
Bandit optimisation of functions in the Matérn kernel RKHS

A Proving lemma 5, concentration result

Lemma 10. Let (Ω,F , (Ft)t≥0,Pr) be a filtered space, with F0 the trivial sigma algebra. Let (xt)t≥1 be a
previsible sequence xt: Ω 7→ Rd and let (εt)t≥1 with εt: Ω 7→ R be a sequence of random variables adapted to
the filtration, with εt 1-subGaussian conditionally on Ft−1 for all t. Let (Nt)t≥1 be a non-decreasing sequence

of integers. Let (At)t≥0 be a sequence of random sets At: Ω 7→ 22X , such that A0 is F0-measurable, (At)t≥1

previsible and 1 ≤ |At|< Nt almost surely for all t ≥ 0. Let k:X ×X 7→ R be a symmetric, positive-semidefinite
kernel. Then for any given δ ∈ (0, 1) and η > 0, for all t ≥ 0 and all A ∈ At we have

‖εA1:t‖(I+(KA
t +ηI)−1)−1≤ 2 log

(
det(KA

t + I + ηI)
1
2Nt/δ

)
,

with probability 1− δ, where εA1:t for the random vector that is the concatenation of (εz:xz ∈ A)tz=1.

Proof. For a function g:X 7→ R and a sequence of real numbers (at)t≥1, define

∆g,n
t = exp

{
(g(xt) + at)εt − 1

2 (g(xt) + at)
2
}
,

with ∆g,n
0 defined as equal to 1 almost surely. Then ∆g,n

t is Ft measurable for all t ≥ 0. By the conditional
subGaussianity of εt, we have that E[∆g,n

t |Ft−1] ≤ 1 for all t ≥ 0 almost surely. For a set A ∈ 2X , define

Mg,n
t (A) = ∆g,n

0

t∏
z=1

(∆g,n
z )1{xz∈A}.

Then, for any A ∈ 2X and all t ≥ 1, E[Mg,n
t (A)|Ft−1] ≤Mg,n

t−1(A) and E[Mg,n
t (A)] ≤ 1.

Let ζ = (ζt)t≥1 be a sequence of independent and identically distributed Gaussian random variables with mean
0 and variance η > 0, independent of F∞ =

⋃
t≥0 Ft. Let h be a random real valued function on A distributed

according to the Gaussian process measure GP(0, k|A), where k|A is the restriction of k to A. Define

MA
t = E[Mh,ζ

t (A)|F∞].

Then MA
t is itself a non-negative supermartingale bounded in expectation by 1. Define M̃A

t = MA
t /Nt. Since

Nt ≥ 1 for all t ≥ 0 and is non-decreasing, M̃A
t is a non-negative supermartingale bounded in expectation by

1/Nt.

For A ∈ B(X ), let BAt = {ω: M̃A
t > 1/δ} and Bt =

⋃
A∈At B

A
t . Define the stopping time τ(ω) = inf{t:ω ∈ Bt}.

Then
Pr[BAτ |Fτ−1] ≤ δE[M̃A

τ |Fτ−1] = δE[MA
τ |Fτ−1]/Nτ ≤ δ/NτMA

τ−1 a.s.

We now examine the probability of Bτ . We have

Pr[Bτ ] = E [Pr[Bτ |Fτ−1]] ≤
∑

A∈B(X )

E
[
1{A ∈ Aτ}Pr[BAτ |Fτ−1]

]
≤ δ/Nτ

∑
A∈B(X )

E
[
1{A ∈ Aτ}MA

τ−1

]
.

The final expectation is complicated by the fact that the event {A ∈ At} is not independent of MA
t−1. However,

{A ∈ At} ⊂ {A ∈ Z:Z ⊂ B(X), |Z|≤ Nt}.

The latter event holds with probability 1 for all t ≥ 1, and is therefore independent of MA
t . This gives,

Pr[Bτ ] ≤ δ/Nτ
∑

A∈B(X )

E
[
1{A ∈ Aτ}MA

τ−1

]
≤ δ/Nτ

∑
A∈B(X )

E
[
1{A ∈ Z: |Z|≤ Nt}MA

τ−1

]
(5)

= δ/NτE[MA
τ−1]

∑
A∈B(X )

E [1{A ∈ Z: |Z|≤ Nt}] ≤ δ, (6)

and consequently
Pr [∪t≥0Bt] = Pr[τ <∞] = Pr[Bτ , τ <∞] ≤ Pr[Bτ ] ≤ δ. (7)
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Finally, by comparing with the proof of Theorem 1 in Chowdhury and Gopalan (2017), it can be verified that

MA
t = det(KA

t + I + ηI)−
1
2 exp

{
1
2‖ε

A
1:t‖(I+(KA

t +ηI)−1)−1

}
.

The statement of the lemma follows from using this expression with equation (7), and noting that logarithms
preserve order.

Proof of lemma 5. To prove lemma 5, first since |At|≤ |Ãt|≤ Ñt, we can use Ñt from lemma 6 as the bound
Nt required for lemma 10. Then the proof of lemma 5 follows the proof of theorem 2 in Chowdhury and Gopalan
(2017), with our concentration inequality, lemma 10, used instead of their theorem 1.


