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Abstract

We discuss promising recent contributions on
quantifying feature relevance using Shapley val-
ues, where we observed some confusion on
which probability distribution is the right one
for dropped features. We argue that the confu-
sion is based on not carefully distinguishing be-
tween observational and interventional condi-
tional probabilities and try a clarification based
on Pearl’s seminal work on causality. We con-
clude that unconditional rather than conditional
expectations provide the right notion of dropping
features in contradiction to the theoretical jus-
tification of the software package SHAP. Parts
of SHAP are unaffected because unconditional
expectations (which we argue to be conceptu-
ally right) are used as approximation for the con-
ditional ones, which encouraged others to ‘im-
prove’ SHAP in a way that we believe to be
flawed.

1 Motivation

Despite several impressive success stories of deep learning,
not only researchers in the field have been shocked more
recently about lack of robustness for algorithms that were
actually believed to be powerful. Image classifiers, for in-
stance, fail spectacularly once the images are subjected to
adversarial changes that appear minor to humans, see e.g.
Goodfellow et al. (2015); Sharif et al. (2016); Kurakin et al.
(2018); Eykholt et al. (2018); Brown et al. (2018). Under-
standing these failures is challenging since it is hard to an-
alyze which features were decisive for the classification in
a particular case. However, lack of robustness is only one
of several different motivations for getting artificial intel-
ligence interpretable. Also the demand for getting fair de-
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cisions, e.g., Dwork et al. (2012); Kilbertus et al. (2017);
Barocas et al. (2018), requires understanding of algorithms.
In this case, it may even be subject of legal and ethical dis-
cussions why an algorithm came to a certain conclusion.

To formalize the problem, we describe the input / out-
put behaviour as a function f : X1 × · · · × Xn → R
where X1, . . . ,Xn denote the ranges of some input vari-
ables (X1, . . . , Xn) =: X (discrete or continuous), while
we assume the target variable Y to be real valued for rea-
sons that will become clear later. Given one particular in-
put x := (x1, . . . , xn) we want to quantify to what extent
each xj is ‘responsible’ for the output f(x1, . . . , xn). This
question makes only sense after specifying what should one
input instead. Let us first consider the case where x is com-
pared to some ‘baseline’ element x′, which has been stud-
ied in the literature mostly for the case of real-valued in-
puts. Based on a hypothetical scenario where only some of
the baseline values x′j are replaced with xj while others are
kept, one wants to quantify to what extent each component
j contributes to the difference f(x) − f(x′). The focus of
the present paper, however, is a scenario where the baseline
is defined by the expectation E[f(X)] over the underlying
distribution PX. To explain the relevance of each j for the
difference f(x)−E[f(X)] one considers a scenario where
only some values are kept and the remaining ones are av-
eraged over some probability distribution. The main con-
tribution of this paper is to discuss which distribution is the
right one. Recalling the difference between interventional
and observational conditional distributions in the field of
causality, we explain why we disagree with the interesting
proposal of Lundberg and Lee (2017) in this regard. Further
we argue that our criticism is irrelevant for any software
that ‘approximates’ the conditional expectation (which we
consider conceptually wrong) by the unconditional expec-
tation, as proposed by Lundberg and Lee (2017). The paper
is structured as follows. Section 2 summarizes results from
the literature regarding axioms for feature attribution for
the case where there is a unique baseline reference input.
Here integrated gradients and Shapley values (as the gener-
alization to discrete input) are the unique attribution func-
tions for the stated set of axioms. Section 3 discusses the
attribution problem for the case where one averages over
unused features as in Lundberg and Lee (2017), and then
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we present our criticism. We think that the big overlap of
the present paper with existing literature is justified by aim-
ing at this clarification only, while keeping this clarification
as self-consistent as possible. In particular, the very general
discussion of Datta et al. (2016) contains all the ideas of
this work at least implicitly, but since it appeared before
Lundberg and Lee (2017) it could not explicitly discuss
the conceptual problems raised by the latter. Our view on
marginalization over unused features is supported by Datta
et al. (2016) for similar reasons. In Section 4 we present
different experiments that show the practical consequences
of our arguments.

2 Prior Work

The growth of deep neural networks recently motivated
many researchers to investigate feature attribution, see e.g.
Shrikumar et al. (2016) for DeepLIFT, Binder et al. (2016)
for Layer-wise Relevance Propagation (LRP), Ribeiro and
Singh (2016) for Local Interpretable Model-agnostic Ex-
planations (LIME), and for gradient based methods Chat-
topadhyay et al. (2019). For a summary of common ar-
chitecture agnostic methods, see Molnar (2019). We first
discuss two closely related concepts that arise from an ax-
iomatic approach.

2.1 Integrated gradient

Sundararajan et al. (2017), investigated the attribution of xi
to the difference

f(x)− f(x′), (1)

where x′ is a given baseline. Under the assumption that f
is differentiable almost everywhere1, they defined the attri-
bution of xi to (1) as

IntegratedGradsi(x; f) :=

(xi − x′i)
∫ 1

α=0

∂f(x′ + α(x− x′))
∂xi

dα.

Contrary to LIME, DeepLIFT and LRP, this attribution
method has the advantage that all of the following 5 prop-
erties are satisfied (see Sundararajan et al. (2017) and Aas
et al. (2019)):

1. Completeness: If atri(x; f) denotes the attribution of
xi to (1), then∑

i

atri(x; f) = f(x)− f(x′).

2. Sensitivity: If f does not depend on xi, then
atri(x; f) = 0.

1see Sundararajan et al. (2017, Proposition 1)

3. Implementation Invariance:2 If f and f ′ are equal for
all inputs, then

atri(x; f) = atri(x; f ′) for all i.

4. Linearity: For a, b ∈ R holds

atri(x; af1 + bf2) =

a · atri(x;f1) + b · atri(x; f2).

5. Symmetry-Preserving: If f is symmetric in component
i and j and xi = xj and x′i = x′j , then

atri(x; f) = atrj(x; f).

Integrated gradients can be generalized by integrating over
an arbitrary path γ instead of the straight line. This attribu-
tion method is called path method and the following theo-
rem holds.

Theorem 1. ((Friedman, 2004, Theorem 1) and (Sun-
dararajan et al., 2017, Theorem 1)) If an attribution method
satisfies the properties Completeness, Sensitivity, Imple-
mentation Invariance and Linearity, then the attribution
method is a convex combination of path methods. Further-
more, integrated gradients is the only path method that is
symmetry preserving.

Notice that convex combinations of path methods can also
be symmetry preserving even if the attribution method is
not given by integrated gradients.

2.2 Shapley values

To assess feature relevance relative to the average, Lund-
berg and Lee (2017) use a concept that relies on first defin-
ing an attribution for binary functions, or, equivalently,
functions with subset as input (’set functions’). We first ex-
plain this concept and describe in Section 3 how it solves
the attribution relative to the expectation. Assume we are
given a set with n elements, say U := {1, . . . , n} and a
function

g : 2U → R with g(U) 6= 0, g(∅) = 0.

We then ask to what extent each single j ∈ U contributes
to g(U). A priori, the contribution of each j depends on the
order in which more elements are included. We can thus
define the contribution of j, given T ⊆ U \ {j} by

C(j|T ) := g(T ∪ {j})− g(T )

2Note that this axiom is pointless if it refers to properties of
functions rather than properties of algorithms. We have listed it
for completeness and for consistency with the literature.
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(note that it can be negative and also exceed g(U)). With

φi :=
∑

T⊆U\{i}

1

n
(
n−1
|T |
)C(i|T ). (2)

it then holds

g(U) =

n∑
i=1

φi.

The quantity φi is called the Shapley value (Shapley, 1953)
of i, which can be considered the average contribution of i
to g(U). At first glance, Shapley values only solve the attri-
bution problem for binary inputs by canonically identifying
subsets T with binary words {0, 1}n. To show that Shap-
ley values also solve the above attribution problem, one can
simply define a set function by

g(T ) := fT (xT )− f(x′),

for any subset T ⊆ {1, . . . , n}. Here, fT is the ‘simplified’
function with the reduced input xT obtained from f when
all remaining features are taken from the baseline input x′,
that is, f∅(x∅) = f(x′).

Since Shapley Values also satisfy Completeness, Sensitiv-
ity, Implementation Invariance and Linearity (Aas et al.,
2019) with respect to the binary function defined by the
set function g, they are given by a convex combination of
path methods. Furthermore, Shapley Values with respect
to g are symmetry-preserving, but don’t coincide with
integrated gradients.

Different ways of feature attribution based on Shapley Val-
ues were recently investigated by Sundararajan and Najmi
(2019). Their main consideration is feature relevance rela-
tive to an auxiliary baseline, but feature attribution relative
to the expectation (according to an arbitrary distribution)
is also mentioned. Furthermore, Sundararajan and Najmi
(2019) already discussed that Shapley Values based on con-
ditional distributions can assign unimportant features non-
zero attribution. However, Sundararajan and Najmi (2019)
didn’t consider the problem from a causal perspective.

3 How should we sample the dropped
features?

We now want to attribute the difference between f(x) and
the expectation E[f(X)] to individual features. Explaining
why the output for one particular input x deviates strongly
from the average output is particularly interesting for un-
derstanding ‘outliers’. Let us introduce some notation first.
For any T ⊆ U let E[f(xT ,XT̄ )|XT = xT ] denote
the conditional expectation of f , given XT = xT . By
E[f(xT ,XT̄ )] we denote the expectation of f(xT ,XT̄ )

with respect to the distribution of XT̄ without condition-
ing on XT = xT . Let us call this expression ‘marginal
expectation’ henceforth.

Accordingly, we now discuss two different options for
defining ‘simplified functions’ fT where all features from
T̄ are dropped:

fT (x) := E[f(xT ,XT̄ )|XT = xT ] (3)
vs fT (x) := E[f(xT ,XT̄ )] ? (4)

Lundberg and Lee (2017) propose (3), but since it is dif-
ficult to compute they approximate it by (4), which they
justify by the simplifying assumption of feature indepen-
dence. Using the set function g(T ) := fT (x)−f∅(x), they
compute Shapley values φi according to (2). We will argue
that using (4) rather than (3) is conceptually the right thing
in the first place. Our clarification is supposed to prevent
others from ‘improving’ SHAP by finding an approxima-
tion for the conditional expectation that is better than the
marginal expectation, like, for instance Aas et al. (2019)
and Lundberg et al. (2018).3

To explain our arguments, let us first discuss why marginal
expectations occur naturally in the field of causal inference.

Observational versus interventional conditional distri-
butions The main ideas of this paragraph can already
be found in Datta et al. (2016) in more general and ab-
stract form, see also Friedman (2001) and Zhao and Hastie
(2019), but we want to rephrase them in a way that opti-
mally prepares the reader to the below discussion. Assume
we are given the causal structure shown in Figure 1.

Z

X1 X2 X3

Y

Figure 1: A simple causal structure where the observa-
tional conditional p(y|x1) does not correctly describe how
Y changes after intervening on X1 because the common
cause Z ‘confounds’ the relation between X1 and Y . Z is
drawn in white color because it may be latent.

Further, assume we are interested in how the expectation of
Y changes when we manually set X1 to some value x1.
This is not given by E[Y |X1 = x1] because observing
X1 = x1 changes also the distribution of X2, X3 due to
the dependences between X1 and X2, X3 (which are gen-
erated by the common cause Z). This way, the difference
between E[Y ] and E[Y |X1 = x1] is not only due to the

3Note that TreeExplainer in SHAP has meanwhile been
changed accordingly.
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influence of X1, but can also be caused by the influence
of X2, X3. The impact of setting X1 to x1 is captured by
Pearl’s do-operator Pearl (2000) instead, which yields

E[Y |do(X1 = x1)]

=

∫
E[Y |x1, x2, x3]p(x2, x3)dx2dx3. (5)

This can be easily verified using the backdoor criterion
Pearl (2000) since (phrased in Pearl’s language) the vari-
ables X2, X3 ‘block the backdoor path’ X1 ← Z → Y .
Observations from Z are not needed, we may therefore as-
sume Z to be latent.

For our purpose, two observations are important: first, (5)
does not contain the conditional distribution, given X1 =
x1. Replacing p(x2, x3) with p(x2, x3|x1) in (5) would
yield the observational conditional expectation E[Y |X1 =
x1], which we are not interested in. In other words, the in-
tervention on X1 breaks the dependences to X2, X3. The
second observation that is crucial for us is that the depen-
dences betweenX2, X3 are kept, they are unaffected by the
intervention on X1.

Why observational conditionals are flawed Let us start
with a simple example.

Example 1 (irrelevant feature). Assume we have

f(x1, x2) = x1.

Obviously, the feature X2 is irrelevant. Let both X1, X2 be
binaries and

p(x1, x2) =

{
1/2 for x1 = x2

0 otherwise .

(1) with conditional expectations:

f∅(x) = E[f(X1, X2)] = 1/2 (6)
f{1}(x) = E[f(x1, X2)|x1] = x1 (7)
f{2}(x) = E[f(X1, x2)|x2] = x2 (8)
f{1,2}(x) = f(x1, x2) = x1 (9)

Therefore,

C(2|∅) = f{2}(x)− f∅(x) = x1 − 1/2

C(2|{1}) = f{1,2}(x)− f{1}(x) = x1 − x1.

Hence, the Shapley value for X2 reads:

φ2 =
1

2
(x1 − 1/2 + x1 − x1) = x1/2− 1/4 6= 0.

(2) with marginal expectations:

f∅(x) = E[f(X1, X2)] = 1/2 (10)
f{1}(x) = E[f(x1, X2)] = x1 (11)
f{2}(x) = E[f(X1, x2)] = 1/2 (12)
f{1,2}(x) = f(x1, x2) = x1. (13)

We then obtain

C(2|∅) = f{2}(x)− f∅(x) = 0

C(2|{1}) = f{1,2}(x)− f{1}(x) = 0,

which yields φ2 = 0.

The example proves the follow result, which were already
discussed in Sundararajan and Najmi (2019):

Lemma 1 (failure of Sensitivity). When the relevance of
φi is defined by defining ‘simplified’ functions fT via con-
ditional expectations

fT (xT ) := E[f(x)|XT̄ = xT̄ ],

then φi 6= 0 does not imply that f depends on xi.

The example is particularly worrisome because we men-
tioned earlier that Shapley values satisfy the axiom of sen-
sitivity, while Lemma 1 seems to claim the opposite. The
resolve this paradox, note that the Shapley values refer to
binary functions (or set functions) and reading (6) to (8)
as the values of a binary function g̃ with inputs (z1, z2) =
00, 10, 01, 11 we clearly observe that g̃ depends also on the
second bit. This way, the Shapley values do not violate sen-
sitivity for g̃, but we certainly care about ‘sensitivity for f ’.
Note that this distinction between the binary function g̃ and
f is crucial although in our example f is binary itself. For-
tunately, the second bit is irrelevant for the binary function
g̃ defined by (10) and (13) and we do not obtain the above
paradox.

To assess the impact of changing the inputs of f , we now
switch to a more causal language and state that we consider
the inputs of an algorithm as causes of the output. Although
this remark seems trivial it is necessary to emphasize that
we are not talking about the causal relation between any
features in the real world outside the computer (where the
attribute predicted by Y may be the cause of the features),
but only about causality of this technical input / output sys-
tem4. To facilitate this view, we formally distinguish be-
tween the true features X̃1, . . . , X̃n obtained from the ob-
jects and the corresponding features X1, . . . , Xn plugged
into the algorithm. This way, we are able to talk about a hy-
pothetical scenario where the inputs are changed compared
to the true features. Let us first consider the causal struc-
ture in figure 2, top, where the inputs are determined by the
true features. In contrast, figure 2, bottom, shows the causal
structure after an intervention onX1, X2 has adjusted these
variables to fixed values x1, x2.

We now consider the impact of an hypothetical interven-
tion, which leaves the remaining components unaffected.
They are therefore sampled from their natural joint distribu-
tion without conditioning. Similar to the above paragraph,

4Accordingly, Y is the output of the system and not a property
of the external world.
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we then obtain

E[Y |do(XT = xT )] = E[f(xT ,XT̄ )]. (14)

Our formal separation between the true values of the fea-
tures X̃j of some object and the corresponding inputs Xj

of the algorithms allows us to be agnostic about the causal
relations between the true features in the real world, the fact
that the inputs X1, . . . , Xn cause the output Y is the only
causal knowledge needed to compute (14). Since the inter-
ventional expectations coincide with the marginal expecta-
tions, we have thus justified the use of marginal expecta-
tions for the Shapley values from the causal perspective.

X̃1 X̃2 X̃3 X̃4 X̃5

X1 X2 X3 X4 X5

Y

object with features

X̃1 X̃2 X̃3 X̃4 X̃5

x1 x2 X3 X4 X5

Y

object with features

Figure 2: Top: Causal structure of our prediction scenario:
The output Y is determined by the inputs X1, . . . , Xn. In
the usual learning scenario these inputs coincide with fea-
tures X̃1, . . . , X̃n of some object, that is Xj = X̃j . Bot-
tom: To evaluate the impact of some inputs, say X1, X2,
for the output Y we consider a hypothetical scenario where
we adjust these inputs to some fixed values x1, x2 and sam-
ple the remaining inputs from the usual joint distribution
PX3,...,Xn

.

The problem with the symmetry axiom We briefly
rephrase Example 4.9 of Sundararajan and Najmi (2019)
showing that the symmetry axiom is violated when Shap-
ley values are used for quantifying the influence relative to
conditional or marginal expectations. Figure 3 shows val-
ues and probabilities of two random variables X1 and X2

and the values of the function f(X1, X2) = X1 + X2. As
explained by Sundararajan and Najmi (2019), for the in-
put (x1, x2) = (2, 2) the value x1 gets attribution (1 − p)
and x2 gets attribution (1 − q). Therefore, if p 6= q, x1

Probability X1 X2 f = X1 +X2

(1− p) · (1− q) 1 1 2
(1− p) · q 1 2 3
(1− q) · p 2 1 3
p · q 2 2 4

Figure 3: Table 3 from Sundararajan and Najmi (2019)
which shows an example for alleged lack of symmetry of
Shapley Values with respect to the marginal expectation.

and x2 get different attribution, although f is symmetric.
They conclude that this is a violation of symmetry. Since
X1 and X2 are independent, this problem occurs regard-
less of whether one defines the simplified function fT with
respect to marginal or conditional expectations. One can
argue, however, that this result makes intuitively sense be-
cause the value xj that is farther from its mean contributes
more to the fact that f(x1, x2) deviates from its mean. If
we have even x1 = E[X1], we would certainly say that
x1 does not contribute to the deviation from the mean at
all. For this reason we do not follow Sundararajan and Na-
jmi (2019) in regarding this phenomenon as a problem of
this kind of attribution analysis. Recall furthermore that we
have already mentioned that the symmetry axiom does hold
for the corresponding binary function defined by including
or not certain features (simply because symmetry holds for
Shapley values). For the above example this binary func-
tion is indeed asymmetric. To check this, define

g̃(z1, z2) := E[f(xT ,XT̄ )],

where T is the set of all j for which zj = 1. This function
is not symmetric in Z1 and Z2, since we have, for instance,
g̃(1, 0) = x1 + E[X2] 6= g̃(0, 1) = x2 + E[X1].

4 Numerical Evidence

In this section, we show numerically that the marginal
expectation E[f(xT ,XT̄ )] is a better choice than
E[f(xT ,XT̄ )|XT = xT ] to quantify the attribution of each
observation xj of a particular input x = (x1, . . . , xn) to
f(x)−E[f(X)]. Admittedly, one can argue that the exper-
iments are pointless because simple equations prove this
claim. However, some readers get a better intuition of con-
ceptual problems when simple experiments show a signifi-
cant difference between the two different averages.

4.1 Computation of Shapley Values

As explained by Aas et al. (2019, Section 2.3), the imple-
mentation of KernelSHAP (Lundberg and Lee, 2017) con-
sists of two parts:

1. Using a representation of Shapley Values as the solu-
tion of a weighted least square problem for a compu-
tationally tractable approximation.
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2. Approximation of g(T ).

4.1.1 Shapley Values as solution of weighted least
square problem

By Charnes et al. (1988), the Shapley Values to the set func-
tion g are given as the solution (φ1, . . . , φn) of

min
φ1,...,φn

∑
T⊆U

[
g(T )−

(∑
j∈T

φj

)]2
k(U, T )

 , (15)

where k(U, T ) = (|U | − 1)/(
(|U |
|T |
)
|T |(|U | − |T |)) are the

Shapley kernel weights. Since k(U,U) = ∞, we use the
constraint

∑
j φj = g(U), or, for numerical calculation,

we set k(U,U) to a large number.

Since the power set of U consists of 2n elements, the com-
putation time of the Sharpley Values increases exponen-
tially. KernelSHAP therefore samples subsets of U accord-
ing to the probability distribution induced by the Shapley
kernel weights.

4.1.2 Approximation of the set function

As discussed in the previous sections, Lundberg and Lee
(2017) define

fT (x) = E[f(xT ,XT̄ )|XT = xT ].

To evaluate the conditional expectation, they assume
feature independence (or weak dependence) to obtain
E[f(xT ,XT̄ )|XT = xT ] ≈ E[f(xT ,XT̄ )] and use the
approximation

fT,KernelSHAP(x) ≈ 1

K

∑
k

f(xT ,x
k
T̄ ), (16)

where xk
T̄

, k = 1, . . . ,K are our samples from XT̄ .

4.2 Experiments

To show in an experimental setup that the marginal expec-
tation is a better choice, we consider functions f for which
we can calculate analytically the attribution of xj . This is
possible for linear functions

f(x) = α0 +
∑
i

αixi, αi ∈ R

since

f(x)− E[f(X)] =
∑
i

αi(xi − EXi)

and hence, the attribution of xj is αj(xj − E[Xj ]). Our
experiments are divided into the following setups:

1. We assume that the feature vector X follows a multi-
variate Gaussian distribution.

2. We use a kernel estimation to approximate the condi-
tional expectation.

For the experiments, we use the KernelExplainer class of
the python SHAP package from Lundberg and Lee (2017)
to calculate Shapley Values with respect to the marginal ex-
pectation and the R package SHAPR, in which the method-
ology of Aas et al. (2019) is implemented, to calculate
Shapley Values with respect to the conditional distribution.

Notice that calculating Shapley Values is also possible for
non-linear functions. Further, approximating the marginal
expectation is computationally inexpensive compared to
the approximation of the conditional expectation with ker-
nel estimation.

4.2.1 Multivariate Gaussian distribution

If X ∼ N(µ,Σ) with some mean vector µ and covariance
matrix Σ , it holds that

P(XT̄ |XT = xT ) = N(µT̄ |T ,ΣT̄ |T ),

(see (Aas et al., 2019, Section 3.1)), where

µT̄ |T = µT̄ + ΣT̄ TΣ−1
TT (xT − µT )

ΣT̄ |T = ΣT̄ T̄ −ΣT̄ TΣ−1
TTΣT T̄ ,

with

µ =

(
µT
µT̄

)
, Σ =

(
ΣTT ΣT T̄

ΣT̄ T ΣT̄ T̄

)
.

Hence, we can approximate the conditional expectation by
sampling XT̄ directly from its distribution.

We simulate Gaussian data and run the experiment for dif-
ferent number of features. For every experiment with mul-
tivariate Gaussian distribution, we set the intercept to 0, i.e.
α0 = 0.

Dimension n=3. In the first 3-dimensional experiment,
we let α1 = 0 and choose in every run α1 and α2 in-
dependently from the standard normal distribution. Fur-
ther, we let µ = (0, 0, 0)T and Σ = ccT , where we
choose the entries of c in every run independently from
the standard normal distribution and x also randomly in
every run. The number of runs and the sample size of
X is 1000. Figure 4 shows the errors φj − contrj(x) of
the Shapley Values φj with respect to the set function
g(T ) = E[f(xT ,XT̄ )] − Ef(X) (blue) and the set func-
tion g(T ) = E[f(xT ,XT̄ )|XT = xT ]−Ef(X) (red). The
very precise results for the marginal expectation are mainly
from feature 1.

Dimension n=10. In 10-dimensions, we take almost the
same setting with the difference that we set the first 3 co-
efficients to zero, i.e. α1 = α2 = α3 = 0. Again, the very
precise results for the marginal expectation are from the
features whose coefficients we set to 0.
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Figure 4: Histogram showing the error of the Shapley
Values for multivariate Gaussian distribution in the 3-
dimensional (left) and 10-dimensional (right) setting with
α1 = 0. Blue: error using marginal expectation, Red: error
using conditional expectation.

4.2.2 Approximation via kernel estimation

If we have no information about the underlying distribu-
tion, it is hard to approximate the conditional distribution
sufficiently. However, in low dimensions kernel estimates
can provide a good approximation. We take the kernel esti-
mation method from Aas et al. (2019) to show how strongly
the Shapley Values w.r.t. conditional expectation deviate
from αj(xj − E[Xj ]). Their approximation is as follows:

1. Let ΣT be the covariance matrix of our samples from
XT . To each point xi, calculate the Mahalanobis dis-
tance (see Mahalanobis (1936))

distT (x,xi) :=

√
(xT − xiT )′Σ−1

T (xT − xiT )

|T |
,

where (xT −xiT )′ denotes the transpose of (xT −xiT ).

2. Calculate the Kernel weights

wT (x,xi) := exp

(
−distT (x,xi)2

2σ2

)
.

Hereby, σ2 > 0 is a bandwidth which has to be speci-
fied.

3. Sort the weights wT (x,xi) in increasing order and let
x̃i be the corresponding ordered sampling instances.
Then, approximate g(T ) by

gcond(T ) :=

∑K
i=1 wT (x, x̃i)f(xi

T̄
,xT )∑K

i=1 wT (x, x̃i)
.

For the experiment, we use the data set Human Activ-
ity Recognition Using Smartphones Data Set (see Anguita
et al. (2013)) from the UCI repository. The data set consists
of 561 features with a training sample size of 7352 and test
sample size of 2948. In this experiment, we merge these
samples together and therefore our sample size is 10299.
We take randomly 4 features and train a linear model with
3 of these features as inputs and with the 4-th feature as tar-
get. We don’t consider the label (which is a daily activity

performed by the human) of the data set, but the different
features have the true label as a common cause. Notice that
we are not interested in the quality of the model, but rather
in a model for which the ground truth of the attribution is
known (because we can certainly look at the linear model
obtained).

Afterwards, we calculate the Shapley Values with SHAP
and SHAPR (with σ2 set to 0.1 in SHAPR which is the de-
fault value) using the first 1000 samples and approximate
the expected value EXj using the whole data set. The ob-
servation x is also randomly picked from the data and we
run this experiment 1000 times. Figure 5 shows the his-
togram of the error φj − contrj(x) for the marginal expec-
tation (blue) and conditional expectation (red).

Figure 5: Histogram showing the error of the Shapley Val-
ues for the data set Human Activity Recognition Using
Smartphones Data Set. Blue: error using marginal expec-
tation, Red: error using conditional expectation.

5 Conclusion

In this work we considered the problem of attributing the
output from one particular multivariate input to individual
features. We argued that there is a misconception also in re-
cent proposals for feature attribution because they use ob-
servational conditional distributions rather than interven-
tional distributions. Our arguments are phrased in terms of
the causal language introduced by Pearl (2000). We argue
that parts of the package SHAP from Lundberg and Lee
(2017) are unaffected by this misconception (although the
corresponding theory part of the paper suffers from this is-
sue) since it ‘approximates’ the observational expectations
by an expression that would have been the right one in the
first place. We think that this clarification is important since
other authors tried to ‘improve’ the SHAP package in a
way that we consider conceptually flawed. Moreover, we
revisited some properties that were stated as desirable in
the context of attribution analysis. If stated in a too vague
manner, there is some room for interpretation. We argued,
for instance, why we think that our attribution method sat-
isfies a reasonable symmetry property, since attribution via
interventional probabilities has been criticised for violating
alleged desirable symmetry properties.
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