Supplementary Material for "Graph Coarsening with Preserved Spectral Properties"

A Proof of Property 4.2, 4.3

Proof. We start by noticing that the projection matrix $\boldsymbol{\Pi}$ acts as an identity matrix w.r.t. the lifted normalized Laplacian $\mathcal{L}_{l}=\boldsymbol{\Pi} \mathcal{L}_{l} \boldsymbol{\Pi}$, since $\mathcal{L}_{l}=\boldsymbol{C}^{\top} \mathcal{L}_{c} \boldsymbol{C}=\boldsymbol{C}^{\top} \boldsymbol{C} \mathcal{L}_{l} \boldsymbol{C}^{\top} \boldsymbol{C}=\boldsymbol{\Pi} \mathcal{L}_{l} \boldsymbol{\Pi}$. Now, consider the following eigenvalue equation:

$$
\begin{array}{r}
\mathcal{L}_{c} \boldsymbol{u}_{c}=\lambda_{c} \boldsymbol{u}_{c} \\
\boldsymbol{C} \mathcal{L}_{l} \boldsymbol{C}^{\top} \boldsymbol{u}_{c}=\lambda_{c} \boldsymbol{u}_{c} \\
\boldsymbol{C}^{\top} \boldsymbol{C} \mathcal{L}_{l} \boldsymbol{C}^{\top} \boldsymbol{u}_{c}=\lambda_{c} \boldsymbol{C}^{\top} \boldsymbol{u}_{c} \\
\boldsymbol{\Pi} \mathcal{L}_{l} \boldsymbol{\Pi} \boldsymbol{C}^{\top} \boldsymbol{u}_{c}=\lambda_{c} \boldsymbol{C}^{\top} \boldsymbol{u}_{c} \\
\mathcal{L}_{l} \boldsymbol{C}^{\top} \boldsymbol{u}_{c}=\lambda_{c} \boldsymbol{C}^{\top} \boldsymbol{u}_{c}
\end{array}
$$

Note that in the fourth step, we used the relation $\boldsymbol{C}^{\top}=\boldsymbol{C}^{\top} \boldsymbol{C} \boldsymbol{C}^{\top}=\boldsymbol{\Pi} \boldsymbol{C}^{\top}$, which holds due to the properties of the Moore-Penrose pseudo-inverse. Thus, $\boldsymbol{C}^{\top} \boldsymbol{u}_{c}$ are eigenvectors of \mathcal{L}_{l} with the corresponding eigenvalues of the coarse graph.
To show there are $N-n$ additional eigenvalues 1 , one can observe that $\boldsymbol{I}_{N}-\mathcal{L}=\boldsymbol{D}_{l}^{-1 / 2} \boldsymbol{W}_{l} \boldsymbol{D}_{l}^{-1 / 2}$ is a rank- n matrix because nodes within the same partition have exactly the same edge weights. Hence $\boldsymbol{I}_{N}-\mathcal{L}$ contains $N-1$ eigenvalue 0 and correspondingly \mathcal{L} contains eigenvalue 1 with $N-n$ multiplicity.

B Proof of Proposition 4.1, 4.2

For the simplicity of the proof, we use the $\mathcal{L}^{r w}=\boldsymbol{I}-\boldsymbol{D}^{-1} \boldsymbol{W}$ to replace the original normalized Laplacian \mathcal{L} to compute the Laplacian eigenvalues. Note that $\mathcal{L}^{r w}$ has the same set of eigenvalues as the original normalized Laplacian \mathcal{L} and the relation of the eigenvalues and eigenvectors satisfy,

$$
\mathcal{L}^{r w}=\boldsymbol{D}^{-1 / 2} \mathcal{L} \boldsymbol{D}^{1 / 2}, \quad \boldsymbol{u}^{r w}=\boldsymbol{D}^{-1 / 2} \boldsymbol{u}
$$

B. 1 Proof of Proposition 4.1

Proof. We show that under the assumption above, the eigenvalues of the original normalized Laplacian contain the eigenvalues of coarse graph \mathcal{G}_{c} plus eigenvalue 1 with $N-n$ multiplicities.
The random-walk Laplacian of the coarse graph satisfies,

$$
\begin{aligned}
\boldsymbol{\mathcal { L }}_{c}^{r w} & =\boldsymbol{I}_{n}-\boldsymbol{D}_{c}^{-1} \boldsymbol{W}_{c} \\
& =\boldsymbol{P} \boldsymbol{I}_{N} \boldsymbol{P}^{\mp}-\boldsymbol{P} \boldsymbol{D} \boldsymbol{P}^{\mp} \boldsymbol{P} \boldsymbol{W} \boldsymbol{P}^{\mp} \\
& =\boldsymbol{P} \boldsymbol{I}_{N} \boldsymbol{P}^{\mp}-\boldsymbol{P} \boldsymbol{D}^{-1} \boldsymbol{W} \boldsymbol{P}^{\mp} \\
& =\boldsymbol{P}\left(\boldsymbol{I}_{N}-\boldsymbol{D}^{-1} \boldsymbol{W}\right) \boldsymbol{P}^{\mp} \\
& =\boldsymbol{P} \boldsymbol{L}^{r w} \boldsymbol{P}^{\mp}
\end{aligned}
$$

The third equation holds because of the assumption in Equation (9). Then, the eigenvalue and eigenvector of $\mathcal{L}_{c}^{r w}$ satisfy the following:

$$
\begin{array}{r}
\mathcal{L}_{c}^{r w} \boldsymbol{u}^{r w}=\lambda \boldsymbol{u}_{c}^{r w} \\
\boldsymbol{P L}^{r w} \boldsymbol{P}^{\mp} \boldsymbol{u}^{r w}=\lambda \boldsymbol{u}_{c}^{r w} \\
\boldsymbol{P}^{\mp} \boldsymbol{P} \mathcal{L}^{r w} \boldsymbol{P}^{\mp} \boldsymbol{u}^{r w}=\lambda \boldsymbol{P}^{\mp} \boldsymbol{u}_{c}^{r w} \\
\mathcal{L}^{r w} \boldsymbol{P}^{\mp} \boldsymbol{u}^{r w}=\lambda \boldsymbol{P}^{\mp} \boldsymbol{u}_{c}^{r w}
\end{array}
$$

that is, $\mathcal{L}^{r w}$ has the eigenvalue λ with the corresponding eigenvector $\boldsymbol{P}^{\mp} \boldsymbol{u}^{r w}$.

To see that the original graph contains $N-n$ eigenvalue 1, we consider $\boldsymbol{D}^{-1} \boldsymbol{W}=\boldsymbol{I}_{N}-\mathcal{L}^{r w}$ which consists of rows of normalized edge weights with row i as $\frac{\boldsymbol{w}(i)}{d(i)}$. From the assumption in Equation (9), we have identical rows for each partition \mathcal{S}_{r}. Thus $\boldsymbol{D}^{-1} \boldsymbol{W}$ is at most rank- n, which indicates $\mathcal{L}^{r w}$ contains $N-n$ eigenvalue 1 .

Thus, the original normalized Laplacian has the same eigenvalues as the lifted graph. Both definition of spectral distances are 0 .

B. 2 Proof of Proposition 4.2

Proof. The normalized Laplacian of the original graph can be viewed as a perturbation of the normalized Laplacian of the lifted graph as

$$
\mathcal{L}^{r w}=\mathcal{L}_{l}^{r w}+\boldsymbol{E},
$$

where \boldsymbol{E} is the perturbation matrix.
We expand the entries of $\mathcal{L}^{r w}$ as follows:

$$
\mathcal{L}^{r w}(i, j)=\boldsymbol{I}(i, j)-\frac{\boldsymbol{W}(i, j)}{d(i)}
$$

As the coarse graph is coarsened from merging one pair of nodes, the edge weights of the lifted graph \mathcal{G}_{l} can be expressed as,

$$
\boldsymbol{W}_{l}(i, j)= \begin{cases}\frac{\boldsymbol{W}(a, a)+\boldsymbol{W}(a, b)+\boldsymbol{W}(b, a)+\boldsymbol{W}(b, b)}{4} & \text { if } i \in\{a, b\} \text { and } j \in\{a, b\} \\ \frac{\boldsymbol{W}(a, j)+\boldsymbol{W}(b, j)}{2} & \text { if } i \in\{a, b\} \text { and } j \notin\{a, b\} \\ \frac{\boldsymbol{W}(i, a)+\boldsymbol{W}(i, b)}{2} & \text { if } i \notin\{a, b\} \text { and } j \in\{a, b\} \\ \boldsymbol{W}(i, j) & \text { otherwise. }\end{cases}
$$

and the corresponding node degree d_{l} is

$$
d_{l}(i)= \begin{cases}\frac{d(a)+d(b)}{2} & \text { if } i \in\{a, b\} \\ d(i) & \text { otherwise. }\end{cases}
$$

The above imply that $\mathcal{L}_{l}^{r w}$ can be expanded as follows:

$$
\boldsymbol{L}_{l}^{r w}=\boldsymbol{I}(i, j)-\frac{\boldsymbol{W}_{l}(i, j)}{d_{l}(i)}= \begin{cases}\boldsymbol{I}(i, j)-\frac{\boldsymbol{W}(a, a)+\boldsymbol{W}(a, b)+\boldsymbol{W}(b, a)+\boldsymbol{W}(b, b)}{2(d(a,+d(b))} & \text { if } i \in\{a, b\} \text { and } j \in\{a, b\} \\ \boldsymbol{I}(i, j)-\frac{\boldsymbol{W}(a, j)+\boldsymbol{W}(b, j)}{d(a)+(b)} & \text { if } i \in\{a, b\} \text { and } j \notin\{a, b\} \\ \boldsymbol{I}(i, j)-\frac{\boldsymbol{W}(i, a)+\boldsymbol{W}(i, b)}{2 d(i)} & \text { if } i \notin\{a, b\} \text { and } j \in\{a, b\} \\ \boldsymbol{I}(i, j)-\frac{\boldsymbol{W}(i, j)}{d(i)} & \text { otherwise }\end{cases}
$$

and the perturbation matrix $\boldsymbol{E}=\mathcal{L}^{r w}-\mathcal{L}_{l}^{r w}$ is given by

$$
\boldsymbol{E}(i, j)= \begin{cases}\frac{\boldsymbol{W}(i, j)}{d(i)}-\frac{\boldsymbol{W}(a, a)+\boldsymbol{W}(a, b)+\boldsymbol{W}(b, a)+\boldsymbol{W}(b, b)}{2(d(a)+d(b))} & \text { if } i \in\{a, b\} \text { and } j \in\{a, b\} \\ \frac{\boldsymbol{W}(i, j)}{d(i)}-\frac{\boldsymbol{W}(a, j)+\boldsymbol{W}(b, j)}{d(a)+d(b)} & \text { if } i \in\{a, b\} \text { and } j \notin\{a, b\} \\ \frac{\boldsymbol{W}(i, j)}{d(i)}-\frac{\boldsymbol{W}(i, a)+\boldsymbol{W}(i, b)}{2 d(i)} & \text { if } i \notin\{a, b\} \text { and } j \in\{a, b\} \\ 0 & \text { otherwise. }\end{cases}
$$

From Weyl (1912), we have the following bound on the eigenvalue gap between $\boldsymbol{\lambda}(i)$ and $\boldsymbol{\lambda}_{l}(i)$:

$$
\left|\boldsymbol{\lambda}(i)-\boldsymbol{\lambda}_{l}(i)\right| \leq\|E\|_{2}
$$

Moreover, Wolkowicz and Styan 1980 proved that the spectral norm $\|E\|_{2}$ admits the simple upper bound:

$$
\|\boldsymbol{E}\|_{2}^{2} \leq \max _{i, j} \boldsymbol{r}_{i} \boldsymbol{c}_{j}=\max _{i} \boldsymbol{r}_{i} \max _{j} \boldsymbol{c}_{j}
$$

where $\boldsymbol{r}_{i}=\sum_{j}|\boldsymbol{E}(i, j)|$ and $\boldsymbol{c}_{j}=\sum_{i}|\boldsymbol{E}(i, j)|$.

Let us focus on term \boldsymbol{r}_{i}.
Case 1: $i \notin\{a, b\}$,

$$
\begin{aligned}
\boldsymbol{r}_{i} & =\left|\frac{\boldsymbol{W}(i, a)}{d(i)}-\frac{\boldsymbol{W}(i, a)+\boldsymbol{W}(i, b)}{2 d(i)}\right|+\left|\frac{\boldsymbol{W}(i, a)}{d(i)}-\frac{\boldsymbol{W}(i, a)+\boldsymbol{W}(i, b)}{2 d(i)}\right| \\
& =\left|\frac{\boldsymbol{W}(i, a)}{d(i)}-\frac{\boldsymbol{W}(i, b)}{d(i)}\right| \leq\left\|\frac{\boldsymbol{W}(i, a)}{d(i)}-\frac{\boldsymbol{W}(i, b)}{d(i)}\right\|_{1} \leq \epsilon
\end{aligned}
$$

Case 2: $i \in\{a, b\}$, and suppose $d(a) \leq d(b)$ w.l.o.g.,

$$
\begin{align*}
\boldsymbol{r}_{i} & =\left|\frac{\boldsymbol{W}(i, a)}{d(i)}-\frac{\boldsymbol{W}(a, a)+\boldsymbol{W}(a, b)+\boldsymbol{W}(b, a)+\boldsymbol{W}(b, b)}{2(d(a)+d(b))}\right|+\left|\frac{\boldsymbol{W}(i, b)}{d(i)}-\frac{\boldsymbol{W}(a, a)+\boldsymbol{W}(a, b)+\boldsymbol{W}(b, a)+\boldsymbol{W}(b, b)}{2(d(a)+d(b))}\right| \\
& +\sum_{j \notin\{a, b\}}\left|\frac{\boldsymbol{W}(i, j)}{d(i)}-\frac{\boldsymbol{W}(a, j)+\boldsymbol{W}(b, j)}{d(a)+d(b)}\right| \\
& \leq\left|\frac{\boldsymbol{W}(a, a)}{d(a)}-\frac{\boldsymbol{W}(b, a)}{d(b)}\right|+\left|\frac{\boldsymbol{W}(a, b)}{d(a)}-\frac{\boldsymbol{W}(b, b)}{d(b)}\right|+\sum_{j \notin\{a, b\}}\left|\frac{\boldsymbol{W}(a, j)}{d(a)}-\frac{\boldsymbol{W}(b, j)}{d(b)}\right| \\
& =\left\|\frac{\boldsymbol{W}(i, a)}{d(i)}-\frac{\boldsymbol{W}(i, b)}{d(i)}\right\|_{1} \leq \epsilon \tag{1}
\end{align*}
$$

We have $\max _{i} \boldsymbol{r}_{i} \leq \epsilon$. Similarly, we can show that $\boldsymbol{c}_{j} \leq \epsilon$. The spectral norm of the perturbation matrix \boldsymbol{E} then is bounded by

$$
\begin{equation*}
\|\boldsymbol{E}\|_{2} \leq \sqrt{\max _{i} \boldsymbol{r}_{i} \max _{j} \boldsymbol{c}_{j}} \leq \epsilon \tag{2}
\end{equation*}
$$

Combining the above, we have the bound of each term in the spectral distance as,

$$
\begin{equation*}
\left|\boldsymbol{\lambda}(i)-\boldsymbol{\lambda}_{l}(i)\right| \leq \epsilon \tag{3}
\end{equation*}
$$

The bounds of the full and partial spectral distance follow the Equation 3 as they contain N and n eigengap terms respectively.

C Proof of Corollary 5.1

Proof. We denote the intermediate graphs at iteration s as $\mathcal{G}^{(s)}$ with $\mathcal{G}^{(N)}$ as the original graph \mathcal{G} and $\mathcal{G}^{(n)}$ as the coarse graph \mathcal{G}_{c}. From Proposition 4.2 and the spectral distance is a distance metric over the Laplacian eigenvalues, we have the following,

$$
S D_{f u l l}\left(\mathcal{G}, \mathcal{G}_{c}\right) \leq \sum_{s=N}^{n+1} S D_{f u l l}\left(\mathcal{G}^{(s)}, \mathcal{G}^{(s-1)}\right) \leq N \sum_{s=N}^{n+1} \epsilon_{s}
$$

and

$$
S D_{\text {part }}\left(\mathcal{G}, \mathcal{G}_{c}\right) \leq \sum_{s=N}^{n+1} S D_{\text {part }}\left(\mathcal{G}^{(s)}, \mathcal{G}^{(s-1)}\right) \leq N \sum_{s=N}^{n+1} \epsilon_{s}
$$

D Proof of Theorem 5.2

Proof. We rewrite the objective of the k-means algorithm as the following,

$$
\mathcal{F}(\boldsymbol{U}, \mathcal{P})=\sum_{i=1}^{N}\left(\boldsymbol{r}(i)-\sum_{j \in \mathcal{S}_{i}} \frac{\boldsymbol{r}(j)}{\left|\mathcal{S}_{i}\right|}\right)^{2}=\left\|\boldsymbol{U}-\boldsymbol{C} \boldsymbol{C}^{\top} \boldsymbol{U}\right\|_{F}^{2}
$$

where the matrix $C \in \mathbb{R}^{n \times N}$ is the normalized coarsening matrix corresponding to the graph partition \mathcal{P}. With the notation $\boldsymbol{\Pi}=\boldsymbol{C} \boldsymbol{C}^{\top}$ and $\boldsymbol{\Pi}^{\perp}=\boldsymbol{I}-\boldsymbol{\Pi}$ from Section 3.2, the k-means objective is written as

$$
\mathcal{F}(\boldsymbol{U}, \mathcal{P})=\left\|\boldsymbol{\Pi}^{\perp} \boldsymbol{U}\right\|_{F}^{2}
$$

We express the partial spectral distance as in Definition 4.5

$$
\begin{equation*}
S D_{\text {part }}\left(\mathcal{G}, \mathcal{G}_{c}\right)=\sum_{i=1}^{k_{1}}\left(\boldsymbol{\lambda}_{c}(i)-\boldsymbol{\lambda}(i)\right)+\sum_{j=k_{2}+1}^{N}\left(\boldsymbol{\lambda}(j)-\boldsymbol{\lambda}_{c}(j+n-N)\right) \tag{4}
\end{equation*}
$$

where $k_{1}=\arg \max _{i}\left\{i: \boldsymbol{\lambda}_{c}(i)<1\right\}, k_{2}=N-n+k_{1}$.
Because of the interlacing property 4.1, we remove the absolute sign on the terms.
Correspondingly, we separate the k-means cost in two terms as,

$$
\mathcal{F}(\boldsymbol{U}, \boldsymbol{C})=\left\|\boldsymbol{U}_{k_{1}}-\boldsymbol{C} \boldsymbol{C}^{\top} \boldsymbol{U}_{k_{1}}\right\|_{F}^{2}+\left\|\boldsymbol{U}_{k_{2}}^{\prime}-\boldsymbol{C} \boldsymbol{C}^{\top} \boldsymbol{U}_{k_{2}}^{\prime}\right\|_{F}^{2}=\left\|\boldsymbol{\Pi}^{\perp} \boldsymbol{U}_{k_{1}}\right\|_{F}^{2}+\left\|\boldsymbol{\Pi}^{\perp} \boldsymbol{U}_{k_{2}}^{\prime}\right\|_{F}^{2}
$$

where $\boldsymbol{U}_{k_{1}}$ and $\boldsymbol{U}_{k_{2}}^{\prime}$ denote the eigenvectors corresponding to the smallest k_{1} and largest $n-k_{1}$ eigenvalues of the original graph. We also denote $\delta_{k_{1}}=\left\|\boldsymbol{\Pi}^{\perp} \boldsymbol{U}_{k_{1}}\right\|_{F}^{2}$ and $\delta_{k_{2}}^{\prime}=\left\|\boldsymbol{\Pi}^{\perp} \boldsymbol{U}_{k_{2}}^{\prime}\right\|_{F}^{2}$.
We will prove the results of the two terms separately.
For the first k_{1} eigenvalue gaps, we start by the following generalization of the Courant-Fisher theorem:

$$
\sum_{i \leq k_{1}} \boldsymbol{\lambda}_{c}(i)=\min _{\boldsymbol{V}^{\top} \boldsymbol{V}=\boldsymbol{I}_{k}} \operatorname{tr}\left(\boldsymbol{V}^{\top} \boldsymbol{\mathcal { L }}_{c} \boldsymbol{V}\right) .
$$

We write $\mathcal{L}=\boldsymbol{S}^{\top} \boldsymbol{S}$ where $\boldsymbol{S} \in \mathbb{R}^{M \times N}$ denotes the incidence matrix of the normalized Laplacian \mathcal{L} with the following form

$$
\boldsymbol{S}(v, e)=\left\{\begin{array}{l}
\frac{1}{\sqrt{d(i)}}, \text { if } v=i \\
-\frac{1}{\sqrt{d(j)}}, \text { if } v=j
\end{array}\right.
$$

where $e \in \mathcal{E}$ with i and j as the connecting nodes. Then, the first k_{1} eigenvalues are

$$
\sum_{i \leq k_{1}} \boldsymbol{\lambda}_{c}(i)=\min _{\boldsymbol{V}^{\top} \boldsymbol{V}=\boldsymbol{I}_{k}} \operatorname{tr}\left(\boldsymbol{V}^{\top} \boldsymbol{C} \boldsymbol{S}^{\top} \boldsymbol{S} \boldsymbol{C}^{\top} \boldsymbol{V}\right)=\min _{\boldsymbol{V}^{\top} \boldsymbol{V}=\boldsymbol{I}_{k}}\left\|\boldsymbol{S} \boldsymbol{C}^{\top} \boldsymbol{V}\right\|_{F}^{2}
$$

Set $\boldsymbol{Z}=\boldsymbol{C} \boldsymbol{U}_{k_{1}}$, and suppose that $\boldsymbol{Z}^{\top} \boldsymbol{Z}$ is invertible (this will be ensured in the following). We select

$$
\boldsymbol{V}=\boldsymbol{Z}\left(\boldsymbol{Z}^{\top} \boldsymbol{Z}\right)^{-1 / 2}
$$

for which we have

$$
\boldsymbol{V}^{\top} \boldsymbol{V}=\left(\boldsymbol{Z}^{\top} \boldsymbol{Z}\right)^{-1 / 2} \boldsymbol{Z}^{\top} \boldsymbol{Z}\left(\boldsymbol{Z}^{\top} \boldsymbol{Z}\right)^{-1 / 2}=\boldsymbol{I}_{k_{1}}
$$

as required.
We expand the sum of eigenvalues as follows:

$$
\sum_{i \leq k_{1}} \boldsymbol{\lambda}_{i}=\min _{\boldsymbol{V}^{\top} \boldsymbol{V}=\boldsymbol{I}_{k_{1}}}\left\|\boldsymbol{S} \boldsymbol{C}^{\top} \boldsymbol{V}\right\|_{\boldsymbol{F}}^{2} \leq\left\|\boldsymbol{S} \boldsymbol{C}^{\top} \boldsymbol{Z}\left(\boldsymbol{Z}^{\top} \boldsymbol{Z}\right)^{-1 / 2}\right\|_{F}^{2} \leq\left\|\boldsymbol{S} \boldsymbol{C}^{\top} \boldsymbol{C} \boldsymbol{U}_{k_{1}}\right\|_{F}^{2}\left\|\left(\boldsymbol{Z}^{\top} \boldsymbol{Z}\right)^{-1 / 2}\right\|_{2}^{2}
$$

and use the matrix $\boldsymbol{\Pi}=\boldsymbol{C}^{\top} \boldsymbol{C}$ and $\boldsymbol{\Pi}^{\perp}=\boldsymbol{I}-\boldsymbol{\Pi}$ defined in Section 3.2.
For the first term, we employ the triangle inequality.

$$
\begin{align*}
\left\|\boldsymbol{S} \boldsymbol{C}^{\top} \boldsymbol{C} \boldsymbol{U}_{k_{1}}\right\|_{F}^{2} & =\left\|\boldsymbol{S} \boldsymbol{\Pi} \boldsymbol{U}_{k_{1}}\right\|_{F}^{2} \\
& =\left(\left\|\boldsymbol{S}\left(\boldsymbol{I}-\boldsymbol{\Pi}^{\perp}\right) \boldsymbol{U}_{k_{1}}\right\|_{F}\right)^{2} \\
& \leq\left(\left\|\boldsymbol{S} \boldsymbol{U}_{k_{1}}\right\|_{F}+\left\|\boldsymbol{S} \boldsymbol{\Pi}^{\perp} \boldsymbol{U}_{k_{1}}\right\|_{F}\right)^{2} \\
& \leq\left(\left\|\boldsymbol{S} \boldsymbol{U}_{k_{1}}\right\|_{F}+\left\|\boldsymbol{S} \boldsymbol{\Pi}^{\perp}\right\|_{2}\left\|\boldsymbol{\Pi}^{\perp} \boldsymbol{U}_{k_{1}}\right\|_{F}\right)^{2} \tag{5}
\end{align*}
$$

The result for $\left\|\boldsymbol{S} \boldsymbol{U}_{k_{1}}\right\|_{F}$ is

$$
\left\|\boldsymbol{S} \boldsymbol{U}_{k_{1}}\right\|_{F}=\sqrt{\operatorname{tr}\left(\boldsymbol{U}_{k_{1}}^{\top} \boldsymbol{S}^{\top} \boldsymbol{S} \boldsymbol{U}_{k_{1}}\right)}=\sqrt{\sum_{i \leq k_{1}} \boldsymbol{\lambda}(i)}
$$

On the other hand, the norm $\left\|\boldsymbol{S} \boldsymbol{\Pi}^{\perp}\right\|_{2}$ is bounded by

$$
\left\|\boldsymbol{S} \boldsymbol{\Pi}^{\perp}\right\|_{2}=\sqrt{\lambda_{\max }\left(\boldsymbol{\Pi}^{\perp} \boldsymbol{S}^{\perp} \boldsymbol{S} \boldsymbol{\Pi}^{\perp}\right)}=\sqrt{\lambda_{\max }(\mathcal{L})} \leq \sqrt{2}
$$

To analyze the second term, denote by σ_{i} the singular values of the $k \times k$ matrix $\boldsymbol{U}_{k_{1}}^{\top} \boldsymbol{\Pi} \boldsymbol{U}_{k_{1}}$ and $\delta_{k_{1}}=\mathcal{F}\left(\boldsymbol{U}_{k_{1}}, C\right)=$ $\left\|\boldsymbol{\Pi}^{\perp} \boldsymbol{U}_{k_{1}}\right\|_{F}^{2}$. The following inequality holds:

$$
\delta_{k_{1}} \geq\left\|\boldsymbol{\Pi}^{\perp} \boldsymbol{U}_{k_{1}}\right\|_{2}^{2}=\left\|\boldsymbol{U}_{k_{1}}^{\top} \boldsymbol{\Pi}^{\perp} \boldsymbol{\Pi}^{\perp} \boldsymbol{U}_{k_{1}}\right\|_{2}=\left\|\boldsymbol{U}_{k_{1}}^{\top} \boldsymbol{\Pi}^{\perp} \boldsymbol{U}_{k_{1}}\right\|_{2}=\left\|\boldsymbol{U}_{k_{1}}^{\top}(\boldsymbol{I}-\boldsymbol{\Pi}) \boldsymbol{U}_{k_{1}}\right\|_{2}=\left\|\boldsymbol{I}_{k}-\boldsymbol{U}_{k_{1}}^{\top} \boldsymbol{\Pi} \boldsymbol{U}_{k_{1}}\right\|_{2}
$$

The inequality is equivalent to asserting that the singular values of $\boldsymbol{U}_{k_{1}}^{\top} \boldsymbol{\Pi} \boldsymbol{U}_{k_{1}}$ are concentrated around one, i.e.,

$$
1-\delta_{k_{1}} \leq \sigma_{i} \leq 1+\delta_{k_{1}} \text { for all } i \leq k_{1}
$$

It follows that the smallest eigenvalue of the PSD matrix $\boldsymbol{Z}^{\top} \boldsymbol{Z}$ is bounded by

$$
\begin{aligned}
\boldsymbol{\lambda}_{1}\left(\boldsymbol{Z}^{\top} \boldsymbol{Z}\right) & =\min _{\|\boldsymbol{x}\|_{2}=1} x^{\top} \boldsymbol{U}_{k_{1}}^{\top} \boldsymbol{C}^{\top} \boldsymbol{C} \boldsymbol{U}_{k_{1}} \boldsymbol{x} \\
& =\min _{\boldsymbol{x} \in \operatorname{span}\left(\boldsymbol{U}_{k_{1}}\right),\|\boldsymbol{x}\|_{2}=1} x^{\top} \boldsymbol{C}^{\top} \boldsymbol{C} x \\
& =\min _{\boldsymbol{x} \in \operatorname{span}\left(\boldsymbol{U}_{k_{1}}\right),\|\boldsymbol{x}\|_{2}=1} \boldsymbol{x}^{\top} \boldsymbol{\Pi} x \\
& \geq 1-\delta_{k_{1}}
\end{aligned}
$$

We deduce that the matrix is invertible when $\delta_{k_{1}}<1$ and \boldsymbol{C} is full row-rank. In addition, we have

$$
\left\|\left(\boldsymbol{Z}^{\top} \boldsymbol{Z}\right)^{-1 / 2}\right\|_{2}^{2}=\left\|\left(\boldsymbol{Z}^{\top} \boldsymbol{Z}\right)^{-1}\right\|_{2} \leq \frac{1}{1-\delta_{k_{1}}}
$$

Putting the bounds together, gives

$$
\sum_{i \leq k_{1}} \boldsymbol{\lambda}_{c}(i) \leq \frac{\left(\sqrt{\sum_{i \leq k} \boldsymbol{\lambda}(i)}+\sqrt{2 \delta_{k_{1}}}\right)^{2}}{1-\delta_{k_{1}}}
$$

or equivalently

$$
\sum_{i \leq k}\left(\boldsymbol{\lambda}_{c}(i)-\boldsymbol{\lambda}(i)\right) \leq \frac{\left(\sqrt{\sum_{i \leq k} \boldsymbol{\lambda}(i)}+\sqrt{2 \delta_{k_{1}}}\right)^{2}}{1-\delta_{k_{1}}}-\sum_{i \leq k_{1}} \boldsymbol{\lambda}(i)=\frac{\delta_{k_{1}}\left(2+\sum_{i \leq k} \boldsymbol{\lambda}(i)\right)+\sqrt{8 \delta_{k_{1}} \sum_{i \leq k_{1}} \boldsymbol{\lambda}(i)}}{1-\delta_{k_{1}}}
$$

To prove the result for the second term in equation 4, we introduce the signless normalized Laplacian $\tilde{\mathcal{L}}=$ $\boldsymbol{I}+\boldsymbol{D}^{-1 / 2} \boldsymbol{W} \boldsymbol{D}^{-1 / 2}$ to obtain the results of the second term in Equation. 5 . We follow the similar arguments using the signless normalized Laplacian. Note that the spectral properties of signless normalized Laplacian follow the relation:

$$
\tilde{\boldsymbol{\lambda}}(i)=2-\boldsymbol{\lambda}(N+1-i) \text { and } \tilde{\boldsymbol{U}}(i)=\boldsymbol{U}(N+1-i)
$$

Then, the eigengaps between largest eigenvalues abide to

$$
\begin{aligned}
\sum_{j=k_{2}+1}^{N}\left(\boldsymbol{\lambda}(j)-\boldsymbol{\lambda}_{c}(j+n-N)\right) & =\sum_{j=1}^{n-k} \boldsymbol{\lambda}(N+1-j)-\boldsymbol{\lambda}_{c}(n+1-j) \\
& =\sum_{j=1}^{n-k}\left(\tilde{\boldsymbol{\lambda}}_{c}(j)-\tilde{\boldsymbol{\lambda}}(j)\right) \\
& \leq \frac{\delta_{k_{2}}^{\prime}\left(\sum_{j \leq n-k_{1}} 2+\tilde{\boldsymbol{\lambda}}(j)\right)+\sqrt{8 \delta_{k_{2}}^{\prime} \sum_{j \leq n-k_{1}} \tilde{\boldsymbol{\lambda}}(j)}}{1-\delta_{k_{2}}^{\prime}}
\end{aligned}
$$

Combining the above, we obtain the following result:

$$
\begin{aligned}
S D\left(\mathcal{G}, \mathcal{G}_{c}\right) & \leq \frac{\delta_{k_{1}}\left(2+\sum_{i \leq k} \boldsymbol{\lambda}(i)\right)+\sqrt{8 \delta_{k_{1}} \sum_{i \leq k_{1}} \boldsymbol{\lambda}(i)}}{1-\delta_{k_{1}}}+\frac{\delta_{k_{2}}^{\prime}\left(\sum_{j \leq n-k_{1}} 2+\tilde{\boldsymbol{\lambda}}(j)\right)+\sqrt{8 \delta_{k_{2}}^{\prime} \sum_{j \leq n-k_{1}} \tilde{\boldsymbol{\lambda}}(j)}}{1-\delta_{k_{2}}^{\prime}} \\
& \leq \frac{(n+2) \mathcal{F}(\boldsymbol{U}, \boldsymbol{C})+4 \sqrt{\mathcal{F}(\boldsymbol{U}, \boldsymbol{C})}}{1-\mathcal{F}(\boldsymbol{U}, \boldsymbol{C})}
\end{aligned}
$$

In the last step, we use the following bounds:

$$
\begin{gathered}
\delta_{k_{1}} \leq \mathcal{F}(\boldsymbol{U}, \boldsymbol{C}), \delta_{k_{2}}^{\prime} \leq \mathcal{F}(\boldsymbol{U}, \boldsymbol{C}) \\
\sum_{i \leq k_{1}} \boldsymbol{\lambda}(i) \leq k_{1}, \sum_{j \leq n-k_{1}} \tilde{\boldsymbol{\lambda}}(j) \leq n-k_{1} \\
\sqrt{k_{1}}+\sqrt{n-k_{1}} \leq \sqrt{2 n}
\end{gathered}
$$

E Additional Material for Experiments

E. 1 Graph Classification Dataset

The statistics of the graph classification benchmarks are in Table 1.
Table 1: Statistics of the graph benchmark datasets.

Datasets	MUTAG	ENZYMES	NCI1	NCI109	PROTEINS	PTC
Sample size	188	600	4110	4127	1108	344
Average $\|V\|$	17.93	32.63	29.87	29.68	39.06	14.29
Average $\|E\|$	19.79	62.14	32.3	32.13	72.70	14.69
\# classes	2	6	2	2	2	2

E. 2 Definition of Normalized Mutual Information

We denote C_{1} and C_{2} are two where $C(i)$ represents the set of nodes with label i. We define the NMI as,

$$
\operatorname{NMI}\left(C_{1}, C_{2}\right)=\frac{M I\left(C_{1}, C_{2}\right)}{\frac{1}{2}\left(H\left(C_{1}\right)+H\left(C_{2}\right)\right)}
$$

where $\operatorname{MI}\left(C_{1}, C_{2}\right)$ is the mutual information defined as,

$$
M I\left(C_{1}, C_{2}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} p\left(C_{1}(i) \cap C_{2}(j)\right) \log \left(\frac{p\left(C_{1}(i) \cap C_{2}(j)\right)}{p\left(C_{1}(i)\right) p\left(C_{2}(j)\right)}\right)
$$

$H(C)$ is the entropy defined as,

$$
H(C)=-\sum_{i=1}^{n} p(C(i)) \log p(C(i))
$$

The probability $p(C(i))$ is approximated as the ratio of partition i as $p(C(i))=\frac{|C(i)|}{N}$.

References

Weyl, H. (1912). Das asymptotische verteilungsgesetz der eigenwerte linearer partieller differentialgleichungen (mit einer anwendung auf die theorie der hohlraumstrahlung). Mathematische Annalen, 71(4):441-479.
Wolkowicz, H. and Styan, G. P. (1980). Bounds for eigenvalues using traces. Linear algebra and its applications, 29:471-506.

