Bandit optimisation of functions in the Matérn kernel RKHS

A Proving lemma 5, concentration result

Lemma 10. Let (Q,F,(Fi)i>0,Pr) be a filtered space, with Fy the trivial sigma algebra. Let (x)i>1 be a
previsible sequence x4: ) — R% and let (€t)e>1 with €:Q — R be a sequence of random variables adapted to
the filtration, with €, 1-subGaussian conditionally on Fy_1 for all t. Let (Ny)i>1 be a non-decreasing sequence

of integers. Let (A)i>0 be a sequence of random sets Ap: Q) — 22X, such that Ay is Fo-measurable, (Ay)i>1
previsible and 1 < |As|< Ny almost surely for all t > 0. Let k: X x X — R be a symmetric, positive-semidefinite
kernel. Then for any given § € (0,1) and n > 0, for allt > 0 and all A € A; we have

letell(rareprnn-1)-1< 2log (det(KtA +1I+ 77—7)§Nt/5) ;
with probability 1 — &, where €1, for the random vector that is the concatenation of (e.:x, € A)'_,.

Proof. For a function g: X — R and a sequence of real numbers (a;);>1, define

AP" = exp {(g(we) + ar)er — 5(g(ae) +ar)?},

with AJ™ defined as equal to 1 almost surely. Then A{" is F; measurable for all ¢ > 0. By the conditional
subGaussianity of ¢;, we have that E[A?"|F;_;] < 1 for all t+ > 0 almost surely. For a set A € 2%, define

t
ME(4) = AF" T (Agm)He=e),
z=1

Then, for any A € 2% and all t > 1, EIM{"(A)|F—1] < M?"(A) and EIMI"(A)] < 1.

Let ¢ = ((¢)t>1 be a sequence of independent and identically distributed Gaussian random variables with mean
0 and variance 1 > 0, independent of Fo, = (J;~ F¢- Let h be a random real valued function on A distributed

according to the Gaussian process measure GP(0, k| ,), where k|, is the restriction of k£ to A. Define
M{' = E[M " (4)| Foc].

Then M7 is itself a non-negative supermartingale bounded in expectation by 1. Define ]\ZA = M /N;. Since

N; > 1 for all £ > 0 and is non-decreasing, J\ZA is a non-negative supermartingale bounded in expectation by
1/Ny.

For A € B(X), let Bf = {w: M > 1/} and B, = Uaea, Bi*. Define the stopping time 7(w) = inf{t:w € By}.
Then
Pr[BA|F,_1] < SE[MA|F, 1] = SE[MA|F, _1]/N, < §/N, M2 | as.

We now examine the probability of B,. We have

Pr(B,| =E[Pr[B,|F, 1] < Y E[I{A€ A }Pr(BMF. ]| <6/N, > E[1{de AIM1,].
A€EB(X) AEB(X)

The final expectation is complicated by the fact that the event {A € A;} is not independent of M ;. However,
{Ac Ay c{Ae Z:ZC B(X),|Z|< Ny}

The latter event holds with probability 1 for all ¢ > 1, and is therefore independent of MtA. This gives,

Pr(B,| <§/N, Y E[{Ae A M | <6/N, > E[1{A€ 2:[Z[< NJME ] (5)
AEB(X) AeB(X)
= 6/N;E[M/,] Y E[1{A€ Z:|(Z|< N} <, (6)
A€B(X)

and consequently
Pr[Ui>0B:] = Pr[r < o0] = Pr[B,, T < o0] < Pr[B;] <. (7
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Finally, by comparing with the proof of Theorem 1 in Chowdhury and Gopalan (2017), it can be verified that
1
M = det(K + T+ nD) ™% exp { 3lleftyll s (repsnny1) 1 | -

The statement of the lemma follows from using this expression with equation (7), and noting that logarithms
preserve order. O

Proof of lemma 5. To prove lemma 5, first since |A4;|< |/Tt|§ Nt, we can use N, from lemma 6 as the bound
N; required for lemma 10. Then the proof of lemma 5 follows the proof of theorem 2 in Chowdhury and Gopalan
(2017), with our concentration inequality, lemma 10, used instead of their theorem 1. O



