_P(n)$ and $|I_1| = n + o_P(n)$.

Proof. Let $A_n = \left\{ \mathbb{E} \left[\sup_{y \in \mathcal{Y}} \left(\widehat{F}(y|\mathbf{X}) - F(y|\mathbf{X}) \right)^2 | \widehat{F} \right] \ge \eta_n \right\}$ and $B_n = \left\{ |\widehat{F}(Y|\mathbf{X}) - F(Y|\mathbf{X})| \ge \eta_n^{1/3} \right\}.$

$$\begin{split} \mathbb{P}(B_n) &= \mathbb{E}[\mathbb{P}(B_n | \hat{F}) \mathbb{I}(A_n)] + \mathbb{E}[\mathbb{P}(B_n | \hat{F}) \mathbb{I}(A_n^c)] \\ &\leq \mathbb{P}(A_n) + \mathbb{E}\left[\frac{\mathbb{E}[(\hat{F}(Y | \mathbf{X}) - F(Y | \mathbf{X}))^2 | \hat{F}]}{\eta_n^{2/3}} \mathbb{I}(A_n^c)\right] \\ &\leq \rho_n + \eta_n^{1/3} = o(1) \end{split}$$

Note that $|I_2| \sim \text{Binomial}(n, \mathbb{P}(B_n))$. Since $\mathbb{P}(B_n) = o(1)$, conclude that $|I_2| = o_P(n)$. That is, $|I_1| = n + o_P(n)$.

Lemma 5.4. Under Assumption 2.3, If $U_i = \hat{F}(Y_i | \mathbf{X}_i)$, then for every $\alpha \in (0, 1)$, $U_{\lfloor \alpha \rfloor} = \alpha + o_P(1) = U_{\lceil \alpha \rceil}$.

Proof. Let I_1 and I_2 be such as in Lemma 5.3. Also, let \hat{G}_1 , G_1 and G_0 be, the empirical quantiles of, respectively, $\{U_i : i \in I_1\}$, $\{F(Y_i | \mathbf{X}_i) : i \in I_1\}$, and $\{F(Y_i | \mathbf{X}_i) : i \leq n\}$. By definition of I_1 , for every $\alpha^* \in [0, 1]$, $\hat{G}_1^{-1}(\alpha^*) = G_1^{-1}(\alpha^*) + o(1)$. Also, $G_0^{-1}(\alpha^*) = \alpha^* + o_P(1)$. Therefore, since

$$G_0^{-1}\left(\frac{|I_1|\alpha^*}{n}\right) \le G_1^{-1}(\alpha^*) \le G_0^{-1}\left(\frac{|I_1|\alpha^* + |I_2|}{n}\right)$$

conclude that $\hat{G}_1^{-1}(\alpha^*) = \alpha^* + o_P(1)$. Finally, since

$$\hat{G}^{-1}\left(\frac{n\alpha-|I_2|}{|I_1|}\right) \leq U_{\lfloor \alpha \rfloor} \leq U_{\lceil \alpha \rceil} \leq \hat{G}^{-1}\left(\frac{n\alpha}{|I_1|}\right),$$

Conclude that $U_{\lfloor \alpha \rfloor} = \alpha + o_P(1) = U_{\lceil \alpha \rceil}$.

Lemma 5.5. Let $U_i = \hat{F}(Y_i | \mathbf{X}_i)$. Under Assumptions 2.3 and 2.4,

$$\widehat{F}^{-1}(U_{[0.5\alpha]}|\mathbf{X}_{n+1}) = F^{-1}(0.5\alpha|\mathbf{X}_{n+1}) + o_P(1)$$

$$\widehat{F}^{-1}(U_{[1-0.5\alpha]}|\mathbf{X}_{n+1}) = F^{-1}(1-0.5\alpha|\mathbf{X}_{n+1}) + o_P(1)$$

Proof. In order to prove the first equality, it is enough to show that $F^{-1}(U_{[0.5\alpha]}|\mathbf{X}_{n+1}) = F^{-1}(0.5\alpha|\mathbf{X}_{n+1}) + o_P(1)$ and that $\hat{F}^{-1}(U_{[0.5\alpha]}|\mathbf{X}_{n+1}) = F^{-1}(U_{[0.5\alpha]}|\mathbf{X}_{n+1}) + o_P(1)$. The first part follows from Lemma 5.4 and the continuity of $F(y|\mathbf{x})$ (Assumption 2.4). For the second part, note that, if $\sup_{y} |\hat{F}(y|\mathbf{x}) - F(y|\mathbf{x})| < \eta_n$, then, for every α^* , $|\hat{F}^{-1}(\alpha^*) - F^{-1}(\alpha^*)| \le \eta_n \left(\inf_{y} \frac{dF(y|\mathbf{x})}{dy}\right)^{-1}$. Using this observation, the proof of the second part follows from Assumption 2.4, and observing that $U_{[0.5\alpha]} = 0.5\alpha + o_P(1)$ (Lemma 5.4) and $\mathbb{P}(\sup_{y} |\hat{F}(y|\mathbf{x}) - F(y|\mathbf{x})| \ge \eta_n) = o(1)$ (Assumption 2.3).

The proof for the $1 - .5\alpha$ quantile is analogous to the one for the $.5\alpha$ quantile.

Proof of Theorem 2.5. Follows directly from Lemma 5.5. \Box

Related to CD-split

Proof Theorem 3.3. Let{ $i_1, ..., i_{n_j}$ } = { $i : \mathbf{X}_i \in A(\mathbf{x}_{n+1})$ }, $U_l = \hat{f}(Y_{i_l}|\mathbf{X}_{i_l})$, for $l = 1, ..., n_j$, and $U_{n_j+1} = \hat{f}(Y_{n+1}|\mathbf{X}_{n+1})$. Since $(\mathbf{X}_1, Y_1), ..., (\mathbf{X}_{n_j}, Y_{n_j}), (\mathbf{X}_{n+1}, Y_{n+1})$ are i.i.d. random variables, obtain that U_i are i.i.d. random variables conditional on the event $\mathbf{X}_{n+1} \in A(\mathbf{x}_{n+1})$ and on $i_1, ..., i_{n_j}$. Therefore,

$$1 - \alpha \leq \mathbb{P}\left(U_{m+1} \geq U_{[\alpha]} | \mathbf{X}_{n+1} \in A(\mathbf{x}_{n+1}), i_1, \dots, i_{n_j}\right)$$

The conclusion follows from the fact that $Y_{n+1} \in C(\mathbf{X}_{n+1}) \iff U_{m+1} \ge U_{[1-\alpha]}$ and because this holds for every sequence i_1, \dots, i_{n_j} .

Proof of Theorem 3.8. Let $U_i := f(Y_i | \mathbf{x}_i), i = 1, ..., m$, $U_{n+1} := f(Y_{n+1} | \mathbf{x}_{n+1})$, and $W := (\mathbf{x}_1, ..., \mathbf{x}_m, \mathbf{x}_{n+1})$. If $g_{\mathbf{x}_i} = g_{\mathbf{x}_{n+1}}$ for every i = 1, ..., m, then $U_1, ..., U_m, U_{n+1}$ are i.i.d. conditional on W. Indeed, for every $t \in \mathbb{R}$,

$$\mathbb{P}(U_i \ge t | W) = \mathbb{P}(f(Y_i | \mathbf{x}_i) \ge t | \mathbf{x}_i)$$
$$= \mathbb{P}(f(Y_{n+1} | \mathbf{x}_{n+1}) \ge t | \mathbf{x}_{n+1})$$
$$= \mathbb{P}(U_{n+1} \ge t | \mathbf{x}_{n+1}),$$

where the next-to-last equality follows from the definition of the profile of the density.

For every $K \in \mathbb{R}$, let $Q(K) := |\{i : f(Y_i | \mathbf{x}_i) \ge K\}|$. Because U_i 's are conditionally independent and identically distributed, then $Q(K)|W \sim \text{Binomial}(m, \mathbb{P}(f(Y_1 | \mathbf{x}_1) \ge K))$. It follows that $Q(K)/m \xrightarrow{m \to \infty}{a.s.} \mathbb{P}(f(Y_1 | \mathbf{x}_1) \ge K)$. In particular, $Q(t^*)/m \xrightarrow{m \to \infty}{a.s.} 1 - \alpha$. Now, by definition $Q(T_m)/m \xrightarrow{m \to \infty}{a.s.} 1 - \alpha$. Conclude that $T_m \xrightarrow{m \to \infty}{a.s.} t^*$.

Proof of Theorem 3.9. Item (i) was already shown as part of the proof of Theorem 3.8. To show (ii), assume that $t^*(\mathbf{x}_a, \alpha) = t^*(\mathbf{x}_b, \alpha)$ for every $\alpha \in (0, 1)$. Now, notice that $t^*(\mathbf{x}_a, \alpha)$ is such that $g_{\mathbf{x}_a}(t^*(\mathbf{x}_a, \alpha)) = 1 - \alpha$. Conclude that $g_{\mathbf{x}_a}(t^*(\mathbf{x}_a, \alpha)) = g_{\mathbf{x}_b}(t^*(\mathbf{x}_b, \alpha))$ for every $\alpha \in (0, 1)$. Now, because \hat{f} is continuous, $\{t^*(\mathbf{x}_a, \alpha) : \alpha \in (0, 1)\} = \text{Im}(\hat{f}(\cdot|\mathbf{x}_a))$. Thus, $g_{\mathbf{x}_a} = g_{\mathbf{x}_b}$, and therefore $\mathbf{x}_a \sim \mathbf{x}_b$.