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Abstract

We consider the problem of optimising func-
tions in the reproducing kernel Hilbert space
(RKHS) of a Matérn kernel with smoothness
parameter ν over the domain [0, 1]d under
noisy bandit feedback. Our contribution, the
π-GP-UCB algorithm, is the first practical
approach with guaranteed sublinear regret
for all ν > 1 and d ≥ 1. Empirical validation
suggests better performance and drastically
improved computational scalablity compared
with its predecessor, Improved GP-UCB.

1 Introduction

We consider the black-box function optimisation prob-
lem using the stochastic bandit formalism of sequential
decision making (Robbins, 1952). Under this model,
we consider an agent that sequentially selects an action
xt from an action set X at each time step t = 1, . . . , T
for T ∈ N and observes

y(xt) = f(xt) + εt,

where y is the reward function, f is the expected re-
ward function and we assume εt is conditionally sub-
Gaussian given xt. The agent’s goal is to minimise
regret, given by

RT =

T∑
t=1

f(x?)− f(xt),

where f(x?) is the reward associated with an optimal
arm. Regret is closely linked to bounds on the con-
vergence of black-box optimisation in the presence of
noise: bounding RT by a quantity sublinear in T im-
plies f(x?) −maxt≤T f(xt) ≤ RT /T → 0 as T → ∞,
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and so an algorithm achieving such a bound will con-
verge to a subset of the global optima of f .

A standard approach to the bandit problem is to con-
struct a 1 − δ confidence upper bound for f , of the
form

µt−1(x) + βt(δ)σt−1(x),

where µt−1 and σt−1 are the mean and standard de-
viation predictors for f given by a suitable estimator
based on observations prior to time t, and βt(δ) is a
confidence width multiplier that ensures the expres-
sion is an upper bound on f with probability at least
1 − δ. Algorithms then select xt ∈ X that maximises
this bound (Auer, 2002; Auer et al., 2002; Auer and
Ortner, 2010). This upper confidence bound (UCB)
strategy naturally balances exploration, sampling in
regions where the uncertainty is large, with exploita-
tion, focusing on regions where the mean is large,
and leads to algorithms with minimax optimal regret
bounds for the case where X is finite (Audibert and
Bubeck, 2009).

From the perspective of black-box function optimisa-
tion, a particularly interesting bandit problem is the
kernelised continuum-armed bandit (Srinivas et al.,
2010). Here, f is assumed to be in the closure of
functions on [0, 1]d expressible as a linear combina-
tion of a feature embedding parameterised by a ker-
nel k. The properties of the functions in the resulting
space, referred to as the RKHS of k, are determined
by the choice of the kernel. For example, the RKHS
corresponding to the linear kernel contains linear func-
tions, and in this case existing kernelised bandit algo-
rithms recover bounds that match those of the rele-
vant stochastic linear bandit algorithms (Chowdhury
and Gopalan, 2017; Abbasi-Yadkori et al., 2011). For a
squared exponential kernel, the corresponding RKHS
contains only infinitely differentiable functions, and
here the existing methods match known lower bounds
up to polylogarithmic factors (Srinivas et al., 2010;
Scarlett et al., 2017).

In this work, we focus on the RKHS associated with a
Matérn kernel, parameterised by a smoothness param-
eter ν (Stein, 2012). For a given ν, the Matérn RKHS
contains all bνc-times continuously differentiable func-
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tions, and therefore for any ν <∞, contains as a strict
subset the RKHS of both the linear and the squared
exponential kernels. The Matérn RKHS is of partic-
ular practical significance, since it offers a more suit-
able set of assumptions for the modelling and optimi-
sation of physical quantities (Stein, 2012; Rasmussen
and Williams, 2006). However, the theoretical guaran-
tees offered for this class of functions by existing ker-
nelised algorithms, such as KernelUCB (Valko et al.,
2013), GP-UCB (Srinivas et al., 2010) and Improved
GP-UCB (Chowdhury and Gopalan, 2017), are lim-
ited. Specifically, these guarantee that the regret after
T steps, RT , is bounded with high probability as1

RT = Õ

(
T

min
{

1, 3d
2+2ν

2d2+4ν

})
,

leaving a large gap to the Ω(T
d+ν
d+2ν ) algorithm-agnostic

lower bound for this problem (Scarlett et al., 2017).
Since this bound is linear for 2ν ≤ d2, existing practi-
cal kernel-based algorithms are not guaranteed to con-
verge for functions with fewer than bd2/2c derivatives.

Our main contribution is an algorithm that success-
fully tackles the Matérn RKHS bandit problem for all
ν > 1 and all d ≥ 1. The algorithm, Partitioned Im-
proved GP-UCB (π-GP-UCB), offers a high probabil-
ity regret bound of order

RT = Õ
(
T
d(2d+3)+2ν
d(2d+4)+4ν

)
,

and therefore guarantees convergence for once differen-
tiable functions of any finite dimensionality. Our con-
tribution is not limited to theory: π-GP-UCB shows
strong empirical performance on 3-dimensional func-
tions in the Matérn ν = 3/2 RKHS (in contrast, Im-
proved GP-UCB barely outperforms uniformly sam-
pling of arms). Moreover, our experiments show that
despite using Gaussian process regression to construct
confidence intervals, π-GP-UCB achieves an empiri-
cally near-linear runtime.

Our analysis also results in tighter bounds on the ef-
fective dimension associated with the Matérn kernel
RKHS, an important quantity in the context of ker-
nelised bandit problems which immediately improves
bounds for a range of existing algorithms.

2 Background

Our work builds on Improved GP-UCB (IGP-UCB),
and like IGP-UCB, it uses Gaussian process regression
to construct confidence intervals. We briefly outline
these topics and introduce the required notation.

1f(t) = Õ(ta) ⇐⇒ ∀ε > 0, f(t) = O(ta+ε).

Gaussian process regression We use DXt =
{(xi, yi): i ≤ t} to denote a set of t observations with
xi ∈ X , and

DA
t = {(xAi , yAi ) ∈ DXt :xAi ∈ A}

for A ⊂ X to denote the subset of these located in A.
We denote the sequence of input locations within A
by XA

t and by (yA1 , . . . , y
A
N ) the associated sequence of

observations.

For DA
t of cardinality N , x ∈ A, a kernel k, assumed

to be normalised such that k(x, x) = 1, we define

kAt (x) = [k(xA1 , x), . . . , k(xAN , x)]T ,

as well as

KA
t = [k(x, x′)]x,x′∈XAt and yA1:t = [yA1 , . . . , y

A
N ]T .

For a regularisation parameter α > 0, we define the
Gaussian process regressor on A ⊂ X by a mean,

µAt (x) = kAt (x)T (KA
t + αI)−1yA1:t,

and an associated predictive standard deviation,

σAt (x) =
√
k(x, x)− kAt (x)T (KA

t + αI)−1kAt (x),

for each x ∈ A. Note that σAt (x) is monotone de-
creasing in both t and A, meaning σAt (x) ≤ σA

′

t (x) if
A′ ⊂ A and σAt (x) ≤ σAt+1(x) (Vivarelli, 1998).

Effective dimension While Gaussian process re-
gressors are often defined through an infinite dimen-
sional feature embedding, due to finite data and regu-
larisation, the number of features that have a notice-
able impact on the regression model can be small. The
effective dimension of the Gaussian process regressor
on the set A ⊂ X , defined as

d̃A = Tr(KA
T (KA

T + αI)−1) = α−1
T∑
t=1

(σAT (xt))
2,

provides an estimate of the number of relevant features
used in the regression problem (Zhang, 2005; Valko
et al., 2013), and frequently appears in the bounds on
kernelised bandit algorithms. It is closely related to
information gain, defined

γAt =
1

2
log|I + α−1KA

t |

for A ⊂ X , with the two of the same order up to poly-
logarithmic factors (Calandriello et al., 2019, proposi-
tion 5). We shall use this relationship throughout.
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Matérn kernel family The Matérn family consists
of kernels of the form k(x, x′) = κ(r) where r = x− x′
and κ is the Fourier transform of a Student’s t-density,

λ(ω) = C`,d
(
1 + (`‖ω‖2)2

)−ν−d/2
, (1)

for ω the d-dimensional frequency vector and

C`,d = `d
Γ(ν + d/2)

πd/2Γ(ν)

for `, ν > 0 parameters of the kernel.

The Improved GP-UCB algorithm The IGP-
UCB algorithm is an approach to the kernelised ban-
dit problem based on the classic GP-UCB Bayesian
optimisation algorithm. For f in the RKHS of a
known kernel, it improves on the regret bounds of
GP-UCB by a polylogarithmic factor and significantly
improves empirical performance. For readers familiar
with stochastic linear bandits, the step from GP-UCB
to IGP-UCB mirrors that from ConfidenceBall (Dani
et al., 2008) to OFUL (Abbasi-Yadkori et al., 2011).

IGP-UCB assumes a known bound B on the RKHS
norm of the function f and a known bound on the
subGaussianity constant L of εt. Then, for a chosen
δ ∈ (0, 1) and Z ⊂ Rd, IGP-UCB uses a Gaussian
process regressor mean µZt−1(x) and standard deviation
σZt−1(x), along with a confidence width multiplier

βZt (δ) = B + L
√

2
(
γZt + 1 + log(1/δ)

)
, (2)

to construct 1 − δ probability confidence intervals for
the restriction of f to Z. Chowdhury and Gopalan
(2017) choose to use Z = X , that is, consider the
whole domain, and show that selecting observations
that maximise this upper confidence bound leads to
regret bounded as O(γXT

√
T ) with probability 1− δ.

Intuitively, the IGP-UCB algorithm needs strong reg-
ularity assumptions to guarantee sublinear regret be-
cause the information gain term, γXt , contained within
the confidence width parameter βXt (δ), grows too
quickly with t otherwise. Specifically, in the case of the
Matérn kernel, γXt can be lower and upper bounded as

Õ(T
d(d+1)

d(d+1)+2ν ) and Ω(T
d

d+2ν ) (3)

respectively, where the former is given in Srinivas et al.
(2010) and the latter can be deduced from combining
the bounds in Valko et al. (2013) and Scarlett et al.
(2017). Our main contribution can be understood as
addressing this issue. We provide a construction which
leads to confidence intervals that grow only polyloga-
rithmically with T .

3 Main contribution

We introduce Partitioned Improved GP-UCB (π-GP-
UCB), an algorithm that at each time step constructs
a closed cover of the domain X and selects points by
taking a maximiser of the IGP-UCB upper confidence
bound constructed independently on each cover ele-
ment. Throughout the paper, we will make use of the
following two constants,

b =
d+ 1

d+ 2ν
and q =

d(d+ 1)

d(d+ 2) + 2ν
,

which depend on the RKHS only. Also, for a hyper-
cube A ⊂ X we will use ρA denote its `∞-diameter,
i.e. the length of any of its sides.

The π-GP-UCB algorithm Choose a 1 − δ con-
fidence level. Let A1 be any set of closed hyper-
cubes overlapping at edges only, of cardinality at most
O(T q), that covers the domain X .2 At each time step
t select a query location xt and then construct a new
cover At as follows:

Point selection. Fit an independent Gaussian process
with α = 1 + 2/T on each cover element A ∈ At,
conditioned only on data within A, and select the next
point to evaluate by maximising

UCBt(x) = max
A∈At:x∈A

µAt−1(x) + β̂At σ
A
t−1(x),

where β̂At = βAt (δ/Ñt), with Ñt = 4(t+ 1)bd.

Splitting rule. Split any element A ∈ At−1 for which

ρ
−1/b
A < |DA

t |+1 along the middle of each side, result-
ing in 2d new hypercubes. Let At be the set of the
newly created hypercubes and the elements of At−1

which were not split.

Properties of algorithm The construction of the
cover At ensures the following two properties hold:

Lemma 1. Let A be a subset of X and suppose there
exists a τ such that A ∈ Aτ . Let τ ′(A) = max{t:A ∈
At}. Then, for some C > 0, γAτ ′(A) ≤ C log T log log T .

Lemma 2. Let At be the covering set at time t. Sup-
pose |A1|= O(T q). Then, for T sufficiently large,

|∪t≤TAt|≤ Cd,νT q,

where Cd,ν > 0 depends on d and ν only.

That is, on all cover elements, information gain can
be bounded polylogarithmically for all t ≥ 1, and the
cardinality of all the covering sets generated up to time

2For example, A1 = {X}.
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T is sublinear in T . We will show that the regret of
π-GP-UCB after T steps is bounded by

RT = O(γAT
√
T |∪t≤TAt|) = Õ(

√
T |∪t≤TAt|) = o(T ).

The formal statement of this result is:

Theorem 3. Let X = [0, 1]d, let Hk(X ) be the RKHS
of a Matérn kernel k with parameter ν > 1 such that
k ≤ 1. Suppose f : X → R satisfies ‖f‖Hk≤ B for
a known B and we observe y(xt) = f(xt) + εt, where
εt is L sub-Gaussian. Then for any fixed δ ∈ (0, 1),
with probability at least 1 − δ the regret incurred by

π-GP-UCB is bounded by Õ(T
d(2d+3)+2ν
d(2d+4)+4ν ).

The properties of the cover also allows us to improve
upon existing upper bounds for the information gain
associated with a Matérn kernel. To do this, we bound
the information gain as the sum of the information
gain on each cover element A ∈ At, and therefore

γXT = O(γAT |∪t≤TAt|) = Õ(|∪t≤TAt|),

which translates into the following bound:

Theorem 4. Information gain associated with the
Matérn kernel with parameter ν > 1 after T steps can

be bounded as γXT = Õ(T
d(d+1)

d(d+2)+2ν ).

This is a strict improvement over the bound presented
in Srinivas et al. (2010), given here in equation (3).

Practical considerations While the main purpose
of the cover construction within π-GP-UCB is to pro-
vide strong theoretical guarantees on regret, it also
results in a significantly more scalable algorithm.

To see this, first note that fitting a Gaussian process re-
quires updating the inverse of a kernel matrix Kt. Our
cover construction means that inverses are only per-
formed on a kernel matrix of a subset of the data, re-
ducing both compute and memory costs. Empirically,
this allows π-GP-UCB to scale much more favourably
than GP-UCB. However, the construction offers no
asymptotic improvement on computational complex-
ity: once the algorithm comes close to convergence
(enters the asymptotic regime), points are expected to
land within small neighbourhoods of the optima, and
therefore likely within the same cover element.

Moreover, running Gaussian process UCB algorithms
requires maximising the UCB index across the domain.
Whereas the classic GP-UCB algorithms require the
maximiser to be recomputed across all of the domain,
under π-GP-UCB, the maximisation procedure need
only be carried out over the cover elements containing
the most recent observation and any newly created
cover elements.

4 Proof of results

In order to prove theorem 3, we will use the following
concentration inequality:

Lemma 5. Given δ ∈ (0, 1), for all t ≤ T , for all

A ∈
⋃
t≤T At =: ÃT , for all x ∈ A, we have

|µAt−1(x)− f(x)|≤ β̂At σAt−1(x),

with probability 1− δ.

To prove lemma 5, we will use the following result,
proven in section 4.3, which bounds the number of
all cover elements that could ever be created within t
steps of running the algorithm by Ñt = 4(t+ 1)bd.

Lemma 6. There exists a set Bt such that |Bt|≤ Ñt
and At ⊂ Bt with probability one.

We present the full proof of lemma 5 in appendix A.
Here, we prove a weaker result that admits a much
shorter proof.

By theorem 2 in Chowdhury and Gopalan (2017), un-
der the conditions of our theorem 3,

|µAt−1(x)− f(x)|≤ βAt (δ)σAt−1(x)

with probability 1 − δ for any A ⊂ Rd compact. The
weaker result then follows by taking a union bound
over all A ∈ BT , resulting in a confidence width mul-
tiplier of βAt (δ/ÑT ). The full proof in the appendix

allows us to use β̂At = βAt (δ/Ñt) instead.

To prove theorem 3 we will also need the following
bound relating the sum of predictive variances on a
subset of the domain to information gain:

Lemma 7. For any τ ≥ 1, sequence (xt : xt ∈ X , 1 ≤
t ≤ τ), set A ⊂ X and a Gaussian process estimator
with α > 1,

∑τ
t=1 1{xt ∈ A}(σAt−1(xt))

2 ≤ 4αγAτ .

Proof. Since 0 ≤ (σAt (x))2, α−1 ≤ 1 for all x ∈ X ,
we have that α−1(σAt (x))2 ≤ 2 log(1 + α−1(σAt (x))2),
because for any 0 ≤ σ ≤ 1, σ ≤ 2 log(1+σ). Summing
over t, we have

τ∑
t=1

1{xt ∈ A}(σAt−1(xt))
2

≤
τ∑

t=1,
xt∈A

2α log
(
1 + α−1(σAt−1(xt))

2
)

= 4αγAτ ,

where the final equality is by Lemma 5.3 in Srinivas
et al. (2010).

Proof of theorem 3. By Cauchy-Schwarz, RT ≤
(T
∑T
t=1 r

2
t )

1/2. It therefore suffices to bound
∑T
t=1 r

2
t .
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For each x ∈ X let At(x) be an element of At such
that

At(x) ∈ argmax
A∈At:x∈A

µAt−1(x) + β̂At σ
A
t−1(x).

That is, At(x) is an element of At on which the upper
confidence bound associated with x is the highest.

For any x? ∈ argmaxx∈X f(x), we have that
UCBt(xt) ≥ UCBt(x

?) due to the manner in which
points xt are selected. Expanding this expression and
applying lemma 5, we bound rt as

rt = f(x?)− f(xt) ≤ 2β̂
At(xt)
t σ

At(xt)
t−1 (xt)

with probability 1− δ for all t ≤ T .

Denote ÃT = ∪t≤TAt, the set of all cover elements
created until time T , and define the initial time for an
element A ∈ ÃT , as τ(A) = min{t:A ∈ At} and the
terminal time as τ ′(A) = max{t:A ∈ At}. We have

T∑
t=1

r2
t ≤ 4

T∑
t=1

(β̂
At(xt)
t )2(σ

At(xt)
t−1 (xt))

2

≤ 4

T∑
t=1

∑
A∈At

1{xt ∈ A}(β̂At )2(σAt−1(xt))
2

= 4
∑
A∈ÃT

τ ′(A)∑
t=τ(A)

1{xt ∈ A}(β̂At )2(σAt−1(xt))
2

≤ 48
∑
A∈ÃT

(β̂Aτ ′(A))
2γAτ ′(A) (∗)

The final inequality uses monotonicity of β̂At , lemma 7
and α < 3. By lemma 2, the number of summands in
(∗) is O(T q). As (β̂Aτ ′(A))

2 = O(γAτ ′(A) + log(T )) for all

A ∈ ÃT , lemma 1 completes the proof.

Proof of theorem 4. From proposition 5 in Calan-
driello et al. (2019),

d̃A ≤ log|I + α−1KA
T | ≤ d̃A(1 + log(α−1‖KA

T ‖2+1)).

Noting that ‖KA
T ‖2= λA1 ≤

∑|XAT |
t=1 λAt = Tr(KA

T ) =
|XA

T |≤ T , and taking A = X we have,

d̃X ≤ 2γXT ≤ d̃X (1 + log(α−1T + 1)).

We now proceed to bound d̃X . At each time step t
choose At to be as in the closed cover of X from π-
GP-UCB. Let ÃT = ∪t≤TAt, as before.

For any A ∈ ÃT , let τ ′(A) = max{t:A ∈ At}. Then,
because xt is in at least one of the At for all t and by
monotonicity of predictive variance, we have

d̃X ≤ 1

α

T∑
t=1

∑
A∈At

1{xt ∈ A}(σAτ ′(A)−1(xt))
2.

Interchanging the order of summation and applying
lemma 7, we have that this is upper bounded by
4
∑
A∈ÃT γ

A
τ ′(A). Then, by lemma 1, we have that

d̃X ≤ 4C|ÃT |log T log log T.

By lemma 2, |ÃT |= O(T q). Therefore

γXT ≤ C ′T q log T (log log T )(1 + log(α−1T + 1)),

for some C ′ independent of T .

4.1 Proof of lemma 1, information gain on
a cover element

To prove lemma 1, we rely on the following theorem
from Srinivas et al. (2010). It provides a bound on the
maximum information gain after N samples, γ̂(A,N),
in terms of the operator spectrum of the kernel k with
respect to a uniform covariate distribution.3

Theorem 8. (Srinivas et al., 2010, Theorem 8) Sup-
pose that A ⊂ Rd is compact, and k is kernel con-
tinuously differentiable in a neighbourhood of A. Let
S(s0) =

∑
s>s0

λs where (λs)s is the operator spectrum
of k with respect to the uniform distribution over A.
Pick ζ > 0 and let nN = (4ζ + 2)VANζ logN , where
VA is the volume of A. Then γ̂(A,N) is bounded by

C max
r=1,...,N

[
s0 log

rnN
α

+ (4ζ + 2)VA logNα−1

×
(

1− r

N

) (
Nζ+1S(s0) + 1

) ]
+O

(
N1−ζ/d

)
, (4)

where C = 1
2/(1−

1
e ) for any s0 ∈ N ∩ [1, nN ].

The operator spectrum of the Matérn kernel, required
to use theorem 8, can be bounded using the following.

Theorem 9. (Seeger et al., 2008, Theorem 2) Let
K(r) be an isotropic covariance function on Rd sat-
isfying the conditions of Widom’s theorem (Widom,
1963), with a spectral density λ(·). Suppose that the
covariate distribution µ has bounded support and a
bounded density, in that µ(x) ≤ D for all x and
µ(x) = 0 for all ‖x‖2> R. Then,

λs ≤ D(2π)dλ
(
CdR

−1s1/d
)

(1 + o(1))

asymptotically as s→∞, where Cd > 0.

The required spectral density of a Matérn kernel is
given in equation (1). By Seeger et al. (2008), it sat-
isfies the conditions of Widom’s theorem.

3The original statement of Theorem 8 in Srinivas et al.
(2010) assumed strong conditions on the sample paths of
the Gaussian process associated with the kernel. These as-
sumptions were not necessary for the theorem itself, and
were present due to the later use of the bounds for opti-
mising Gaussian process samples.
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Proof of lemma 1. As the information gain is a sum
of non-negative elements, we have for any M ≤ N ,

γ̂(A,M) ≤ γ̂(A,N).

It therefore suffices to bound the maximum number
of points that can fall in a partition A before it would
split. Let NA denote this quantity. The proof proceeds
in two parts: first we bound γ̂(A,NA) as a function of
NA, then we bound NA in terms of the horizon.

From equation (1), we have that the spectral density
for the Matérn kernel satisfies

λ(ω) = C`,d(1 + (`ω)2)−ν−d/2 ≤ C ′`,dω−(2v+d).

where C ′`,d = C`,d`
−(2v+d). Utilising this within theo-

rem 9 with a uniform covariate distribution,

λs ≤ Cρ−dA (s1/dρ−1
A )−(2v+d) = Cρ2ν

A s
−(2ν+d)/d,

for some constant C > 0, where we used µ(x) = V−1
A =

ρ−dA for all x ∈ A, as A is a d-dimensional cube.

As the bound on λs for large s is monotonically de-
creasing, we can bound the tail of the Matérn kernel
operator spectrum S(s0) as∑

s>s0

λs ≤ Cρ2ν
A

∫ ∞
s=s0

s−(2ν+d)/d = O(ρ2ν
A ).

We now apply theorem 8 in order to bound γ̂(A,NA).
Choose ζ = d, then

N
d(2ν−1)
2ν+d

A < nNA < Nd
A

for NA sufficiently large. Choose s0 = blog logNc.

For these parameter choices and for any r ≤ NA,

s0 log
rnNA
α

= O(logNA log logNA).

As 1− r/NA ≤ 1, the second term in the maximum in
equation (4) is O(VANd+1

A ρ2ν
A logNA). As the diame-

ter satisfies NA ≤ ρ
−1/b
A < NA + 1 by the definition

of NA this term is O(logNA). The final term in equa-
tion (4) is O(1).

All that remains is to bound NA. We consider two
cases: first, if A ∈ A1 then NA ≤ ρ

−1/b
A = O(T

q
bd ).

Otherwise, A was created by some set A′ splitting, for
which NA′ < T . Then,

NA ≤ ρ−1/b
A = 2−1/bρ

−1/b
A′

≤ 2−1/b(NA′ + 1) < 2−1/b(T + 1).

In both cases, NA = O(T ).

4.2 Proof of lemma 2, bound on size of cover

Proof. First, since any element A ∈ ÃT was either in
A1 or was created by the splitting of a cover element
A′ ∈ ÃT \ AT into 2d elements, we have that

|ÃT |= |A1|+2d|ÃT \ AT |.

By assumption |A1|= O(T q). Denote ΘT = ÃT \ AT .
We now upper bound |ΘT |. Take the diameter of any
element A ∈ A1 to be ρ0 ∈ (0, 1] (e.g. ρ0 = 1 if A1 =
{X}). For any given T , we have that

|ΘT | ≤ max
x1,...,xT

|ΘT | = max
x1,...,xT

∞∑
i=0

∑
A∈ΘT

1{ρA = 2−iρ0}.

We upper bound the solution to this maximisation
problem by considering just a subset of the constraints
imposed by the splitting procedure.

First constraint: we have a budget constraint derived
from placing T points. Let τ(A) = min{t:A ∈ At}
and τ ′(A) = max{t:A ∈ At}, and suppose there exists
an M(ρA) ≤ |XA

τ ′(A)|−|X
A
τ(A)| for all A ∈ ΘT . Then

∞∑
i=0

M(2−iρ0)
∑
A∈ΘT

1{ρA = 2−iρ0}

≤
∞∑
i=0

∑
A∈ΘT

(|XA
τ ′(A)|−|X

A
τ(A)|)1{ρA = 2−iρ0}

=
∑
A∈ΘT

|XA
τ ′(A)|−|X

A
τ(A)| ≤

∑
A∈ÃT

|XA
τ ′(A)|−|X

A
τ(A)|

=
∑
A∈ÃT

τ ′(A)∑
t=τ(A)

1{xt ∈ A} =

T∑
t=1

∑
A∈AT

1{xt ∈ A}

=

T∑
t=1

|{A ∈ At:xt ∈ A}| ≤ 2dT.

Now we find a suitable M(·), which we shall refer to
as the cost of splitting an element A ∈ ΘT . Because
A split,

|XA
τ ′(A)|+1 > ρ

−1/b
A ≥ |XA

τ ′(A)|

Suppose that A′ is the element that split to create A.
Then ρA′ = 2ρA and τ ′(A′) + 1 = τ(A). Therefore

|XA
τ ′(A)|−|X

A
τ(A)| ≥ |X

A
τ ′(A)|−|X

A′

τ ′(A′)|−1

≥ ρ−1/b
A (1− 2−1/b)− 2 = M(ρA).

Second constraint: a supply constraint. There are at
most dρ−d0 e elements of diameter ρ0, and therefore at
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Figure 1: Comparison of performance of π-GP-UCB and IGP-UCB on the synthetic benchmark. Left, regret,
95% confidence interval dotted. Centre, per step regret, smoothed using a convolution with a top hat of length
200. Right, wall-clock time per step, in seconds.

most dρ−d0 e2di elements of diameter 2−iρ0 can be split,
leading to

∑
A∈ΘT

1{ρA = 2−i} ≤
⌈
ρ−d0

⌉
2di.

Since M(2−iρ0) increases with i, the solution to the
relaxed optimisation problem will be to buy all the
available A with smallest diameter, subject to the sup-
ply and budget constraints. Suppose the smallest A
split with this strategy has a diameter 2−zρ0 for some
z ∈ N. Then, since the supply constraint is binding
and budget constraint is satisfied, we have that

z−1∑
i=0

M(2−iρ0)2di
⌈
ρ−d0

⌉
≤ 2dT.

Writing ρ0 = CTα for some C > 0 and α ≤ q/d
and using the geometric series formula to solve for

2z, we obtain 2z = O(T
b

bd+1 ), a quantity indepen-
dent of α. Counting all the cover elements of diam-
eters 20ρ0, . . . , 2

zρ0, we have that
∑z
i=0 2di = O(2dz),

which is O(T q). Since this was a construction that

maximises ΘT , we have that ÃT = O(T q).

4.3 Proof of Lemma 6

Proof. Let B0 = A1 and define recursively Bi+1 to
be the set of the hypercubes created by splitting each
element in Bi into 2d hypercubes. Let ρ0 ∈ (0, 1] be
the diameter of elements in A1. We have that

At ⊂
⋃
i≥0

Bi =⇒ At ⊂
⋃
i≥0

(
Bi ∩ At

)
.

Suppose there exists Z ∈ Bi ∩ At for some i ≥ 0. By
the splitting condition,

Z ∈ At \B0 =⇒ ρZ > (|XZ
t |+1)−b ≥ (t+ 1)−b.

Also, Z ∈ Bi implies ρZ ≤ 2−iρ0. Therefore, (t +
1)−b ≤ ρZ ≤ 2−iρ0 so 2i ≤ (t + 1)bρ0 = 2Jt . Let

Bt =
⋃
i≤Jt B

i. We have Bi ∩ At = ∅ for all i > Jt
and hence At ⊂ Bt. We now bound the cardinality of
Bt. We have |Bi|= dρ−d0 e2di, so

|Bt| =
Jt∑
i=0

|Bi|= dρ−d0 e
bJtc∑
i=0

2di ≤ dρ−d0 e2dJt+1

≤ 4(t+ 1)db.

5 Empirical validation

We present an empirical comparison of π-GP-UCB
and IGP-UCB on two types of functions: first, syn-
thetic functions in the Matérn kernel RKHS, where the
conditions of the theory for both algorithms are met;
second, standard global optimisation baselines, corre-
sponding to a more realistic setting where the RKHS
norm of the target function is not known.

We run both IGP-UCB and π-GP-UCB using a
Matérn kernel with parameters ν = 3/2 and ` = 1/5,
and use a regularisation parameter α = 1. For simplic-
ity, the problems are discretised onto a regular grid,
such that X = {x1, . . . , xn:n = 30d}. We use a confi-
dence parameter δ = 1/10, and compute the quantities
γXt and γAt exactly at each time step. For our method,
π-GP-UCB, we use an initial partition A1 of cardinal-
ity approximately T q.

Synthetic functions We benchmark on a set of
synthetic functions which satisfy the assumptions be-
hind the regret bounds of both algorithms. We con-
struct each function f by sampling m = 30d points,
x̂1, . . . , x̂m, uniformly on [0, 1]d, and â1, . . . , âm each
independent uniform on [−1, 1] and defining f(x) =∑m
i=1 âjk(x̂j , x) for all x ∈ X , where k is a Matérn ν =

3/2 kernel with lengthscale ` = 1/5. Both algorithms
are given access to the exact RKHS norm of this func-
tion, computed as ‖f‖2k=

∑m
i=1

∑m
j=1 âiâjk(x̂j , x̂i).

Evaluations of these functions are corrupted with inde-
pendent additive noise εt sampled uniformly on [−1, 1],
and both algorithms use L = 1, the corresponding sub-
Gaussianity constant.
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Figure 2: Comparison of performance of π-GP-UCB and IGP-UCB on the common two-dimensional global
optimisation benchmark problems. Regret and 95% confidence intervals plotted.

d
IGP-UCB π-GP-UCB

regret runtime regret runtime

1 0.11 82 min 0.09 12 min
2 0.71 118 min 0.52 97 s
3 0.97 30 hours 0.77 29 min

Table 1: Tabulation of results for synthetic task with
d = 1, 2, 3. Averages values over 12 runs for a horizon
T = 10000. Regret is expressed as fraction of the
regret incurred by pulling the arms uniformly.

We present regret and run-times on this set of syn-
thetic functions for d = 1, 2, 3 in table 1 and plot the
results for d = 2 in figure 1. The results suggest that
π-GP-UCB not only provides an improved worst-case
analysis, but may also yield improved empirical per-
formance. Moreover, we see that π-GP-UCB is sig-
nificantly more scalable. We note that the runtime of
π-GP-UCB is high in the case d = 1. This is because
in one dimension, π-GP-UCB converges rapidly, losing
its computational advantages thereafter.

Global optimisation baselines We also provide
a comparison of the empirical performance of π-GP-
UCB and IGP-UCB on four common two-dimensional
global optimisation baselines,4 with results plotted
in figure 2. The function outputs are scaled to
[−1, 1], and corrupted with additive noise uniform on
[−0.1, 0.1]. Whilst we provide the tight subGaussian-
ity parameter to both algorithms, we run both with
the RKHS norm parameter B = 1, corresponding to a
realistic setting where the RKHS norm is not known in
advance. Our algorithm, π-GP-UCB, performs com-
petitively across this set of problems.

6 Related work

While our theoretical guarantees are much stronger
than those of existing practical kernelised methods
like GP-UCB, IGP-UCB and KernelUCB, two exist-

ing methods achieve similar or better guarantees:

SupKernelUCB. Introduced in Valko et al. (2013),
SupKernelUCB uses a phased elimination procedure
to create batches of observations that are independent
of previous observations. This allows for the use of
the stronger concentration inequalities that apply to
i.i.d. sequences, yielding a Õ((d̃XT )1/2) regret bound.
While the algorithm is introduced for the case of a
finite-armed bandit it can be extended to a continuum-
armed bandit via a discretisation argument. SupKer-
nelUCB is the kernelised version of stochastic linear
bandit algorithm SupLinUCB (Auer, 2002; Chu et al.,
2011). However, much like SupLinUCB (Lattimore
and Szepesvri, 2020, Remarks 22.2), it fails to achieve
empirically sublinear regret even on very simple prob-
lems (Calandriello et al., 2019).

Hierarchical optimisation. Extensions and generalisa-
tions of classic Lipschitz-continuity based methods en-
joy strong regret guarantees under assumptions that
are broadly similar to those in our work (Jones et al.,
1993; Munos, 2011; Bubeck et al., 2011). Current up-
per bounds suggests for hierarchical methods are bet-
ter for problems with a low degree of smoothness than
the kernelised counterparts. It is an open question
whether this holds in general, or whether the analysis
of kernelised methods can be further improved.

7 Discussion

We have presented an algorithm for optimising func-
tions in the RKHS of a Matérn family kernel, with a
sublinear bound on regret for all smoothness parame-
ters ν > 1 and demonstrated the practical effectiveness
and scalability of the proposed algorithm. The empir-
ical performance of π-GP-UCB might be improved by
using the actual information gain, as opposed to an
upper bound on the information gain, in determining
when to split a set.

4See http://www.sfu.ca/~ssurjano (Surjanovic and
Bingham, 2013) for information on these functions.

http://www.sfu.ca/~ssurjano
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