
Supplementary Material for “Graph Coarsening with
Preserved Spectral Properties”

A Proof of Property 4.2, 4.3

Proof. We start by noticing that the projection matrix Π acts as an identity matrix w.r.t. the lifted normalized
Laplacian Ll = ΠLlΠ, since Ll = C>LcC = C>CLlC

>C = ΠLlΠ. Now, consider the following eigenvalue
equation:

Lcuc = λcuc

CLlC
>uc = λcuc

C>CLlC
>uc = λcC

>uc

ΠLlΠC
>uc = λcC

>uc

LlC
>uc = λcC

>uc

Note that in the fourth step, we used the relation C> = C>CC> = ΠC>, which holds due to the properties
of the Moore-Penrose pseudo-inverse. Thus, C>uc are eigenvectors of Ll with the corresponding eigenvalues of
the coarse graph.

To show there are N − n additional eigenvalues 1, one can observe that IN −L = D
−1/2
l WlD

−1/2
l is a rank-n

matrix because nodes within the same partition have exactly the same edge weights. Hence IN − L contains
N − 1 eigenvalue 0 and correspondingly L contains eigenvalue 1 with N − n multiplicity.

B Proof of Proposition 4.1, 4.2

For the simplicity of the proof, we use the Lrw = I −D−1W to replace the original normalized Laplacian L
to compute the Laplacian eigenvalues. Note that Lrw has the same set of eigenvalues as the original normalized
Laplacian L and the relation of the eigenvalues and eigenvectors satisfy,

Lrw = D−1/2LD1/2, urw = D−1/2u

B.1 Proof of Proposition 4.1

Proof. We show that under the assumption above, the eigenvalues of the original normalized Laplacian contain
the eigenvalues of coarse graph Gc plus eigenvalue 1 with N − n multiplicities.

The random-walk Laplacian of the coarse graph satisfies,

Lrw
c = In −D−1c Wc

= PINP
∓ − PDP∓PWP∓

= PINP
∓ − PD−1WP∓

= P (IN −D−1W )P∓

= PLrwP∓

The third equation holds because of the assumption in Equation (9). Then, the eigenvalue and eigenvector of
Lrw

c satisfy the following:

Lrw
c u

rw = λurw
c

PLrwP∓urw = λurw
c

P∓PLrwP∓urw = λP∓urw
c

LrwP∓urw = λP∓urw
c

that is, Lrw has the eigenvalue λ with the corresponding eigenvector P∓urw.



To see that the original graph contains N − n eigenvalue 1, we consider D−1W = IN − Lrw which consists of

rows of normalized edge weights with row i as w(i)
d(i) . From the assumption in Equation (9), we have identical

rows for each partition Sr. Thus D−1W is at most rank-n, which indicates Lrw contains N − n eigenvalue 1.

Thus, the original normalized Laplacian has the same eigenvalues as the lifted graph. Both definition of spectral
distances are 0.

B.2 Proof of Proposition 4.2

Proof. The normalized Laplacian of the original graph can be viewed as a perturbation of the normalized Lapla-
cian of the lifted graph as

Lrw = Lrw
l +E,

where E is the perturbation matrix.

We expand the entries of Lrw as follows:

Lrw(i, j) = I(i, j)− W (i, j)

d(i)
.

As the coarse graph is coarsened from merging one pair of nodes, the edge weights of the lifted graph Gl can be
expressed as,

Wl(i, j) =


W (a,a)+W (a,b)+W (b,a)+W (b,b)

4 if i ∈ {a, b} and j ∈ {a, b}
W (a,j)+W (b,j)

2 if i ∈ {a, b} and j /∈ {a, b}
W (i,a)+W (i,b)

2 if i /∈ {a, b} and j ∈ {a, b}
W (i, j) otherwise.

and the corresponding node degree dl is

dl(i) =

{
d(a)+d(b)

2 if i ∈ {a, b}
d(i) otherwise.

The above imply that Lrw
l can be expanded as follows:

Lrw
l = I(i, j)− Wl(i, j)

dl(i)
=


I(i, j)− W (a,a)+W (a,b)+W (b,a)+W (b,b)

2(d(a)+d(b)) if i ∈ {a, b} and j ∈ {a, b}
I(i, j)− W (a,j)+W (b,j)

d(a)+d(b) if i ∈ {a, b} and j /∈ {a, b}
I(i, j)− W (i,a)+W (i,b)

2d(i) if i /∈ {a, b} and j ∈ {a, b}
I(i, j)− W (i,j)

d(i) otherwise

and the perturbation matrix E = Lrw −Lrw
l is given by

E(i, j) =


W (i,j)
d(i) −

W (a,a)+W (a,b)+W (b,a)+W (b,b)
2(d(a)+d(b)) if i ∈ {a, b} and j ∈ {a, b}

W (i,j)
d(i) −

W (a,j)+W (b,j)
d(a)+d(b) if i ∈ {a, b} and j /∈ {a, b}

W (i,j)
d(i) −

W (i,a)+W (i,b)
2d(i) if i /∈ {a, b} and j ∈ {a, b}

0 otherwise.

From Weyl (1912), we have the following bound on the eigenvalue gap between λ(i) and λl(i):

|λ(i)− λl(i)| ≤ ‖E‖2

Moreover, Wolkowicz and Styan (1980) proved that the spectral norm ‖E‖2 admits the simple upper bound:

‖E‖22 ≤ max
i,j

ricj = max
i
ri max

j
cj ,

where ri =
∑

j |E(i, j)| and cj =
∑

i |E(i, j)|.



Let us focus on term ri.

Case 1: i /∈ {a, b},

ri = |W (i, a)

d(i)
− W (i, a) +W (i, b)

2d(i)
|+ |W (i, a)

d(i)
− W (i, a) +W (i, b)

2d(i)
|

= |W (i, a)

d(i)
− W (i, b)

d(i)
| ≤

∥∥∥∥W (i, a)

d(i)
− W (i, b)

d(i)

∥∥∥∥
1

≤ ε

Case 2: i ∈ {a, b}, and suppose d(a) ≤ d(b) w.l.o.g.,

ri = |W (i, a)

d(i)
− W (a, a) +W (a, b) +W (b, a) +W (b, b)

2(d(a) + d(b))
|+ |W (i, b)

d(i)
− W (a, a) +W (a, b) +W (b, a) +W (b, b)

2(d(a) + d(b))
|

+
∑

j /∈{a,b}

|W (i, j)

d(i)
− W (a, j) +W (b, j)

d(a) + d(b)
|

≤ |W (a, a)

d(a)
− W (b, a)

d(b)
|+ |W (a, b)

d(a)
− W (b, b)

d(b)
|+

∑
j /∈{a,b}

|W (a, j)

d(a)
− W (b, j)

d(b)
|

=

∥∥∥∥W (i, a)

d(i)
− W (i, b)

d(i)

∥∥∥∥
1

≤ ε (1)

We have maxi ri ≤ ε. Similarly, we can show that cj ≤ ε. The spectral norm of the perturbation matrix E then
is bounded by

‖E‖2 ≤
√

max
i
ri max

j
cj ≤ ε. (2)

Combining the above, we have the bound of each term in the spectral distance as,

|λ(i)− λl(i)| ≤ ε (3)

The bounds of the full and partial spectral distance follow the Equation 3 as they contain N and n eigengap
terms respectively.

C Proof of Corollary 5.1

Proof. We denote the intermediate graphs at iteration s as G(s) with G(N) as the original graph G and G(n) as
the coarse graph Gc. From Proposition 4.2 and the spectral distance is a distance metric over the Laplacian
eigenvalues, we have the following,

SDfull(G,Gc) ≤
n+1∑
s=N

SDfull(G(s),G(s−1)) ≤ N
n+1∑
s=N

εs

and

SDpart(G,Gc) ≤
n+1∑
s=N

SDpart(G(s),G(s−1)) ≤ N
n+1∑
s=N

εs

D Proof of Theorem 5.2

Proof. We rewrite the objective of the k-means algorithm as the following,

F(U ,P) =

N∑
i=1

r(i)−
∑
j∈Si

r(j)

|Si|

2

= ‖U −CC>U‖2F ,



where the matrix C ∈ Rn×N is the normalized coarsening matrix corresponding to the graph partition P. With
the notation Π = CC> and Π⊥ = I −Π from Section 3.2, the k-means objective is written as

F(U ,P) = ‖Π⊥U‖2F .

We express the partial spectral distance as in Definition 4.5

SDpart(G,Gc) =

k1∑
i=1

(λc(i)− λ(i)) +

N∑
j=k2+1

(λ(j)− λc(j + n−N)) (4)

where k1 = arg maxi{i : λc(i) < 1}, k2 = N − n+ k1.

Because of the interlacing property 4.1, we remove the absolute sign on the terms.

Correspondingly, we separate the k-means cost in two terms as,

F(U ,C) = ‖Uk1 −CC>Uk1‖2F + ‖U ′k2
−CC>U ′k2

‖2F = ‖Π⊥Uk1‖2F + ‖Π⊥U ′k2
‖2F

where Uk1 and U ′k2
denote the eigenvectors corresponding to the smallest k1 and largest n − k1 eigenvalues of

the original graph. We also denote δk1
= ‖Π⊥Uk1

‖2F and δ′k2
= ‖Π⊥U ′k2

‖2F .

We will prove the results of the two terms separately.

For the first k1 eigenvalue gaps, we start by the following generalization of the Courant-Fisher theorem:∑
i≤k1

λc(i) = min
V >V =Ik

tr(V >LcV ).

We write L = S>S where S ∈ RM×N denotes the incidence matrix of the normalized Laplacian L with the
following form

S(v, e) =


1√
d(i)

, if v = i

− 1√
d(j)

, if v = j,

where e ∈ E with i and j as the connecting nodes. Then, the first k1 eigenvalues are∑
i≤k1

λc(i) = min
V >V =Ik

tr(V >CS>SC>V ) = min
V >V =Ik

‖SC>V ‖2F

Set Z = CUk1 , and suppose that Z>Z is invertible (this will be ensured in the following). We select

V = Z(Z>Z)−1/2

for which we have
V >V = (Z>Z)−1/2Z>Z(Z>Z)−1/2 = Ik1

as required.

We expand the sum of eigenvalues as follows:∑
i≤k1

λi = min
V >V =Ik1

‖SC>V ‖2F ≤ ‖SC>Z(Z>Z)−1/2‖2F ≤ ‖SC>CUk1
‖2F ‖(Z>Z)−1/2‖22.

and use the matrix Π = C>C and Π⊥ = I −Π defined in Section 3.2.

For the first term, we employ the triangle inequality.

‖SC>CUk1
‖2F = ‖SΠUk1

‖2F
= (‖S(I −Π⊥)Uk1

‖F )2

≤ (‖SUk1
‖F + ‖SΠ⊥Uk1

‖F )2

≤ (‖SUk1‖F + ‖SΠ⊥‖2‖Π⊥Uk1‖F )2 (5)



The result for ‖SUk1‖F is

‖SUk1
‖F =

√
tr(U>k1

S>SUk1
) =

√∑
i≤k1

λ(i).

On the other hand, the norm ‖SΠ⊥‖2 is bounded by

‖SΠ⊥‖2 =
√
λmax(Π⊥S⊥SΠ⊥) =

√
λmax(L) ≤

√
2

To analyze the second term, denote by σi the singular values of the k×k matrix U>k1
ΠUk1

and δk1
= F(Uk1

, C) =

‖Π⊥Uk1‖2F . The following inequality holds:

δk1
≥ ‖Π⊥Uk1

‖22 = ‖U>k1
Π⊥Π⊥Uk1

‖2 = ‖U>k1
Π⊥Uk1

‖2 = ‖U>k1
(I −Π)Uk1

‖2 = ‖Ik −U>k1
ΠUk1

‖2

The inequality is equivalent to asserting that the singular values of U>k1
ΠUk1

are concentrated around one, i.e.,

1− δk1
≤ σi ≤ 1 + δk1

for all i ≤ k1.

It follows that the smallest eigenvalue of the PSD matrix Z>Z is bounded by

λ1(Z>Z) = min
‖x‖2=1

x>U>k1
C>CUk1x

= min
x∈span(Uk1

), ‖x‖2=1
x>C>Cx

= min
x∈span(Uk1

), ‖x‖2=1
x>Πx

≥ 1− δk1

We deduce that the matrix is invertible when δk1
< 1 and C is full row-rank. In addition, we have

‖(Z>Z)−1/2‖22 = ‖(Z>Z)−1‖2 ≤
1

1− δk1

.

Putting the bounds together, gives

∑
i≤k1

λc(i) ≤

(√∑
i≤k λ(i) +

√
2 δk1

)2
1− δk1

or equivalently

∑
i≤k

(λc(i)− λ(i)) ≤

(√∑
i≤k λ(i) +

√
2 δk1

)2
1− δk1

−
∑
i≤k1

λ(i) =
δk1

(2 +
∑

i≤k λ(i)) +
√

8δk1

∑
i≤k1

λ(i)

1− δk1

To prove the result for the second term in equation 4, we introduce the signless normalized Laplacian L̃ =
I +D−1/2WD−1/2 to obtain the results of the second term in Equation. 5. We follow the similar arguments
using the signless normalized Laplacian. Note that the spectral properties of signless normalized Laplacian follow
the relation:

λ̃(i) = 2− λ(N + 1− i) and Ũ(i) = U(N + 1− i)
Then, the eigengaps between largest eigenvalues abide to

N∑
j=k2+1

(λ(j)− λc(j + n−N)) =

n−k∑
j=1

λ(N + 1− j)− λc(n+ 1− j)

=

n−k∑
j=1

(λ̃c(j)− λ̃(j))

≤
δ′k2

(
∑

j≤n−k1
2 + λ̃(j)) +

√
8δ′k2

∑
j≤n−k1

λ̃(j)

1− δ′k2

.



Combining the above, we obtain the following result:

SD(G,Gc) ≤
δk1(2 +

∑
i≤k λ(i)) +

√
8δk1

∑
i≤k1

λ(i)

1− δk1

+
δ′k2

(
∑

j≤n−k1
2 + λ̃(j)) +

√
8δ′k2

∑
j≤n−k1

λ̃(j)

1− δ′k2

≤
(n+ 2)F(U ,C) + 4

√
F(U ,C)

1−F(U ,C)

In the last step, we use the following bounds:

δk1 ≤ F(U ,C), δ′k2
≤ F(U ,C),∑

i≤k1

λ(i) ≤ k1,
∑

j≤n−k1

λ̃(j) ≤ n− k1

√
k1 +

√
n− k1 ≤

√
2n.

E Additional Material for Experiments

E.1 Graph Classification Dataset

The statistics of the graph classification benchmarks are in Table 1.

Table 1: Statistics of the graph benchmark datasets.

Datasets MUTAG ENZYMES NCI1 NCI109 PROTEINS PTC
Sample size 188 600 4110 4127 1108 344
Average |V | 17.93 32.63 29.87 29.68 39.06 14.29
Average |E| 19.79 62.14 32.3 32.13 72.70 14.69
# classes 2 6 2 2 2 2

E.2 Definition of Normalized Mutual Information

We denote C1 and C2 are two where C(i) represents the set of nodes with label i. We define the NMI as,

NMI(C1, C2) =
MI(C1, C2)

1
2 (H(C1) +H(C2))

where MI(C1, C2) is the mutual information defined as,

MI(C1, C2) =

n∑
i=1

n∑
j=1

p(C1(i) ∩ C2(j)) log

(
p (C1(i) ∩ C2(j))

p (C1(i)) p (C2(j))

)
H(C) is the entropy defined as,

H(C) = −
n∑

i=1

p(C(i)) log p(C(i))

The probability p(C(i)) is approximated as the ratio of partition i as p(C(i)) = |C(i)|
N .
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