

A Proving lemma 5, concentration result

Lemma 10. Let $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \Pr)$ be a filtered space, with \mathcal{F}_0 the trivial sigma algebra. Let $(x_t)_{t \geq 1}$ be a previsible sequence $x_t: \Omega \mapsto \mathbb{R}^d$ and let $(\epsilon_t)_{t \geq 1}$ with $\epsilon_t: \Omega \mapsto \mathbb{R}$ be a sequence of random variables adapted to the filtration, with ϵ_t 1-subGaussian conditionally on \mathcal{F}_{t-1} for all t . Let $(N_t)_{t \geq 1}$ be a non-decreasing sequence of integers. Let $(\mathcal{A}_t)_{t \geq 0}$ be a sequence of random sets $\mathcal{A}_t: \Omega \mapsto 2^{\mathcal{X}}$, such that \mathcal{A}_0 is \mathcal{F}_0 -measurable, $(\mathcal{A}_t)_{t \geq 1}$ previsible and $1 \leq |\mathcal{A}_t| \leq N_t$ almost surely for all $t \geq 0$. Let $k: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ be a symmetric, positive-semidefinite kernel. Then for any given $\delta \in (0, 1)$ and $\eta > 0$, for all $t \geq 0$ and all $A \in \mathcal{A}_t$ we have

$$\|\epsilon_{1:t}^A\|_{(I + (K_t^A + \eta I)^{-1})^{-1}} \leq 2 \log \left(\det(K_t^A + I + \eta I)^{\frac{1}{2}} N_t / \delta \right),$$

with probability $1 - \delta$, where $\epsilon_{1:t}^A$ for the random vector that is the concatenation of $(\epsilon_z: x_z \in A)_{z=1}^t$.

Proof. For a function $g: \mathcal{X} \mapsto \mathbb{R}$ and a sequence of real numbers $(a_t)_{t \geq 1}$, define

$$\Delta_t^{g,n} = \exp \left\{ (g(x_t) + a_t) \epsilon_t - \frac{1}{2} (g(x_t) + a_t)^2 \right\},$$

with $\Delta_0^{g,n}$ defined as equal to 1 almost surely. Then $\Delta_t^{g,n}$ is \mathcal{F}_t measurable for all $t \geq 0$. By the conditional subGaussianity of ϵ_t , we have that $\mathbb{E}[\Delta_t^{g,n} | \mathcal{F}_{t-1}] \leq 1$ for all $t \geq 0$ almost surely. For a set $A \in 2^{\mathcal{X}}$, define

$$\mathcal{M}_t^{g,n}(A) = \Delta_0^{g,n} \prod_{z=1}^t (\Delta_z^{g,n})^{1\{\mathcal{X}_z \in A\}}.$$

Then, for any $A \in 2^{\mathcal{X}}$ and all $t \geq 1$, $\mathbb{E}[\mathcal{M}_t^{g,n}(A) | \mathcal{F}_{t-1}] \leq \mathcal{M}_{t-1}^{g,n}(A)$ and $\mathbb{E}[\mathcal{M}_t^{g,n}(A)] \leq 1$.

Let $\zeta = (\zeta_t)_{t \geq 1}$ be a sequence of independent and identically distributed Gaussian random variables with mean 0 and variance $\eta > 0$, independent of $\mathcal{F}_\infty = \bigcup_{t \geq 0} \mathcal{F}_t$. Let h be a random real valued function on A distributed according to the Gaussian process measure $\mathcal{GP}(\bar{0}, k|_A)$, where $k|_A$ is the restriction of k to A . Define

$$M_t^A = \mathbb{E}[\mathcal{M}_t^{h,\zeta}(A) | \mathcal{F}_\infty].$$

Then M_t^A is itself a non-negative supermartingale bounded in expectation by 1. Define $\widetilde{M}_t^A = M_t^A / N_t$. Since $N_t \geq 1$ for all $t \geq 0$ and is non-decreasing, \widetilde{M}_t^A is a non-negative supermartingale bounded in expectation by $1/N_t$.

For $A \in \mathcal{B}(\mathcal{X})$, let $B_t^A = \{\omega: \widetilde{M}_t^A > 1/\delta\}$ and $B_t = \bigcup_{A \in \mathcal{A}_t} B_t^A$. Define the stopping time $\tau(\omega) = \inf\{t: \omega \in B_t\}$. Then

$$\Pr[B_\tau^A | \mathcal{F}_{\tau-1}] \leq \delta \mathbb{E}[\widetilde{M}_\tau^A | \mathcal{F}_{\tau-1}] = \delta \mathbb{E}[M_\tau^A | \mathcal{F}_{\tau-1}] / N_\tau \leq \delta / N_\tau M_{\tau-1}^A \quad \text{a.s.}$$

We now examine the probability of B_τ . We have

$$\Pr[B_\tau] = \mathbb{E}[\Pr[B_\tau | \mathcal{F}_{\tau-1}]] \leq \sum_{A \in \mathcal{B}(\mathcal{X})} \mathbb{E}[1\{A \in \mathcal{A}_\tau\} \Pr[B_\tau^A | \mathcal{F}_{\tau-1}]] \leq \delta / N_\tau \sum_{A \in \mathcal{B}(\mathcal{X})} \mathbb{E}[1\{A \in \mathcal{A}_\tau\} M_{\tau-1}^A].$$

The final expectation is complicated by the fact that the event $\{A \in \mathcal{A}_t\}$ is not independent of M_{t-1}^A . However,

$$\{A \in \mathcal{A}_t\} \subset \{A \in \mathcal{Z}: \mathcal{Z} \subset \mathcal{B}(X), |\mathcal{Z}| \leq N_t\}.$$

The latter event holds with probability 1 for all $t \geq 1$, and is therefore independent of M_{t-1}^A . This gives,

$$\Pr[B_\tau] \leq \delta / N_\tau \sum_{A \in \mathcal{B}(\mathcal{X})} \mathbb{E}[1\{A \in \mathcal{A}_\tau\} M_{\tau-1}^A] \leq \delta / N_\tau \sum_{A \in \mathcal{B}(\mathcal{X})} \mathbb{E}[1\{A \in \mathcal{Z}: |\mathcal{Z}| \leq N_t\} M_{\tau-1}^A] \quad (5)$$

$$= \delta / N_\tau \mathbb{E}[M_{\tau-1}^A] \sum_{A \in \mathcal{B}(\mathcal{X})} \mathbb{E}[1\{A \in \mathcal{Z}: |\mathcal{Z}| \leq N_t\}] \leq \delta, \quad (6)$$

and consequently

$$\Pr[\bigcup_{t \geq 0} B_t] = \Pr[\tau < \infty] = \Pr[B_\tau, \tau < \infty] \leq \Pr[B_\tau] \leq \delta. \quad (7)$$

Finally, by comparing with the proof of Theorem 1 in Chowdhury and Gopalan (2017), it can be verified that

$$M_t^A = \det(K_t^A + I + \eta I)^{-\frac{1}{2}} \exp \left\{ \frac{1}{2} \|\epsilon_{1:t}^A\|_{(I + (K_t^A + \eta I)^{-1})^{-1}} \right\}.$$

The statement of the lemma follows from using this expression with equation (7), and noting that logarithms preserve order. \square

Proof of lemma 5. To prove lemma 5, first since $|\mathcal{A}_t| \leq |\tilde{\mathcal{A}}_t| \leq \tilde{N}_t$, we can use \tilde{N}_t from lemma 6 as the bound N_t required for lemma 10. Then the proof of lemma 5 follows the proof of theorem 2 in Chowdhury and Gopalan (2017), with our concentration inequality, lemma 10, used instead of their theorem 1. \square