
Inference of Dynamic Graph Changes for Functional Connectome

Dingjue Ji† Junwei Lu! Yiliang Zhang‡ Siyuan Gao§ Hongyu Zhao†,‡

Interdepartmental Program of Computational Biology & Bioinformatics†,
Department of Biostatistics‡, Department of Biomedical Engineering§, Yale University

Department of Biostatistics, Harvard T.H. Chan School of Public Health!

Abstract

Dynamic functional connectivity is an effec-
tive measure for the brain’s responses to con-
tinuous stimuli. We propose an inferential
method to detect the dynamic changes of
brain networks based on time-varying graphi-
cal models. Whereas most existing methods
focus on testing the existence of change points,
the dynamics in the brain network offer more
signals in many neuroscience studies. We pro-
pose a novel method to conduct hypothesis
testing on changes in dynamic brain networks.
We introduce a bootstrap statistic to approx-
imate the supreme of the high-dimensional
empirical processes over dynamically chang-
ing edges. Our simulations show that this
framework can capture the change points with
changed connectivity. Finally, we apply our
method to a brain imaging dataset under a
natural audio-video stimulus and illustrate
that we are able to detect temporal changes
in brain networks. The functions of the iden-
tified regions are consistent with specific emo-
tional annotations, which are closely associ-
ated with changes inferred by our method.

1 INTRODUCTION

The time series of multivariate variables with under-
lying time-varying graphical structures are commonly
studied in various areas such as transcriptomics (Rodius
et al., 2016; Willsey et al., 2013), finance (Silva et al.,
2015; Isogai, 2017), and neuroscience (Kabbara et al.,
2017; Soreq et al., 2019). With time-evolving gene
co-expression networks, dynamic stock price networks,
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and dynamic brain connectivities in cognitive processes,
these studies have shown the necessity of investigat-
ing dynamic changes in graph structures, especially
when temporal changes or specific turning events are
expected.

1.1 Motivation

The turning events during a time course can be abrupt,
and bring sudden perturbations to the system. For
example, bifurcation exists in important biological reg-
ulatory networks such as the p53 system (Hat et al.,
2016), where a small change or perturbation can cause
a qualitative change of the state in the system (Champ-
neys and Tsaneva-Atanasova, 2013). Structural breaks
may be observed in other data types with a similar
design or sudden changes caused by unexpected events,
such as financial data during bursts of emergencies
(Pepelyshev and Polunchenko, 2015).

Brain imaging is also a typical example of signals with
graphical variety during a certain external stimulus,
and the brain transits to distinct network states accord-
ing to task demands (Gonzalez-Castillo and Bandettini,
2018). The complex network map of the human brain,
which is defined as the human connectome by Sporns
et al. (2005), is a collection of connections in the brain.
It consists of scattered voxels or regions of interest
(ROIs) and their entangled spatiotemporal relation-
ships, including structural and functional connectivity
(Contreras et al., 2015). Functional connectivity (FC)
is inferred using neural activity signals such as BOLD
sequences (Smith et al., 2013). Specific statistical mea-
sures such as correlation and mutual information are
commonly used to characterize the brain network struc-
ture (Jeong et al., 2001), where a stationary interaction
structure is assumed in FC calculation. However, fluc-
tuations of both BOLD sequences and FC have become
of great interest with the advancement of technology
and improved experimental designs (Preti et al., 2017).
Calhoun et al. (2014) extended the connectome concept
with a dynamic perspective, namely “dynamic connec-
tome”, to describe a spectrum of approaches aiming to
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identify time-varying properties of dynamic functional
connectivity (dFC).

1.2 Related Works

The applications of a number of dynamic graph estima-
tion methods developed under different assumptions
have successfully identified biologically meaningful dy-
namic patterns for different brain states (Betzel et al.,
2016; Gonzalez-Castillo et al., 2015; Wang et al., 2013).
A sliding window approach is commonly adopted to link
functional brain dynamics and cognitive abilities where
the functional connectivity at a specific stage is con-
structed with observations in the corresponding time
window (Elton and Gao, 2015; Fong et al., 2019). Us-
ing the sliding window approach, Sakoğlu et al. (2010)
revealed different dynamic connectivities in schizophre-
nia in terms of task-modulation. Although the sliding
window approach is straightforward and easy to inter-
pret, the choice of the window length is still subject
to debate (Hutchison et al., 2013; Preti et al., 2017).
Lindquist et al. (2014) proposed multivariate volatil-
ity models to refine the sliding window methods with
exponential weights and used dynamic conditional cor-
relation to measure dFC (Preti et al., 2017). Chang
and Glover (2010) applied time-frequency analysis to
circumvent the window limitation, and extended the
dynamic connectivity to multiple frequencies.

Furthermore, with the advancement of change point
detection methods, BOLD sequences can be further
divided into segments for a better understanding of net-
work structure within each segment (Xu and Lindquist,
2015). A general comparison between time segments
can be achieved by a summary statistic, for example,
a likelihood ratio statistic (Barnett and Onnela, 2016),
where a multivariate Gaussian distribution is assumed
to facilitate statistical inference. However, it is hard
to impose specific hypotheses on the heterogeneity of
the graphs along a time course because changes can
be continuous, which invalidates the time segments
proposed by the likelihood ratio test. In (Park et al.,
2018), a two-sample test based on covariance matrix
estimators on different time windows was proposed to
detect the change time points of brain connectivity.
Avanesov et al. (2018) also addressed the multi-scale
properties in their testing framework, which directly
tests the difference of covariance structures. Though
the testing framework is similar, our method is dif-
ferent from the existing literature in three aspects: 1.
We assume continuity instead of structural invariance
for the null hypothesis, with a focus on discontinuity
with sudden changes. 2. We consider the temporal
dependence of the covariance structures by applying
a time kernel. 3. We accordingly apply the Gaussian
multiplier bootstrap to approximate the distribution

of the test statistic to detect potential changes over
the whole time course, and we prove that the testing
procedure appropriately controls the type I error rate.

1.3 Time-varying Gaussian Graphical Models

Different testing statistics may be applied under simi-
lar frameworks. Given a time series X in a temporal
scale observed on [0, T ], which is commonly assumed
as Gaussian at a specific time point, a test statistic can
be constructed for the null hypothesis where there is no
change in the distribution or the covariance structure
over the time course. The null hypothesis is then re-
jected when the test statistic derived from the observed
time series reaches certain statistical significance. We
adapt the inter-subject time-varying Gaussian graphi-
cal models proposed by Tan et al. (2019) to consider
individuals instead of two representative time series
for the estimation. The following is the setting of the
inferential framework. Let X ∈ Rp be a p-dimensional
random variable and define a time variable T ∈ [0, 1].
In the time-varying Gaussian graphical model, we as-
sume X|T = t ∼ Np(0,Σ(t)), where the covariance
matrix Σ(t) is defined at T = t and the correspond-
ing precision or inverse covariance is Θ(t) = (Σ(t))−1

which governs the conditional dependencies for the
graph. The inverse covariance matrix Θ(t) is regarded
as a representation of the time-varying graph G(t).
Thus, graphs across time can be retrieved by estimat-
ing Θ(t). A kernel smoothed covariance estimator (Yin

et al., 2010; Zhou et al., 2010) is used to obtain Σ̂(t):

Σ̂(t) =

∑
i∈[n] Kh(ti − t)XiX

T
i∑

i∈[n] Kh(ti − t)
(1)

where Kh(ti − t) = K((ti − t)/h)/h with h > 0 as
the bandwidth parameter. For simplicity, we use the
Epanechenikov kernel described in Tan et al. (2019),
i.e.,

K(u) = 0.75 · (1− u2) |u|≤1,

which is commonly used in non-parametric estima-
tion (Epanechnikov, 1969). The precision matrix can
then be estimated using the CLIME estimator (Cai

et al., 2011), i.e., Θ̂j(t) = argminθ∈Rp ||θ||1, subject
to ||Σ̂(t)θ − ej ||∞ ≤ λ, where ej is the j-th canonical
basis in Rp for each j ∈ {1, ..., p} and λ > 0 is a tuning

parameter to control the sparsity of Θ̂j . Instead of tak-
ing precision as the parameter of interest, Neykov et al.
(2018) derived a de-biased estimator for the CLIME
estimator

Θ̂d
jk(t) = Θ̂jk(t)−

(
Θ̂j(t)

)T [
Σ̂(t)Θ̂k(t)− ek

]
(
Θ̂j(t)

)T
Σ̂j(t)

, (2)
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which is proven to be asymptotically normal (Neykov
et al., 2018). The construction of the de-biased pre-
cision estimator is able to circumvent the asymptotic
non-normality of traditional test statistics such as score
test (Neykov et al., 2019).

Based on (2), Tan et al. (2019) proposed a combinatoric
inferential framework to test monotone graph property
for time-varying graphs. They introduced a test statis-
tic and a bootstrap method for hypothesis testing with
an appropriate type I error control. In their work, Tan
et al. (2019) defined the test statistic for the graph as:

UE = sup
t∈(0,1)

max
(j,k)∈E(t)

√
nh

∣∣Θ̂d
jk(t)−Θjk(t)

∣∣. (3)

Based on the maximal statistic as defined in (3), we
replace precision components with the difference of
limits to build the test statistic for hypothesis testing.
The bootstrap statistic is adapted accordingly, and the
testing procedure remains the same as that in Tan
et al. (2019) except for the skip-down operation. Fi-
nally, we introduce a testing framework called dynamic
Graphical Change Inference (dGCI), which aims to test
whether there is any sudden change in the covariance
structure in the observed time series.

1.4 Our Contributions

The major contributions of our current work are: 1.
We extend the null hypothesis to allow continuous
changing patterns. 2. We propose a generalized testing
framework for change point detection of dynamic co-
variance structure. 3. Besides change point detection,
we introduce a powerful tool to identify connectivity
changes with adequate sample sizes.

2 METHODS

In this section, we introduce the time-varying Gaussian
graphical models and propose testing procedures for
change point detection. We adapt model settings in
Tan et al. (2019) and design a novel test statistic for
detecting change points. We also propose a normalized
estimate of the difference between precision matrices
to enhance the performance of our method.

2.1 Test Statistic for Graph Change

Here, we formulate the testing problem and propose a
corresponding bootstrap method for statistical infer-
ence adapted from (Tan et al., 2019). Furthermore,
we apply normalization to de-biased estimates and use
normalized estimates to derive the test statistic.

2.1.1 Inference of Graph Change

Given the precision matrix Θ(t), we note that its
left and right values at t0 are defined as Θ-(t0) :=
limt→t0− Θ(t) and Θ+(t0) :=limt→t0+ Θ(t). We define
Σ+(t), Σ-(t), G+(t) and G-(t) based on Σ(t) and G(t)
similarly. We say edge (j, k) is changed at time point
t0 if the left and right values of Θjk(t) at t0 are dif-
ferent, i.e., Θ+

jk(t) &= Θ-
jk(t). Here, we do not assume

temporal segments of constant precisions, which is dif-
ferent from the common null hypothesis with a static
covariance structure (Avanesov et al., 2018; Xu and
Lindquist, 2015). For G(t)=(V,E(t)), the hypothesis
testing of graph changes can be formulated as:

H0 :∀t ∈ (0, 1), G+(t)=G-(t),

H1 :∃t0∈(0, 1),(j, k)∈E(t) s.t. G+
jk(t0) &=G-

jk(t0),
(4)

Unlike a general graph property P defined by Neykov
et al. (2019) and Tan et al. (2019), this specific null
hypothesis does not require a skip-down procedure
because the rejection of a single edge will reject the null
at the same time. It simplifies the inference although
we can still perform the skip-down approach for specific
changes of properties. In order to observe changes of
Θ(t) at T = t, we need to consider both sides of t, i.e.,
Θ+(t) and Θ-(t), which represent the right and left
limits, respectively. If there is no change in the current
graph, it is expected that |Θ+(t)−Θ-(t)| = 0.

To perform the statistical test at T = t, first, we gen-
eralize (1) into right and left approximated estimates.
We define the right-sided covariance estimator as (1)
with Kh = Kh+ , where Kh+(u) = 2Kh(u) {u > 0}
to ensure

∫
Kh+(u)du = 1. We also define the

left-sided covariance estimator Σ̂−(t) similarly with
Kh−(u) = 2Kh(u) {u < 0}.

Following the same procedure above, Θ̂+(t) and Θ̂-(t)
are estimated by GLASSO (Friedman et al., 2008)

or CLIME (Cai et al., 2011) using Σ̂+(t) and Σ̂-(t),
respectively. Similar to (2), the de-biased estimators
of approximated estimates for the two sides are

Θ̂d±
jk (t) = Θ̂±

jk(t)−
(
Θ̂±

j (t)
)T [

Σ̂±(t)Θ̂±
k (t)− ek

]

(
Θ̂±

j (t)
)T

Σ̂±
j (t)

,

where the notation ± means we use the left or right
estimates respectively in the definition of Θ̂d+

jk (t) or

Θ̂d−
jk (t). Here, we extend (3) with left- and right-sided

estimates for characterizing graph changes

U±
jk(t) = Θ̂d±

jk (t)−Θ±
jk(t),

UE = sup
t∈(0,1)

max
(j,k)∈E(t)

√
nh

∣∣U+
jk(t)− U-

jk(t)
∣∣, (5)

where Θ-
jk(t) and Θ+

jk(t) represent the left- and right-
sided values of Θjk(t), respectively. We expand the
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Gaussian multiplier bootstrapper as

MB±
ijk (t)=Kh±(ti−t)·

(
Θ̂±

j (t)
)T[

XiX
T
i Θ̂

±
k (t)−ek

]
(6)

where t ∈ (0, 1), i ∈ [n] and (j, k) ∈ E(t). Similar to (3)
and (5), we can replace the estimates of the bootstrap
statistics defined by Tan et al. (2019), which are not
side-specific, with the differences of the side-specific
ones as shown in (7). With two components defined in
(6), the bootstrap statistic is defined as

UB±
jk (t) =

∑
i∈[n] M

B±
ijk (t)ξi∑

i∈[n] Kh±(ti − t)
, (7)

UB
E = sup

t∈(0,1)
max

(j,k)∈E(t)

√
nh·

∣∣∣UB+
jk (t)− UB-

jk (t)
∣∣∣, (8)

where ξi, ..., ξn
i.i.d.∼ N(0, 1). c(1−α,E), the conditional

(1− α)-quantile of UB
E given {(ti,Xi)}i∈[n] is defined

as:

inf{q ∈ R|P (UB
E ≤ q|{(ti,Xi)}i∈[n]) ≥ 1− α}. (9)

In our implementation, we uniformly sample t ∈ (0, 1)
and approximate UB

E by taking the supreme over sam-
pled tB instead of (0, 1). UB

E is sampled with ξ as
defined in (7) and (8). Similar to Tan et al. (2019), the
rejected edge set at t is defined as

R(t)=
{
(j, k)∈E(t)

∣∣√nh ·
∣∣∆Θ̂jk(t)

∣∣ > c(1− α,E)
}
,

where ∆Θ̂jk(t) =
(
Θ̂d+

jk(t)− Θ̂d-
jk(t)

)
. The null hypoth-

esis will be rejected if there exists a t0 ∈ (0, 1) such
that R(t0) &= ∅.

2.1.2 Approximated Variance of Test
Statistic

With arbitrary changes of the graph, the variance of the
de-biased estimator can vary. To avoid the dominance
of unwanted variance, we normalize the estimates with
approximated variance. We approximate the variance
of the de-biased estimator σ̃2

(
Θ̂d±

jk (t)
)
by taking the

kernel weighted average of squares:

∑N
i=1 Kh±(ti − t)

((
Θ̂±

j (t)
)T [

XiXT
i Θ̂

±
k (t)− ek

])2

∑N
i=1 Kh±(ti − t)

.

The normalization term σ̃jk(t) for (j, k) ∈ V is de-

fined as σ̃jk(t) =
√
σ̃2

(
Θ̂d+

jk(t)
)
+ σ̃2

(
Θ̂d-

jk(t)
)
. With

δΘ̂jk(t) =
(
Θ̂d+

jk(t)− Θ̂d-
jk(t)

)
/σ̃jk(t), we normalize the

test statistic

UE = sup
t∈(0,1)

max
(j,k)∈E(t)

√
nh ·

∣∣∣δΘ̂jk(t)
∣∣∣ (10)

and the bootstrapper as

UB
E = sup

t∈(0,1)
max

(j,k)∈E(t)

√
nh·σ̃−1

jk (t)

∣∣∣∣U
B+
jk (t)−UB-

jk (t)

∣∣∣∣ (11)

The definition of the quantile c(1−α,E) defined in (9)
remains the same.

2.2 Hypothesis Testing

We summarize the bootstrap procedure and the hy-
pothesis test in Algorithm 1 and Algorithm 2.

Algorithm 1: Gaussian Multiplier Bootstrap for UE

Input: Observed time sequence with time: X ∈ Rn×p

and t ∈ (0, 1)n; Θ̂+(t), Θ̂-(t) for t ∈ t; Bootstrap
number B; α in the quantile defined as (9).

while B > 0 do
Draw ξ from N(0, In).
for t ∈ (0, 1) do

1. Calculate the normalization term σ̃(t).

2. Apply σ̃(t) to the bootstrap statistic
defined in (11) with respect to ξ and
take the maximum over E.

end
Calculate UB

E .
B ← B − 1

end
Calculate c(1− α,E) based on UB

E .

Output: c(1− α,E); Θ̂+(t), Θ̂-(t), σ̃(t) for t ∈ (0, 1)

Algorithm 2: Hypothesis test for dynamic graph
change

Input: c(1− α,E);Θ̂+(t), Θ̂-(t), σ̃(t) for t ∈ (0, 1);
for t ∈ (0, 1) do

1. Compute δΘ̂(t)

2. R(t) =
{
(j, k) ∈ E(t)

∣∣√nh · |δΘ̂jk(t)| >

c(1− α,E)
}
.

3. Reject H0 if R(t) &= ∅.

end
Output: {H0 rejected}; R(t) for t ∈ (0, 1).

3 THEORETICAL RESULTS

In this section, we establish the uniform rates of con-
vergence for the kernel smoothed covariance matrix
estimator Σ̂±(t) and the inverse covariance estimator

Θ̂(t) in CLIME. In addition, we show that our testing
procedure in Algorithm 2 is a uniformly valid test. We
study the asymptotic regime in which both n and p are
allowed to increase. Our theoretical results are based
on the results in Tan et al. (2019), and we address the
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differences here and in the supplementary notes. To
detect “sudden changes”, we don’t assume that the
covariance matrix Σ (·) is continuous. Consequently,
we obtain different rates of convergence from those in
Tan et al. (2019). Throughout our proof, we consider
the parameter space

Us,m,M = {Θ ∈ Rp×p|Θ + 0,λ1(Θ) > m,

‖Θ‖2 ≤ ρ,max
j∈[p]

‖Θj‖0 ≤ s,max
j∈[p]

‖Θj‖1 ≤M},

where 0 < λ1(Θ) ≤ λ2(Θ) ≤ . . . ≤ λp(Θ) are the
eigenvalues of Θ. A similar class of matrices were
considered in the literature on inverse covariance matrix
estimation (Cai et al., 2011). We allow s to increase
with n and p. Next, we impose some conditions on the
regularity and smoothness of the marginal density of t,
fT (·) and covariance matrix Σ(·).

Assumption 1 Assume that there exists a constant
f
T

such that inft∈[0,1] fT (t) ≥ f
T
> 0. Furthermore,

assume that fT is twice continuously differentiable
and that there exists a constant fT < ∞ such that
max{‖fT ‖∞, ‖ḟT ‖∞, ‖f̈T ‖∞} ≤ fT .

Now, we introduce Assumption 2. Different from As-
sumption 2 in Tan et al. (2019), to detect graph changes,
we assume Σjk(t) is right continuous in [0, 1].

Assumption 2 Assume Σjk(t) is right continuous
and Σ±

jk(t), Σ̇±
jk(t) and Σ̈±

jk(t) exist for ∀t ∈ (0, 1),

j, k ∈ [p]. Σ+
jk(0) = Σjk(0), Σ

−
jk(1) = Σjk(1) and there

is a finite number of discontinuities of Σ(t) for t ∈ [0, 1].
There exists a constant Mσ such that

sup
t∈[0,1]

max
j,k∈[p]

max{Σ+
jk(t), Σ̇

+
jk(t), Σ̈

+
jk(t),

Σ−
jk(t), Σ̇

−
jk(t), Σ̈

−
jk(t)} ≤Mσ.

Details of corollaries and proofs can be found in supple-
mentary notes. Here we only state the theorems. The
following Theorem 1 establishes the uniform rates of
convergence for the kernel smoothed covariance matrix
estimator under the maximum norm. The proof of
Theorem 1 is a generalization of Theorem 1 in Tan
et al. (2019). Right and left Epanechnikov kernels are
used in our paper to detect change points, which makes
our rates of convergence different from those in Tan
et al. (2019). Corollary 1 in the supplementary notes

gives the uniform rates of convergence of Θ̂±(t) defined
in CLIME.

Theorem 1 Assume that h= o(1) and that log2np ·
log(np/

√
h)/nh= o(1). For any 0< a< b < 1, under

Assumptions 1-2, there exists a positive constant C

such that

sup
t∈[a,b]

‖Σ̂±(t)−Σ±(t)‖max ≤ C·



h+

√
log(np/

√
h)

nh





for a sufficiently large n.

Recall from (9) the definition of c(1 − α,E). The
following Theorem 2 shows that the Gaussian multiplier
bootstrap after normalization can be approximately
dominated by the quantile of the test statistic UE . So
it is valid by effectively controlling type I error. Similar
to Theorem 2 in Tan et al. (2019), to prove that UB

E
is a good approximation of UE , we define a series of
intermediate processes, and we show both UB

E and
UE can be approximated well by these processes with
applications of Theorems A.1 and A.2 in Chernozhukov
et al. (2014).

Theorem 2 Assume that
√
nh3 = o(1). In addition,

assume that poly(s) ·
√

log4(np/
√
h)/nh2 + poly(s) ·

log8(p/h) · log2(ns)/(nh) = o(1), where poly(s) is a
polynomial of s. Under the same conditions in Corol-
lary 2 of supplementary notes, we have

lim
n→∞

sup
Θ(·)∈Us,m,M

PΘ(·) (UE ≥ c (1− α, E)) ≤ α.

Remark. By integrating the scaling conditions that√
nh3 = o(1) and 1/

(
nh2

)
= o(1), we conclude that

the rate of h is n−1/2 ! h ! n−1/3, where we say
an ! bn when an, bn ≥ 0 and there exists a constant C
such that C · an ≤ bn for any n = 1, 2, . . .. In practice,
we set h ∼ n−0.4, which satisfies the scaling conditions.

4 SIMULATION

We evaluate the performance of our proposed method
through simulations under various scenarios. Each sim-
ulation consists of 500 repeated runs with specific pa-
rameters including the number of observed time points
NT , the number of time segments with different preci-
sions and the number of nodes p. Then, we uniformly
generate NT time points t ∈ (0, 1) along with Θ(t).
For the estimation of precisions, we use the CLIME
estimator at each time point. In all simulations, we

set h=C1 ·n−0.4 and λ=C2 · (h+
√
log(np/

√
h)/(nh)),

where C1 and C2 are the tuning parameters. We uni-
formly take 50 points in (0, 1) as tB for bootstrapping,
and set α=0.05 for hypothesis testing.

4.1 Changing Precision without Sudden
Breaks

To test if the method can control type I error rate
when there is no sudden change, we simulate time series
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with smoothly changing precisions. We first generate
NU = 100 sparse integer vectors U using a multinomial
distribution with p = {50, 100} elements with equal
probability, and set the number of trials m = 3. The
graph Θ is generated as

∑
i∈[NU ] βi · UiUT

i where β

is the set of coefficients drawn from Unif(0, 1)NU . We
randomly flip the signs of entries in Θ to introduce neg-
ative entries. To introduce continuously and smoothly
changing pattern of precisions, we generate {Θ1,Θ2},
and Θ(t) is defined as the linear interpolation of these
two precision matrices given t ∈ (0, 1). We set C1 = 1
when p = 50, and C1 = 2 when p = 100. C2 is set to 0.2
which can be selected by cross-validation for CLIME.
As shown in Table 1, type I error is controlled under

Table 1: Type I error rate
NT=700 800 900 1000

p=50 0.04 0.04 0.04 0.05
100 0.04 0.05 0.04 0.04

α = 0.05. We also compare our method with covcp
introduced by Avanesov et al. (2018) and Dynamic
Connectivity Detection (DCD) proposed by Xu and
Lindquist (2015). We use the same parameter settings
described in Avanesov et al. (2018); Xu and Lindquist
(2015) for testing, in which the precision estimator
with the same parameters used in our simulations is
applied for covcp. Different from our approach, both
these methods assume a constant Θ throughout the
time course. Since the covariance structure is changing
through the time course, both covcp and DCD rejected
the null hypothesis over 90% of all simulations.

4.2 Changing Precision with Sudden Breaks

Within a diagonal matrix Gp = diag(g1, ..., gp), Θij

in M entries are assigned with a · gigj in which
0 < a < 1. The signs are randomly set to introduce
negative entries. After the initialization of Θ, we set
Θjj = Θjj − min(Λmin, 0) + 0.05 where Λmin is the
minimum of eigenvalues of Θ. We generate one matrix
with random entries and randomly flip the signs to

form (Θ(1)
1 ,Θ(2)

1 ), (Θ(1)
2 ,Θ(2)

2 ) and (Θ(1)
3 ,Θ(2)

3 ). The
precision is a linear function of T for each segment,
which is an interpolation of each matrix pair. The
diagonal precision entries are randomly initialized with
1 or 9 with the ratio 9:1. We set p = 50; M = 50;
NT = {1000, 1500, 2000, 2500, 3000}; a = 0.2; C1 = 2;
C2 = 0.4. A change point is considered successfully
identified if it is localized within half of the bandwidth.
We compared the power of covcp and DCD with our
method for identifying both change points. As shown
in Table 2, dGCI has the best power of both change
points with relatively small N and is slightly better
than DCD with larger N . covcp cannot effectively iden-

tify both change points even with an increasing sample
size when a = 0.2. All three methods can identify
both change points with more than 85% power when
a = {0.3, 0.4}.

Table 2: Power of detecting change points with α = 0.2
NT=1000 1500 2000 2500 3000

dGCI 0.40 0.59 0.76 0.89 0.95
DCD 0.04 0.27 0.59 0.85 0.91
covcp 0.26 0.17 0.19 0.24 0.37

Additionally, we tested if our approach can locate
changed edges besides change points. Table 3 and
Table 4 show the increasing ability of the algorithm
to distinguish sudden changes in precisions given more
samples and larger effect sizes. Here, sensitivity is
the ratio of successfully identified edges over changed
ones, and the false discovery rate is the ratio of falsely
identified edges over all the detected.

Table 3: Average senstivity
NT=1000 1500 2000 2500 3000

a=0.2 0.06 0.08 0.09 0.12 0.15
0.3 0.23 0.31 0.40 0.46 0.52
0.4 0.28 0.36 0.44 0.50 0.54

Table 4: Average false positive rate
NT=1000 1500 2000 2500 3000

a=0.2 0.18 0.09 0.04 0.02 0.02
0.3 0.05 0.03 0.02 0.01 0.01
0.4 0.06 0.03 0.03 0.02 0.02

5 APPLICATION

5.1 Data Description

A high-resolution fMRI dataset was collected from 15
scanned participants with an audio-video presentation
of “Forrest Gump” (Hanke et al., 2014, 2016). All
the subjects had listened to an audio presentation of
the movie, and only one subject had never seen the
movie before the experiment (Hanke et al., 2016). The
original movie was cut into eight parts. Descriptions
of semantic conflicts were extended from simple anno-
tations of the cuts and scenes (Hanke and Ibe, 2016).
With the help of scene descriptions, we can locate the
scenes of BOLDs. These extended descriptions are
references for FC changes. The fMRI data were pro-
cessed with standard methods and parcellated into 268
nodes using a whole-brain, functional atlas defined in a
separate sample (Shen et al., 2013). Time series within
the same node were averaged, and a sequence of 3539
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frames was generated per node, in which TR (repeti-
tion time) is 2s. With part of the cerebellum (9 at both
hemispheres) and brainstem (1 at the left) missing in
some individuals, the total number of ROI is 249. This
dataset, along with detailed preprocessing methods,
can be attained from “http://studyforrest.org”.

5.2 Objectives

Individuals may share similar reactions when watching
the same movie segment. We aim to capture the in-
dividual similarity in various contexts of interest. For
example, certain regions of the brain may be more
sensitive to specific cuts or conflicts. The changed
edges identified using our inferential framework could
be strengthened, weakened, and reversed in direction.
The biological meaning of the identified edges is that
the corresponding brain network structure may have a
sudden change within a specific time or event, which
could be the response of the brain to the external stim-
uli. Given an fMRI scan from an individual, we perform
hypothesis testing, as described in section 2. We are
interested to see 1: during the movie, which ROI has
the most altered edges, 2: which edge/region is mostly
altered across all tests, and 3: which edges are similar
among individuals for a specific scene of interest.

5.3 Results

We first scale 3539 consecutive frames into the (0, 1)
range and we uniformly take 30 points in (0, 1) for
bootstrapping. Besides these 30 points, 7 time points
among 8 cuts are also included for hypothesis test-
ing. We set C1 = 1.0, C2 = 0.4, α = 0.05, and
the number of bootstrap at 500. To remove subject-
specific intrinsic BOLDs fluctuations, we calculate the
kernel smoothed BOLD sequences with the same h
as µ̂(t) =

∑tT
t′=t1

kh(t′, t)Xt′/
∑tT

t′=t1
kh(t′, t), and sub-

tract it from the original sequences.

The results from six females and nine males are aggre-
gated as shown in Figure 1a, and the original indices for
these individuals are “01”, “02”, “03”, “04”, “05”, “06”,
“09”, “10”, “14”, “15”, “16”, “17”, “18”, “19”, and “20”.
We highlight some scenes that stand out for the identi-
fied edge number. Notably, individual “03”, who had
never watched the movie, yields more changed edges
compared with the other individuals–especially during
the scene at Gump’s House when the main character
Jenny returns. The top five scenes with the largest
number of identified edge changes for both sexes are
labeled as “Doctor’s Office”, “Running”, “Vietnam”,
“Bubba’s Grave” and “Jenny’s Grave”. “Forrest Gump”
has a considerable number of scenes in which the main
character recollects previous experiences, and we only
label the primary scene for a given time. These five

major scenes are also identified as changed points for
all the individuals regardless of sex.

To investigate the functions of the identified changes, we
group nodes with definitions of functional and anatom-
ical annotations. The ten regions are prefrontal (PFC,
nodes number: 46), motor (Mot, 21), insula (Ins, 7),
parietal (Par, 27), temporal (Tem, 39), occipital (Occ,
25), limbic (Lim, 36), cerebellum (Cer, 23), subcortex
(Sub, 17) and brainstem (Bsm, 8) and ten canonical
brain networks include medial frontal (MF, 29), fron-
toparietal (FP, 28), default mode (DMN, 18), motor
(Mot, 49), visual I (VI, 18), visual II (VII, 8), visual
association (VAs, 17), limbic (Lim, 30), basal ganglia
(BG, 29) and cerebellum (CBL, 23). (Smith et al., 2009;
Shen et al., 2013; Finn et al., 2015). We group results of
five interesting scenes from Figure 1a into interactions
among nodes in sub-networks. As shown in Figure 1b,
limbic, basal ganglia, and cerebellum form a cluster
at the important scenes. The BG network, including
thalamus and striatum, also has a strong linkage with
the motor network and serves as a hub network for the
cortical and the subcortical regions.

To make sure the results are not dominated by out-
liers, we plot the connectome (Figure 1c) with edges
identified within at least three individuals at the same
scene. The subcortical region, which is the most critical
component of the BG network, exhibits reproducible
connections with different lobes from the whole brain.
It was believed that the basal ganglia structure is the
primary modulator or hub for cortical information flow
(Lanciego et al., 2012). Recent studies have extended
the functional scope from motor to cognitive functions
(Helie et al., 2013). The results indicate that the basal
ganglia may play a key role in processing complex
stimuli like movies.

It is also intriguing to relate the FC response with pub-
lished emotional annotations. Labs et al. (2015) anno-
tated the audio-visual stimulus of “Forrest Gump” with
three major groups: dimensional emotion attributes
(arousal, valence, direction), emotion categories (from
admiration to shame) and emotion onset cues (audio,
context, face, gesture, narrator, verbal) with detailed
descriptions. To investigate if the changes of FC are
correlated with any emotions, we use the same kernel
in our framework to smooth the collected emotion mea-
sure within the bandwidth. We calculate Kendall’s τ
between emotion measures and changed edge numbers
for each individual and aggregated sex group. Interest-
ingly, we identified “Love”, which is explained as “Af-
fection for another person”, to be positively correlated
with FC changes for almost all the individuals, and it is
significant in average connection change for all subjects
and female individuals. The contribution of changes
with the basal ganglia system may be caused by its
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Figure 1: (a) Aggregated edge number. Cuts are labeled as red texts in x-axis. Individuals are labeled in different
colors in bars. (b) Counts of total identified changed edges cross subnets. (c) Identified edges cross regions.

Change-Emotion Correlation

Verbal
Gesture

Face
Context

Audio
Shame

Satisfaction
Sadness

Resent
Remorse

Relief
Pride
Love
Hope
Hate

Happiness
Gratitude

Gratification
Gloating

Fear
Disappointment

Contempt
Admiration

Other
Self

Valenceï
Valence+

Arousal

01 02 03 04 05 06 09 10 14 15 16 17 18 19 20 A
ll F M

ID

A
nn

ot
at

io
n

ï0.50
ï0.25
0.00
0.25
0.50

τ

Emotion: ”Love”

●

●

●

● ●

● ●
● ●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

0.0

0.1

0.2

0

3200

6400

0.
03

9
0.

07
0

0.
10

0
0.

12
6

0.
13

1
0.

16
2

0.
19

3
0.

22
3

0.
24

9
0.

25
4

0.
28

5
0.

31
6

0.
34

6
0.

37
0

0.
37

7
0.

40
8

0.
43

8
0.

46
9

0.
50

0
0.

50
6

0.
53

1
0.

56
1

0.
59

2
0.

62
3

0.
63

4
0.

65
3

0.
68

4
0.

71
5

0.
74

6
0.

75
6

0.
77

6
0.

80
7

0.
83

8
0.

86
9

0.
89

9
0.

90
7

0.
93

0
0.

96
1

Time

Lo
ve

C
hanges

0

Figure 2: Kendall’s tau between annotations and counts
of changed edges, in which grids filled with black dots
have p < 0.05; Emotion: “Love” overlays with changes
over scenes.

dopaminergic role as in neurotransmitter release. Fur-
ther investigation is needed to relate emotion, emotion

response in FC, and emotion-related neurotransmitters.

6 DISCUSSION

Change point detection of dynamic functional connec-
tome involves extensive multiple hypothesis testing. By
designing the supreme-maximum test statistic based on
the de-biased estimator with asymptotic normality, the
hypothesis testing procedure can identify change points
along with strong edge changes with appropriate false
positive control. This will improve our understanding
of the dynamic flow of functional connectivity given
complex stimuli. Our method is able to identify psy-
chologically meaningful changes in dynamic functional
connectivity, and our results suggest the involvement
of the basal ganglia in complex cognitive processes.

We note that our method is not based on the population
level modeling, which makes it difficult to aggregate the
identified changes. Additionally, the method might lead
to inflated type I error without enough observations
when the change of connectivity is not smooth, which
is not an issue of the validity of the theoretical results
but an issue worth studying in applications. Despite
the limitations, our algorithm can still detect consistent
changes of individuals in real data.
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