
Flexible distribution-free conditional predictive bands using density estimators

Proofs for the paper “Flexible
distribution-free conditional predictive
bands using density estimators"

Definition 5.1. Whenever F̂ is a cdf, F̂−1 refers to the gen-
eralized inverse of F̂ .

Definition 5.2. Ubαc and Udαe are the bn−1(nα)c
dn−1(nα)e empirical quantiles of U1, . . . ,Un ,

Related to Dist-split

Proof of Theorem 2.2. Let Ui = F̂ (Yi |Xi ). Since (Xi ,Yi ) are
i.i.d. continuous random variables and F̂ is continuous,
obtain that Ui are i.i.d. continuous random variables.

1−α≤P(
Un+1 ∈ [Ub0.5αc;Ud1−0.5αe]

)≤ 1−α+ (n +1)−1.

The conclusion follows from noticing that

P
(
Un+1 ∈ [Ub0.5αc;Ud1−0.5αe]

)
=P(

Yn+1 ∈ [F̂−1(Ub0.5αc|Xn+1); F̂−1(Ud1−0.5αe|Xn+1)]
)

=P(Yn+1 ∈C (Xn+1))

Lemma 5.3. Let I1 = {
i ≤ n : |F̂ (Yi |Xi )−F (Yi |Xi )| < η1/3

n

}
and I2 = {1, . . . ,n}− I1. Under Assumption 2.3, |I2| = oP (n)
and |I1| = n +oP (n).

Proof. Let An =
{
E
[

supy∈Y

(
F̂ (y |X)−F (y |X)

)2 ∣∣F̂]
≥ ηn

}
and Bn = {|F̂ (Y |X)−F (Y |X)| ≥ η1/3

n

}
.

P(Bn) = E[P(Bn |F̂ )I(An)]+E[P(Bn |F̂ )I(Ac
n)]

≤P(An)+E
[
E[(F̂ (Y |X)−F (Y |X))2|F̂ ]

η2/3
n

I(Ac
n)

]
≤ ρn +η1/3

n = o(1)

Note that |I2| ∼ Binomial(n,P(Bn)). Since P(Bn) = o(1),
conclude that |I2| = oP (n). That is, |I1| = n +oP (n).

Lemma 5.4. Under Assumption 2.3, If Ui = F̂ (Yi |Xi ), then
for every α ∈ (0,1), Ubαc =α+oP (1) =Udαe.

Proof. Let I1 and I2 be such as in Lemma 5.3. Also, let
Ĝ1, G1 and G0 be, the empirical quantiles of, respectively,
{Ui : i ∈ I1}, {F (Yi |Xi ) : i ∈ I1}, and {F (Yi |Xi ) : i ≤ n}. By
definition of I1, for every α∗ ∈ [0,1], Ĝ−1

1 (α∗) =G−1
1 (α∗)+

o(1). Also, G−1
0 (α∗) =α∗+oP (1). Therefore, since

G−1
0

( |I1|α∗

n

)
≤G−1

1 (α∗) ≤G−1
0

( |I1|α∗+|I2|
n

)
,

conclude that Ĝ−1
1 (α∗) =α∗+oP (1). Finally, since

Ĝ−1
(

nα−|I2|
|I1|

)
≤Ubαc ≤Udαe ≤ Ĝ−1

(
nα

|I1|
)

,

Conclude that Ubαc =α+oP (1) =Udαe.

Lemma 5.5. Let Ui = F̂ (Yi |Xi ). Under Assumptions 2.3
and 2.4,

F̂−1(U[0.5α]|Xn+1) = F−1(0.5α|Xn+1)+oP (1)

F̂−1(U[1−0.5α]|Xn+1) = F−1(1−0.5α|Xn+1)+oP (1)

Proof. In order to prove the first equality, it is enough to
show that F−1(U[0.5α]|Xn+1) = F−1(0.5α|Xn+1)+oP (1) and
that F̂−1(U[0.5α]|Xn+1) = F−1(U[0.5α]|Xn+1) + oP (1). The
first part follows from Lemma 5.4 and the continuity of
F (y |x) (Assumption 2.4). For the second part, note that, if
supy |F̂ (y |x)−F (y |x)| < ηn , then, for every α∗, |F̂−1(α∗)−
F−1(α∗)| ≤ ηn

(
infy

dF (y |x)
d y

)−1
. Using this observation, the

proof of the second part follows from Assumption 2.4,
and observing that U[0.5α] = 0.5α+oP (1) (Lemma 5.4) and
P(supy |F̂ (y |x)−F (y |x)| ≥ ηn) = o(1) (Assumption 2.3).

The proof for the 1− .5α quantile is analogous to the one
for the .5α quantile.

Proof of Theorem 2.5. Follows directly from Lemma 5.5.

Related to CD-split

Proof Theorem 3.3. Let{i1, . . . , in j } = {i : Xi ∈ A(xn+1)},

Ul = f̂ (Yil |Xil ), for l = 1, . . . ,n j , and Un j +1 =
f̂ (Yn+1|Xn+1). Since (X1,Y1), . . . , (Xn j ,Yn j ), (Xn+1,Yn+1)
are i.i.d. random variables, obtain that Ui are i.i.d. ran-
dom variables conditional on the event Xn+1 ∈ A(xn+1)
and on i1, . . . , in j . Therefore,

1−α≤P
(
Um+1 ≥U[α]|Xn+1 ∈ A(xn+1), i1, . . . , in j

)
The conclusion follows from the fact that Yn+1 ∈
C (Xn+1) ⇐⇒ Um+1 ≥ U[1−α] and because this holds for
every sequence i1, . . . , in j .

Proof of Theorem 3.8. Let Ui := f (Yi |xi ), i = 1, . . . ,m,
Un+1 := f (Yn+1|xn+1), and W := (x1, . . . ,xm ,xn+1). If gxi =
gxn+1 for every i = 1, . . . ,m, then U1, . . . ,Um ,Un+1 are i.i.d.
conditional on W . Indeed, for every t ∈R,

P(Ui ≥ t |W ) =P( f (Yi |xi ) ≥ t |xi )

=P( f (Yn+1|xn+1) ≥ t |xn+1)

=P(Un+1 ≥ t |xn+1),

where the next-to-last equality follows from the defini-
tion of the profile of the density.

For every K ∈ R, let Q(K ) := ∣∣{i : f (Yi |xi ) ≥ K }
∣∣. Be-

cause Ui ’s are conditionally independent and identically
distributed, then Q(K )|W ∼ Binomial(m,P( f (Y1|x1) ≥
K )). It follows that Q(K )/m

m−→∞−−−−−→
a.s.

P( f (Y1|x1) ≥ K ). In
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particular, Q(t∗)/m
m−→∞−−−−−→

a.s.
1 − α. Now, by definition

Q(Tm)/m
m−→∞−−−−−→

a.s.
1−α. Conclude that Tm

m−→∞−−−−−→
a.s.

t∗.

Proof of Theorem 3.9. Item (i) was already shown as part
of the proof of Theorem 3.8. To show (ii), assume that
t∗(xa ,α) = t∗(xb ,α) for every α ∈ (0,1). Now, notice
that t∗(xa ,α) is such that gxa (t∗(xa ,α)) = 1−α. Conclude
that gxa (t∗(xa ,α)) = gxb (t∗(xb ,α)) for every α ∈ (0,1).
Now, because f̂ is continuous, {t∗(xa ,α) : α ∈ (0,1)} =
Im( f̂ (·|xa)). Thus, gxa = gxb , and therefore xa ∼ xb .


