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Abstract

We consider two multi-armed bandit prob-
lems with n arms: (i) given an ε > 0, iden-
tify an arm with mean that is within ε of
the largest mean and (ii) given a thresh-
old µ0 and integer k, identify k arms with
means larger than µ0. Existing lower bounds
and algorithms for the PAC framework sug-
gest that both of these problems require Ω(n)
samples. However, we argue that the PAC
framework not only conflicts with how these
algorithms are used in practice, but also that
these results disagree with intuition that says
(i) requires only Θ( nm ) samples where m =
|{i : µi > maxj∈[n] µj − ε}| and (ii) requires
Θ( nmk) samples where m = |{i : µi > µ0}|.
We provide definitions that formalize these
intuitions, obtain lower bounds that match
the above sample complexities, and develop
explicit, practical algorithms that achieve
nearly matching upper bounds.

1 Introduction

We consider the multi-armed bandit (MAB) problem
of ε-good arm identification. In this problem
there are n distributions ρ1, . . . , ρn (also referred to
as arms) with means µ1, . . . , µn; an agent plays a se-
quential game where at each round t, she chooses (or
“pulls”) an arm It ∈ {1, . . . , n} and observes an i.i.d.
realization from ρIt . The goal of the game is to use as
few total pulls as possible to identify an ε-good arm,
that is, an arm i that satisfies µi > maxj µj − ε for a
given ε > 0. In the well-studied PAC framework, the
sample complexity of an agent is measured by the to-
tal number of pulls until the agent can terminate the
game and return an ε-good arm with probability at
least 1− δ.
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ε-good arm identification has received much at-
tention in the MAB literature and has many poten-
tial applications ranging from clinical trials to crowd-
sourcing. The literature has focused on designing algo-
rithms that optimize the PAC notion of sample com-
plexity; in this paper, we argue that PAC sample
complexities are impractically large even for a mod-
est number of arms. Consider our experiment on the
recently crowdsourced New Yorker Caption Contest
with 9061 Bernoulli arms (presented in Section 1.3),
where the top arm has a mean of about 0.45 and the
bottom arm a mean of about 0.04. On this realis-
tic bandit problem, it takes a state-of-the-art ε-good
arm identification algorithm LUCB over 1 million
samples to identify an arm as 0.45-good with proba-
bility at least 0.95. But, if one simply chose a random
arm without taking any samples, then with probabil-
ity 1 the returned arm would be 0.45-good! As we
discuss in detail below, lower bounds show that these
impractical sample complexities are unavoidable, scal-
ing like Θ(n) because the PAC framework requires that
the agent verify that the returned arm is ε-good. For
this reason, we also refer to PAC sample complexity
as verifiable sample complexity.

In this paper, we propose a novel framework for quan-
tifying the sample complexity of an algorithm for ε-
good arm identification. We suppose that the
agent outputs an arm ît at every round t and, infor-
mally, we consider the sample complexity of the agent
to be the round at which the agent begins to output an
ε-good arm with high probability at every subsequent
round. We call this unverifiable sample complexity be-
cause, in contrast to the PAC notion of sample com-
plexity, it does not require that the algorithm verify
that an arm is ε-good. ît represents the “best guess”
of the algorithm and unverifiable sample complexity is
the number of rounds until the agent happens to be
right with high probability on all subsequent rounds.
Through the development of lower bounds and algo-
rithms with nearly matching upper bounds, we show
that unverifiable sample complexity can be arbitrar-
ily smaller than PAC sample complexity, scaling like
Θ( nm ) where m is the number of ε-good arms.
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As a corollary to our study of the unverifiable sample
complexity of ε-good arm identification, we ob-
tain results for the intimately related problem of iden-
tifying k ≤ n arms that satisfy µi > µ0 ∈ R, where µ0

is known. We call this the k-identifications prob-
lem. By contrast to the optimization flavor of ε-good
arm identification, this problem can be thought of
as akin to satisficing, an approach to decision prob-
lems that seeks to find acceptable options (Simon,
1956). This problem is relevant to applications where
it suffices to find k arms that meet a known standard.
For example, consider the task of hiring crowdsourcing
workers where a practitioner often wishes to hire a cer-
tain number of workers that meet a certain standard
(e.g., answer a question correctly with probability at
least 0.9). As another example, consider the biological
sciences where a scientist is often interested in deter-
mining which of a collection of genes are important
for a biological process, and is satisfied if she makes a
few discoveries (Hao et al., 2008). Although satisficing
problems are ubiquitous in applications, they have re-
ceived far less attention in the MAB pure exploration
literature.

1.1 Multi-armed bandits

Define a multi-armed bandit instance ρ as a collection
of n distributions over R where the ith distribution ρi
has expectation EX∼ρi [X] = µi. We assume without
loss of generality that µ1 ≥ µ2 ≥ . . . ≥ µn. At round
t ∈ N a player selects an index It ∈ [n] := {1, . . . , n},
immediately observes an independent realization Zt of
ρIt , and then outputs Ŝt, which is either a subset of
[n] or an element in [n], depending on the problem.
Formally, defining the filtrations (Ft)t∈N and (F−t )t∈N
where Ft = {(Is, Zs, Ŝs) : 1 ≤ s ≤ t} and F−t = Ft−1∪
{(It, Zt)}, we require that It is Ft−1 measurable while

Ŝt is F−t measurable, each with possibly additional
external sources of randomness.

The player strategically chooses an arm It at each time
t in order to accomplish a goal for Ŝt as quickly as
possible. We consider the following two objectives.

1. ε-good arm identification: for a given ε > 0,
minimize τ such that the index Ŝt ∈ [n] satisfies
µŜt > maxi∈[n] µi− ε for all t ≥ τ with high prob-
ability.

2. k-identifications problem: for a given thresh-
old µ0 ∈ R and k ∈ [n], minimize τk such that

the set Ŝt ⊆ [n] satisfies |Ŝt ∩ {i : µi > µ0}| ≥
min(k, |{i : µi > µ0}|) for every t ≥ τk subject to

Ŝs ∩ {i : µi ≤ µ0} = ∅ for all s ∈ N with high
probability1.

1The constraint Ŝs ∩ {i : µi ≤ µ0} = ∅ is known as

When ε = 0 and arm 1 is uniquely optimal, ε-good
arm identification is the well-studied problem of
best arm identification.

Why study both objectives simultane-
ously? ε-good arm identification and the
k-identifications problem are closely related.
If k = 1, then the k-identifications problem is
essentially ε-good arm identification where the
threshold µ0 = µ1 − ε is known, but ε = µ1 − µ0

is unknown. The same algorithmic ideas can be
applied to both problems, and, indeed, our proposed
algorithms and analyses for both problems are very
similar.

Furthermore, the fundamental difficulty of the objec-
tives are closely related: for a fixed set of means
µ1 ≥ · · · ≥ µn and any threshold µ0, we may consider
ε = µ1−µ0 so that {µi : µi > µ1−ε} = {µi : µi > µ0}.
Thus, identifying k arms above the threshold µ0 is
equivalent to identifying k ε-good means for ε = µ1 −
µ0. Consequently, if m = |{i ∈ [n] : µi > µ1− ε}| then
we can study lower bounds on the sample complexity of
both problems simultaneously by considering the nec-
essary number of samples required to identify k of the
m largest means (i.e., to have Ŝt ⊂ [m] with |Ŝt| = k)
for any value of 1 ≤ k ≤ m. Henceforth, we use m to
denote |{i ∈ [n] : µi > µ1 − ε}| or |{i ∈ [n] : µi > µ0}|;
the context will leave no ambiguity.

Intuition for unverifiable sample complexity.
Suppose that it is known that there are m ε-good arms
and consider the following algorithm: let A be a set of
n/m arms chosen uniformly at random from [n] and
apply any nearly optimal best arm identification al-
gorithm to A. Observe that one of the arms in A is
ε-good with constant probability since

P(A ∩ [m] = ∅) ≤ (1−m/n)n/m ≤ exp(−1).

Thus, this algorithm will return an ε-good arm with
constant probability in a number of samples that scales
like n/m (instead of the typical n). Although this
algorithm requires knowledge of m, it suggests that
when there are m ε-good distributions, the unverifiable
sample complexity to identify an ε-good distribution
scales as n/m, not n. In an extreme case, if half the
distributions are ε-good, then one should expect the
number of samples to identify an ε-good distribution
to be constant with respect to n. A similar argument
applies to the k-identifications problem : if there
are m means above the threshold µ0, then one would
expect that the number of samples required to identify
at least 1 ≤ k ≤ m of them scales like k nm , not n.

a family-wise error rate (FWER) condition. We will also
consider a more relaxed condition known as false discovery

rate (FDR) which controls E[|Ŝs ∩ {i : µi ≤ µ0}|/|Ŝs|].
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While considering m is helpful for analysis, it should
be stressed that the algorithm does not know m and
must adapt to it.

Finally, we stress that although the same algorith-
mic ideas apply to both ε-good arm identification
and k-identifications problem, our notion of un-
verifiable sample complexity (made rigorous shortly)
does not apply to the k-identifications problem
because µ0 is known and, hence, an agent can verify
once k arms above µ0 have been found.

1.2 Revisiting ε-good arm identification: an
unverifiable sample complexity
perspective

We begin by considering the standard verifiable no-
tion of sample complexity from the well-studied PAC
framework.

Definition 1. Fix a class of bandit instances P. Fix
an algorithm A ≡ (It, Ŝt, τV,ε,δ) where τV,ε,δ is a stop-
ping time with respect to the filtration (Ft)t∈N. Then
A is (ε, δ)-PAC (Probably Approximately Cor-
rect) wrt P if ∀ρ ∈ P A terminates at τV,ε,δ and
Pρ(µŜτV,ε,δ > maxi µi − ε) ≥ 1 − δ. We call Eρ[τV,ε,δ]
the expected (ε, δ)-verifiable sample complexity
of A with respect to ρ.

In words, τV,ε,δ is the point at which an algorithm
A has collected enough data about ρ to declare con-
fidently that a particular arm is ε-good. Setting
P = {N (µ′, I) : µ′ ∈ Rn}, one can show that for a
given ε, δ, and instance ρ ∈ P,

Eρ[τV,ε,δ] & log(1/δ)

n∑
i=1

max(µ1 − µi, ε)−2

for any (ε, δ)-PAC algorithm over P (Kaufmann et al.,
2016; Mannor et al., 2004) (see Appendix B for a for-
mal statement). That is, the expected verifiable sam-
ple complexity E[τV,ε,δ] is at least Ω(n), regardless of
m. Intuitively, this is necessary because if there is
some unpulled arm j, then no information is known
about j and, thus, the algorithm cannot guarantee
that µj < µi + ε for any other arm i. We now pro-
pose a definition for unverifiable sample complexity.

Definition 2. Fix an algorithm A ≡ (It, Ŝt) and an
instance ρ. Let τU,ε,δ be a stopping time with respect
to the filtration (Ft)t∈N such that

Pρ(∀t ≥ τU,ε,δ : µŜt > max
i
µi − ε) ≥ 1− δ (1)

and for any other stopping time τ ′ with respect to the
filtration (Ft)t∈N that satsifies (1) τU,ε,δ ≤ τ ′. Then,
Eρ[τU,ε,δ] is the expected (ε, δ)-unverifiable sample
complexity of A with respect to ρ.

τU,ε,δ is the number of samples until an algorithm be-
gins to recommend an ε-good arm with high probabil-
ity on instance ρ. We emphasize that τU,ε,δ is for anal-
ysis purposes only and is unknown to the algorithm.
Clearly, if an algorithm A is (ε, δ)-PAC, then for an in-
stance ρ, we have that τU,ε,δ ≤ τV,ε,δ. However, as the
above discussion suggests, EτU,ε,δ may be significantly
smaller than EτV,ε,δ, even as small as EτU,ε,δ = O(1)
while EτV,ε,δ = Ω(n). Henceforth, when there is no
ambiguity, we will write τU and τV instead of τU,ε,δ
and τV,ε,δ respectively.

Two of the main contributions in this work are (i) an
instance-dependent lower bound on EτU and (ii) an
Algorithm BUCB (Bracketing UCB, see Algorithm 1)
that achieves a nearly matching upper bound on EτU .

Practical Considerations. It may be unclear how
a practitioner would decide to stop collecting samples
without a guarantee that the currently most promising
arm Ŝt is ε-good. We address this concern in several
ways. First, at each round, our algorithm BUCB pro-
vides a high probability confidence lower bound Lt ∈ R
on the mean of the recommended arm µŜt . Therefore,
a practitioner can assess the quality of µŜt using Lt and
use this information to decide whether to stop sam-
pling. Second, it is possible to design an algorithm that
has nearly optimal verifiable and unverifiable sample
complexity (see the Appendix for details). Third, a
practitioner can interpret our algorithm BUCB as find-
ing as good an arm as possible in a time horizon T (for
any T ∈ N), that is, as minimizing the high-probability
simple regret µ1 − µŜT (Bubeck et al., 2011). Finally,
we note that in some applications, practitioners are
more interested in finding a good arm quickly than in
certifying that a returned arm is ε-good.

1.3 Motivating Experiments

Next, we briefly present some illustrative experiments
that motivate our framework.

ε-good arm identification. The LUCB algorithm
of Kalyanakrishnan et al. (2012) is an (ε, δ)-PAC algo-
rithm whose sample complexity is within log(n) of the
lower bound of any (ε, δ)-PAC algorithm and is known
to have excellent empirical performance (Jamieson and
Nowak, 2014). LUCB does not use ε as a sampling rule
(only a stopping condition), and thus can be evaluated
after any number of pulls using its empirical best arm.
We compare its performance to our algorithm BUCB
in this paper designed to optimize unverifiable sam-
ple complexity. We obtain a realistic bandit instance
of 9061 Bernoulli arms with parameters defined by
the empirical means from a recent crowd-sourced New
Yorker Magazine Caption Contest, where each caption
was shown uniformly at random to a participant, and
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Figure 1: ε-good arm identification Figure 2: Identifying means above a threshold

received on average 155 votes of funny/unfunny (see
Appendix G for details). We run LUCB and BUCB
with δ = 0.05 for 100 trials. Figure 1 depicts the re-
sults from the experiment. For a given ε > 0, τU,ε
is the first round at which the empirical probability
of returning an ε-good arm is above 1 − δ at every
t ≥ τU,ε. We observe that our proposed algorithm be-
gins to recommend ε-good arms with high probability
using orders of magnitude fewer samples than LUCB
for a large range of values of ε. In addition, the verifi-
able complexity τV,ε of LUCB is worse than the unver-
ifiable sample complexity of BUCB by several orders
of magnitude.

k-Identifications Problem. The recent work of
Jamieson and Jain (2018) proposed an algorithm
(UCB) that identifies nearly allm arms above a thresh-
old in a number of samples that is nearly optimal,
but has a sample complexity that scales with n. We
compare its performance to our algorithm BUCB that
optimizes identifying k < m arms. Consider the ex-
perimental data of Hao et al. (2008), which aimed to
discover genes in Drosophila that inhibit virus replica-
tion. Hao et al. (2008) measured 13,071 genes using a
total budget of about 38, 000 measurements. Figure 2
depicts a simulation of 100 trials based on plug-in es-
timates of the experimental data of Hao et al. (2008)
(described in Appendix G) and shows that our algo-
rithm (BUCB) is able to make discoveries much more
quickly than the algorithm from Jamieson and Jain
(2018) (UCB). See Appendix G for more details on
the experiments.

1.4 Related work

In addition to the lower bounds for the (ε, δ)-PAC set-
ting discussed in Section 1.2 (Kaufmann et al., 2016;
Mannor et al., 2004), a related line of work has studied
the exact PAC sample complexity in the asymptotic

regime as δ → 0 (Degenne and Koolen, 2019; Garivier
and Kaufmann, 2019). By contrast, our results con-
cern the moderate confidence regime where δ is treated
as a constant (e.g., around 0.05).

Our definition of unverifiable sample complexity may
be interpreted as a high probability version of the ex-
pected simple regret metric (c.f. Bubeck et al. (2011)),
however, neither definition subsumes the other. The
closest work to our setting is that of Chaudhuri and
Kalyanakrishnan (2017, 2019); Aziz et al. (2018) that
also aimed to identify multiple arms, but with the crit-
ical difference that m is assumed to be known. Specif-
ically, given a tolerance η ≥ 0, they say an arm i is
(η,m)-optimal if µi ≥ µm − η. The objective, given
m and η as inputs to the algorithm, is to identify k
(η,m)-optimal arms with probability at least 1 − δ.
The case when η = 0 and m = |{i : µi > µ1 − ε}|
coincides with our setting, with the critical difference
that in our setting the algorithm never has knowledge
of m. With just knowledge of ε but not m, as in our
setting, there is no guide a priori to how many arms we
need to consider in order to get just one ε-good arm.
However, still relevant from a lower bound perspective,
they prove worst-case results for η > 0. In contrast,
our work demonstrates instance-specific lower-bounds
(i.e., those that depend on the particular means µ)
that directly apply to their setting, a contribution of
its own.

Algorithms for ε-good identification. The last
few decades have seen many proposed (ε, δ)-PAC algo-
rithms for identifying an ε-good arm (Even-Dar et al.,
2006; Kalyanakrishnan et al., 2012; Gabillon et al.,
2012; Kaufmann and Kalyanakrishnan, 2013; Karnin
et al., 2013; Simchowitz et al., 2017; Garivier and
Kaufmann, 2019). A closely related problem is known
as the infinite armed-bandit problem where the player
has access to an infinite pool of arms such that when
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a new arm is requested, its mean is drawn iid from a
distribution ν. In principle, an infinite armed bandit
algorithm could solve the problem of interest of this
paper by taking ν(x) = 1

n

∑n
i=1 1{µi ≤ x}. With the

exception of Li et al. (2017), nearly all of the existing
work makes parametric2 assumptions about ν in some
way (Berry et al., 1997; Wang et al., 2009; Carpen-
tier and Valko, 2015; Chandrasekaran and Karp, 2014;
Jamieson et al., 2016). However, the algorithm of Li
et al. (2017) was designed for a much more general
setting and therefore sacrifices both theoretical and
practical performance, and was not designed to take a
fixed confidence δ as input.

Algorithms for identifying means above µ0. In
the thresholding bandit problem, the agent is given a
budget of T pulls, and the goal is to maximize the
probability of identifying every arm as either above or
below a threshold µ0 (Locatelli et al., 2016; Mukherjee
et al., 2017). These works explicitly assume no arms
are equal to µ0 and penalize incorrectly predicting a
mean above or below the threshold equally. For our
problem setting, the most related work is Jamieson
and Jain (2018) which proposes an algorithm that
takes a confidence δ and threshold µ0 as input. The au-
thors characterize the total number of samples the al-
gorithm takes before all k = m arms with means above
the threshold are output with probability at least 1−δ
for all future times, that is, the k-identifications
problem where k = m. While this sample complex-
ity is nearly optimal for the k = m case (see the lower
bounds of Simchowitz et al. (2017); Chen et al. (2014))
this work is silent on the issue of identifying just a sub-
set of size k ≤ m means above the threshold (and the
algorithm does not generalize to this setting).

2 Lower bounds

For the rest of the paper, we focus on developing lower
bounds and algorithms with upper bounds for unveri-
fiable sample complexity, as well as analogous results
for the k-identifications problem. We begin by
presenting a lower bound. To avoid trivial algorithms
that deterministically output an index that happens
to be the best arm, we adopt the random permuta-
tion model of Simchowitz et al. (2017) and Chen et al.
(2017). We say π ∼ Sn if π is drawn uniformly at ran-
dom from the set of permutations over [n], denoted
Sn. For any π ∈ Sn, π(i) denotes the index that i is
mapped to under π. Also, let Ti(t) denote the number
of pulls of arm i up to time t. For a bandit instance
ρ = (ρ1, . . . , ρn) let π(ρ) = (ρπ(1), ρπ(2), . . . , ρπ(n)) so

2For example, for a drawn arm with random mean µ it is
assumed P(µ ≤ x) ≥ c(x− µ∗)β for some fixed parameters
c, µ∗, β that are known (or not).

that Eπ(ρ)[Tπ(i)(t)] denotes the expected number of
samples taken by the algorithm up to time t from the
arm with mean µπ(i) when run on instance π(ρ). The
sample complexity of interest is the expected number
of samples taken by the algorithm under π(ρ) averaged
over all possible π ∈ Sn.

As pointed out in the introduction, there is a one-
to-one correspondance between a problem instance for
identifying k arms above a threshold µ0 and a problem
instance for identifying k ε-good arms, where ε = µ1−
µ0. Thus, if m = |{i : µi > µ1 − ε}| then a lower
bound for identifying k ε-good arms or k arms above a
threshold µ0 is implied by a lower bound for identifying
k arms among the m largest means for any 1 ≤ k ≤
m. The next theorem handles all 1 ≤ k ≤ m cases
simultaneously for a specific instance (i.e., not worst-
case as in (Chaudhuri and Kalyanakrishnan, 2019)).

Theorem 1. Fix ε > 0, δ ∈ (0, 1/16), and a vector
µ ∈ Rn. Consider n arms where rewards from the
ith arm are distributed according to N (µi, 1). Assume
without loss of generality that µ1 ≥ µ2 ≥ · · · ≥ µn and
let m = |{i ∈ [n] : µi > µ1−ε}|. For every permutation
π ∈ Sn let (Fπt )t∈N be the filtration generated by the
algorithm playing on instance π(ρ), and let τπ be a
stopping time with respect to (Fπt )t∈N at which time

the algorithm outputs a set Ŝτπ ⊆ [n] with |Ŝτπ | = k.

If Pπ(ρ)(Ŝτπ ⊂ π([m])) ≥ 1− δ, then

Eπ∼SnEπ(ρ)

[
τπ

]
≥ Hlow,k(ε)

:=
1

64

(
− (µ1 − µm+1)−2 +

k

m

n∑
i=m+1

(µ1 − µi)−2
)
.

Since the theorem applies to any stopping time τπ
that satisfies Pπ(ρ)(Ŝτπ ⊂ π([m])) ≥ 1 − δ, in par-
ticular it yields a lower bound for expected unverifi-
able sample complexity. Furthermore, by definition,
(µ1 − µm+1)−2 ≤ ε−2 so aside from pathological cases
such as µ1 − µi � ε for all i > m+ 1 the lower bound
will be positive and non-trivial. Consider the following
examples.

Example 1. If (µ1 − µm+1)−2 ≤ k
2m

∑n
i=m+1(µ1 −

µi)
−2, then Hlow,k(ε) ≥ 1

128ε
−2 + 1

256
k
m

∑n
i=m+1(µ1 −

µi)
−2.

Example 2. If µ1 = . . . = µm = µ0 + ε and

µm+1 = . . . µn = µ0, then Hlow,k(ε) ≥ 1
64
k(n−m)

m ε−2.

If in addition n ≥ 2m, then Hlow,k(ε) ≥ 1
128

kn
m ε
−2.

Example 2 shows that Theorem 1 yields a lower bound
matching our intuition for the n/m scaling of (i) un-
verifiable sample complexity of ε-good arm identi-
fication, and (ii) the sample complexity of the k-
identifications problem.
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Algorithm 1 Bracketing UCB: ε-good arm identi-
fication and k-identifications problem
1: δr = δ

r2
, δ′r = δr

6.4 log(36/δr)
, ` = 0, R0 = 0, S0 = ∅

2: for t = 1, 2, . . . do
3: if t ≥ 2`` then
4: A`+1 ∼ Uniform(

(
[n]

M`+1

)
), where M` := n ∧ 2`

5: ` = `+ 1
6: Rt = 1 +Rt−1 · 1{Rt−1 < `}
7: if ∃i ∈ ARt \ St such that Ti,Rt(t) = 0 then
8: Pull It ∈ {i ∈ ARt \ St : Ti,Rt(t) = 0}
9: else

10: Pull It = argmax
i∈ARt\St

µ̂i,Rt,Ti,Rt (t) + U(Ti,Rt(t), δ)

11: if ε-good arm identification then
12: Ot = argmax

i∈Ar for some r≤`
µ̂i,r,Ti,r(t)−U(Ti,r(t),

δ
|Ar|r2

)

13: else if k-identifications problem then

14: s(p) = {i : µ̂i,Rt,Ti,Rt (t)−U(Ti,Rt(t),
pδ′Rt
|ARt |

) ≥ µ0}
for all p ∈ [|ARt |]

15: St+1 = St ∪ s(p̂)
where p̂ = max{p ∈ [|ARt |] : |s(p)| ≥ p}

The proof of Theorem 1 employs an extension of the
Simulator argument (Simchowitz et al., 2017). While
the k = 1 case can be proven using an argument sim-
ilar to Chen et al. (2017), we needed the Simulator
strategy for the k > 1 case. The technique may be
useful for proving lower bounds for other combinatorial
settings where many outcomes are potentially correct
(e.g., choose any k of m) (Chen et al., 2014, 2017).

Finally, we close this section by noting that the unver-
ifiable sample complexity of popular algorithms like
LUCB or Median Elimination can be greater than
Hlow,k(ε) by a factor of n (see Appendix C.1). This
motivates the development of new algorithms.

3 Algorithm

Algorithm 1 simultaneously handles both ε-good arm
identification (Line 12) and the k-identifications
problem (Line 15). To motivate the intuition behind
the algorithm, we consider ε-good arm identifica-
tion. Suppose the number of ε-good arms m were
known. Because a random subset A of size n

m con-
tains an ε-good arm with constant probability, apply-
ing any reasonable best arm identification algorithm
to A would achieve our goal of a sample complexity
that scales like n

m . However, m is not known, so the
algorithm applies the doubling trick on the number of
ε-good arms, subsampling progressively larger random
subsets of the arms over time.

We call the random subset A` ⊂ [n] the `th bracket.
After (`− 1)2`−1 rounds, the bracket A` is drawn uni-

formly at random from
(

[n]
M`

)
, where

(
[n]
M`

)
denotes all

subsets of [n] of size M` := n ∧ 2`, at which point we

say that `th bracket is open (Line 4). At each round t,
Algorithm 1 chooses one of the open brackets Rt (Line
6) and pulls an arm It ∈ Rt that maximizes an up-
per confidence bound µ̂i,Rt,Ti,Rt (t) + U(Ti,Rt(t), δ) on
its mean (Line 10). Here, µ̂i,r,t denotes the empirical
mean of arm i in bracket r after t pulls, Ti,r(t) denotes
the number of times arm i has been pulled in bracket

r up to time t, and finally U(t, δ) = c
√

1
t log(log(t)/δ)

denotes an anytime confidence bound (thus, satisfiy-
ing for any r ∈ N and i ∈ [n] P(∩∞t=1|µ̂i,r,t − µi| ≤
U(t, δ)) ≥ 1− δ) based on the law of the iterated log-
arithm (LIL) (Jamieson et al., 2014; Kaufmann et al.,
2016). We note that this sampling rule is similar to
the sampling rule of lil’UCB (Jamieson et al., 2014),
a nearly optimal algorithm for best arm identification
with good empirical performance.

In addition to a sampling rule, we need a recommenda-
tion rule. For ε-good arm identification, the algo-
rithm outputs a maximizer Ot of its lower confidence
bound (Line 12). The reason for this is that once an
ε-good arm i has been pulled roughly (µi − µm+1)−2

times, then with high probability for all subsequent
rounds, its confidence lower bound will exceed µ1 − ε
and the algorithm will only output ε-good arms.

For the problem of multiple identifications above a
threshold, various suggested sets are possible depend-
ing on the desired guarantees. In the main body of the
paper, we focus on building a set St that satisfies the
following property (Jamieson and Jain, 2018).

Definition 3 (False Discovery Rate, FDR). Fix some
δ ∈ (0, 1). We say an algorithm is FDR-δ if for all

possible instances (ρ, µ0), it satisfies E[ |St∩H0|
|St|∧1 ] ≤ δ

for all t ∈ N, where H0 = {i ∈ [n] : µi ≤ µ0}.

For this goal, the algorithm builds a set St (Line 15)
based on the Benjamini-Hochberg procedure devel-
oped for multi-armed bandits in Jamieson and Jain
(2018). In the Appendix, we present algorithms that
satisfy stronger guarantees, but are also less practical.

We note that the above algorithms do not require ε
or k as an input, and a practitioner can choose to
terminate at any point.

4 Upper Bounds

Our upper bounds all have a similar form. They are
characterized in terms of ∆i,j = µi − µj , the gap be-
tween the ith arm and the jth arm. In Appendix E
we state our theorems including all factors, but for the
purposes of exposition, here we use “.” to hide con-
stants and doubly logarithmic factors. For simplicity,
we assume that the distributions are 1-sub-Gaussian
and that µ0, µ1, . . . , µn ∈ [0, 1].
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Figure 3: Our sample complexity results rely on picking a bracket of an appropriate size: n
m is too small, n is

too large, and n
j appears to be about a good size.

4.1 ε-Good Arm Identification

To begin, we state our theorem for the unverififiable
sample complexity of ε-good arm identification in
full generality. Next, we state several more accessible
corollaries that demonstrate the power of the result.

Theorem 2 (ε-good identification). Let δ ≤ 0.025
and ε > 0. Let (Ft)t∈N be the filtration generated by
playing Algorithm 1 on problem ρ. Then, there exists a
stopping time τU,ε wrt (Ft)t∈N such that P(∃s ≥ τU,ε :
µOs ≤ µ1 − ε) ≤ 2δ and

E[τU,ε] . min
j∈[m]

Hg(ε; j) ln(Hg(ε; j) + ∆−2
j,m+1) (2)

where Hg(ε; j) :=

1

j

(
m∑
i=1

(∆j,i ∨∆i,m+1)−2 ln(
n

jδ
) +

n∑
i=m+1

∆−2
j,i ln(

1

δ
)

)
.

Define H̄ε =
∑n
i=1 max(ε, (µ1 − µi))−2 ln( n

mδ ).

Corollary 1. Let P = {N (µ′, I) : µ′ ∈ Rn} and
ρ ∈ P. Define m = {i : µi > µ1 − ε}|. Let A be
any (2ε, δ)-PAC algorithm wrt P and let τV,2ε be its
associated stopping rule. Then, the τU,2ε associated
with Algorithm 1 defined in Theorem 2 satisfies

E[τU,2ε] .
1

m
H̄ε ln(

1

m
H̄ε)

. ln(
1

m
E[τV,2ε]) ln(n/m)

E[τV,2ε]

m
.

Corollary 2. Let τU,ε be the stopping time associated
with Algorithm 1 defined in Theorem 2. Consider the
following inequalities:

E[τU,ε] .
1

m
H̄ε ln(

1

m
H̄ε) (3)

. Hlow,1(ε) ln(
n

mδ
) ln(Hlow,1(ε)). (4)

(3) holds if |{i ∈ [n] : µi ≥ µ1 − ε/2}| ≥ m
2 , and (4)

holds if (µ1 − µm+1)−2 ≤ 1
2m

∑n
i=m+1(µ1 − µi)−2.

Corollary 3. Suppose µ1 = . . . = µm = µ0 + ε,
µm+1 = . . . = µn = µ0, and n ≥ 2m. Then, the
stopping time τU,ε associated with Algorithm 1 defined
in Theorem 2 satisfies

E[τU,ε] . ε−2 n

m
ln(

n

mδ
) ln(ε−2 n

m
)

= Hlow,1(ε) ln(
n

mδ
) ln(Hlow,1(ε)).

Corollary 1 says that Algorithm 1 has an unverifiable
sample complexity for identifying a 2ε-good arm that
is better than the verifiable sample complexity of any
(2ε, δ)-PAC algorithm over P by a factor of the number
of ε-good arms (ignoring logarithmic factors). Corol-
lary 2 gives two general conditions under which the un-
verifiable sample complexity of Algorithm 1 matches
the lower bound from Theorem 1 up to logarithmic
factors. In words, these conditions are (i) a constant
proportion of the ε-good arms are ε

2 -good and (ii) the
cost of determining that a random set of n/m arms of
the bottom n−m arms are not ε-good dominates the
cost of determining that µ1 > µm+1. Finally, Corol-
lary 3 shows that the unverifiable sample complexity
of Algorithm 1 attains the desired n/m scaling on the
basic problem where m arms have mean µ0 + ε and
n−m have mean µ0.

Theorem 2 Discussion. For j ∈ [m], Hg(ε; j)
bounds the expected unverifiable sample complexity
of a random set of size n/j (call it Bj) identifying an
ε-good arm conditional on (i) an arm in [j] belonging
to Bj and (ii) the empirical means of the arms in Bj
concentrating well. ln(Hg(ε; j) + ∆−2

j,m+1) is the num-
ber of brackets that Algorithm 1 opens by the time Bj
unverifiably identifies an ε-good arm. The minimiza-
tion problem in (2) says that Algorithm 1 uses the
bracket of size about n/j that minimizes the overall
unverifiable sample complexity.

It is worthwhile to consider the tradeoff in the bracket
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size at some length. Although a bracket of size Θ( nm )
is sufficiently large to contain an ε-good arm with
constant probability, it may be advantageous to use
a much larger bracket in hopes of getting an ε-good
arm that is much easier to identify as ε-good unver-
ifiably. Informally, if one randomly chooses n

j arms
then one expects the highest mean amongst these to
have an index J uniformly distributed in [j]. Thus,
a bracket of size about n

m would require distinguish-
ing J ∼ Uniform([m]) from the bottom n −m arms,
which could require an enormous number of samples
on average if many of the arms in [m] are very close to
the means of the bottom n−m arms. Thus, for some
problems, it is advantageous to use a bracket of size
n
j if µj is much easier to distinguish from the bottom

n − m arms (see Figure 3 for an illustration of this
phenomenon).

Proof Discussion. Algorithm 1 essentially applies
lil’UCB to random sets separately, so the analysis may
focus on lil’UCB applied to a random set Bj of size
n/j. A key observation in our proof is that we can
analyze lil’UCB on a fixed set Bj such that an ε-good
arm belongs to Bj and the empirical means of the arms
in Bj concentrate well. Then, we can take the expec-
tation with respect to the randomness in Bj , which
results in a scaling of n/j because each arm belongs to
Bj with probability 1/j.

4.2 k-identifications problem

H1 := {i ∈ [n] : µi > µ0} consists of the arms that we
wish to identify and H0 := {i ∈ [n] : µi ≤ µ0} all the
other arms. Let m = |H1| and recall ∆j,0 := µj − µ0.
We measure the sample complexity of the algorithm
in the following way (Jamieson and Jain, 2018).

Definition 4 (True Positive Rate, TPR). Fix some
δ ∈ (0, 1) and k ≤ |H1|. We say an algorithm is TPR-
(k, δ, τ) on an instance (ρ, µ0) if E[|St∩H1|] ≥ (1−δ)k
for all t ≥ τ .

In the Appendix, we present algorithms that have
stronger guarantees, but are also less practical. The-
orem 3 bounds the sample complexity in the above
sense while showing the FDR of St in Algorithm 1 is
controlled. The subsequent corollaries give more ac-
cessible consequences of this result.

Theorem 3 (FDR-TPR). Let δ ∈ (0, .025). Let
k ≤ |H1|. Let (Ft)t∈N be the filtration generated by
playing Algorithm 1 on problem ρ. Then, for all t ∈ N,

E[ |St∩H0|
|St|∧1 ] ≤ 2δ and there exists a stopping time τk wrt

(Ft)t∈N such that for all t ≥ τk, E[|St∩H1|] ≥ (1−δ)k

and

E[τk] . min
k≤j≤m

Hid(µ0; j) ln(Hid(µ0; j) + ∆−2
j,0), (5)

E[τk] . min
k≤j≤m

H̃id(µ0; j) ln(H̃id(µ0; j)) (6)

where

Hid(µ0; j) :=
k

j
(

m∑
i=1

∆−2
i∨j,0 ln(

nk

jδ
) +

n∑
i=m+1

∆−2
j,i ln(

1

δ
))

H̃id(µ0; j) :=
n

j
k∆−2

j,0 ln (1/δ) .

Corollary 4. Let τk be the stopping time associated
with Algorithm 1 defined in Theorem 3. Consider the
following inequalities.

E[τk] .
k

m
H̄ ln(

nk

mδ
) ln(

k

m
H̄) (7)

. Hlow,k(µ1 − µ0) ln(
nk

mδ
) ln(Hlow,k(µ1 − µ0)) (8)

where H̄ = m∆−2
1,0 ln( nkmδ ) +

∑n
i=m+1 ∆−2

j,i ln( 1
δ ). (7)

holds if |{i ∈ [m] : ∆i,0 ≥ 1
2∆1,0}| ≥ m

2 , and (8) holds
if (µ1 − µm+1)−2 ≤ 1

2m

∑n
i=m+1(µ1 − µi)−2.

Corollary 5. Suppose µ1 = . . . = µm = µ0 + ε,
µm+1 = . . . = µn = µ0, and n ≥ 2m. Then, the
stopping time τk defined in Theorem 3 satisfies

E[τk] . Hlow,k(µ1 − µ0) ln(
1

δ
) ln(Hlow,k(µ1 − µ0)).

Corollary 4 gives conditions under which our algorithm
for identifying k arms above a threshold improves by
a factor of k

m on the result of Jamieson and Jain
(2018) for identifying all of the arms above a thresh-
old. Corollary 5 shows that we improve on the gap-
independent version of the bound in Jamieson and Jain
(2018) by a factor of k

m . In addition, these corollaries
give conditions under which the sample complexity of
Algorithm 1 is within a logarithmic factor of our lower
bound.

Theorem 3 Discussion. (5) gives a gap-dependent
bound, while (6) sacrifices the dependence on the indi-
vidual gaps to remove an additional logarithmic factor
on the arms in H1. Hid(µ0; j) bounds the expected
number of samples required by a bracket of size Θ(nkj )

to identify k arms satisfying µi > µ0 when (i) at least
k of its arms have means greater than µj > µ0 and (ii)
the empirical means of the arms in the bracket concen-
trate well. H̃id(µ0; j) plays a similar role but removes a
logarithmic factor on the arms in H1 at the cost of los-
ing the dependence on the individual gaps. Similarly
to ε-good arm identification, there is a tradeoff in
the size of the bracket, and the minimization problem
in (5) and (6) shows that the algorithm picks an op-
timal bracket for the overall sample complexity. The
proof is quite similar to the proof of Theorem 2.



Julian Katz-Samuels, Kevin Jamieson

Acknowledgements

The authors would like to thank Max Simchowitz for
very helpful feedback that substantially improved the
clarity of the paper. The authors would also like to
thank Clay Scott, Jennifer Rogers, and Andrew Wa-
genmaker for their very useful comments. We also
thank Horia Mania for inspiring the proof of Lemma 1.
Julian Katz-Samuels is grateful to Clay Scott for his
very generous support, which relied on NSF Grants
No. 1422157 and 1838179 and funding from the Michi-
gan Institute for Data Science.

References

Maryam Aziz, Jesse Anderton, Emilie Kaufmann, and
Javed Aslam. Pure exploration in infinitely-armed
bandit models with fixed-confidence. In ALT 2018-
Algorithmic Learning Theory, 2018.

Donald A. Berry, Robert W. Chen, Alan Zame,
David C. Heath, and Larry A. Shepp. Bandit prob-
lems with infinitely many arms. Ann. Statist., 25(5):
2103–2116, 10 1997. doi: 10.1214/aos/1069362389.

S. Bubeck, R. Munos, and G. Stoltz. Pure Exploration
in Finitely Armed and Continuous Armed Bandits.
Theoretical Computer Science 412, 1832-1852, 412:
1832–1852, 2011.

Alexandra Carpentier and Michal Valko. Simple re-
gret for infinitely many armed bandits. CoRR,
abs/1505.04627, 2015.

Karthekeyan Chandrasekaran and Richard Karp.
Finding a most biased coin with fewest flips. In Con-
ference on Learning Theory, pages 394–407, 2014.

Arghya Roy Chaudhuri and Shivaram Kalyanakrish-
nan. Pac identification of a bandit arm relative to a
reward quantile. In AAAI, pages 1777–1783, 2017.

Arghya Roy Chaudhuri and Shivaram Kalyanakrish-
nan. Pac identification of many good arms in
stochastic multi-armed bandits. In International
Conference on Machine Learning, pages 991–1000,
2019.

Lijie Chen, Jian Li, and Mingda Qiao. Nearly instance
optimal sample complexity bounds for top-k arm
selection. In Artificial Intelligence and Statistics,
pages 101–110, 2017.

Shouyuan Chen, Tian Lin, Irwin King, Michael R.
Lyu, and Wei Chen. Combinatorial pure explo-
ration of multi-armed bandits. In Advances in
Neural Information Processing Systems 27: Annual
Conference on Neural Information Processing Sys-
tems 2014, December 8-13 2014, Montreal, Quebec,
Canada, pages 379–387, 2014.
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A Outline of Supplementary Material

We briefly outline the Supplementary Material. In Section B, we discuss in more detail related work on lower
bounds on verifiable sample complexity for ε-good arm identification. In Section C, we present the proof of
our lower bound, namely, Theorem 1. In Section D, we give additional algorithms for the the k-identifications
problem that have stronger guarantees but are less practical. In Section E, we prove the upper bound results of
this paper including Theorems 2 and 3. In Section F, we provide an algorithm that has nearly optimal verifiable
and unverifiable sample complexity (ignoring logarthmic factors). Finally, in Section G, we discuss the details of
our experiments.

B Related work: (ε, δ)− PAC for identifying k ε-good arms

Kaufmann et al. (2016) proved the following theorem which characterizes the sample complexity for ε-good arm
identification k = 1,m ≥ 1 and multiple identifications above a threshold µ0 in the special case of k = m (in
general, we are interested in any 1 ≤ k ≤ m) in the (ε, δ)-PAC setting.

Theorem 4 (Kaufmann et al. (2016)). Fix ε, δ > 0, and a vector µ ∈ Rn. Fix a bandit instance ρ of n arms
where the ith distribution equals ρi(µ) = N (µi, 1), a Gaussian distribution with mean µi and variance 1. Assume
without loss of generality that µ1 ≥ µ2 ≥ · · · ≥ µn and let m = |{i ∈ [n] : µi ≥ µ1 − ε}| so that µi ≥ µ1 − ε for
all i ∈ [m]. If algorithm A returns k = 1 arms of the top m arms and is (ε, δ)-PAC on P = {N (µ′, I) : µ′ ∈ Rn}
then

Eρ
[ n∑
i=1

Ti(τPAC)
]
≥ 1

2 log(1/2.4δ)
(

(m− 1)ε−2 +

n∑
i=m+1

(µ1 − µi)−2
)

(k = 1)

Under the same conditions, if A returns k = m arms then

Eρ
[ n∑
i=1

Ti(τPAC)
]
≥ 2 log(1/2.4δ)

( m∑
i=1

(µi − µm+1)−2 +

n∑
i=m+1

(µm − µi)−2
)

(k = m)

Note that by the definition of m we have that µm − µm+1 > 0. We emphasize that the sample complexity of
Theorem 4 for both k = 1 or k = m is necessarily Ω(n) regardless of the number of ε-good arms m. As discussed
below, the k = 1 lower bound is achievable up to log log factors Karnin et al. (2013). The special case of k = m
is notably the TOP-k identification problem where lower bounds were recently sharpened with additional log
factors independently by Simchowitz et al. (2017); Chen et al. (2017). In particular, if for some µ0 we have
µi = µ0 + ε for i ≤ m and µi = µ0 for i < m then their lower bounds on the expected sample complexity scale
like kε−2 log(n−k) + (n−k)ε−2 log(k), which is always larger than nε−2 that is predicted by the above theorem.

C Proof of lower bounds

We now briefly provide some intuition behind the proof. Suppose m > 1 and k = 1 and consider the easier
problem where the permutation set averaged over is just the identity permutation π1 = (1, 2, . . . , n) and the
permutation π2 that swaps {1, . . . ,m} and some fixed σ ⊂ [n] \ [m] with |σ| = m. That is, the algorithm
knows the instance it is playing is either π1(ρ) = ρ or π2(ρ) where ρ is known but the permutation π1 or π2 is
not. Information theoretic arguments say that at least τ ≈ mini∈σ(µ1 − µi)−2 observations from [m] ∪ σ are
necessary in order to determine whether the underlying instance is π1(ρ) versus π2(ρ). But if the algorithm
cannot distinguish between π1 and π2 with fewer than τ samples, then we can also argue that if π1 and π2

are chosen with equal probability, then taking nearly τ samples from the arms in σ with sub-optimal means
is unavoidable in expectation. The choice of σ was arbitrary and there are n

m − 1 disjoint choices (e.g., {m +
1, . . . , 2m}, {2m+ 1, . . . , 3m}, . . . ) resulting in a lower bound of about 1

m

∑n
i=m+1(µ1 − µi)−2.

The k > 1 case is trickier because if we used just π1 and π2 as above, as soon as we found just one ε-good
arm (and thus being able to accurately discern whether the instance is π1(ρ) or π2(ρ)) the algorithm would
immediately know of m − 1 other ε-good arms. To overcome this, we choose a large enough set σ ⊂ [m] such

that σ ∩ Ŝ is non-empty with constant probability on the identity permutation. This way, if we swap this set
σ ⊂ [m] with some other set in [n] \ [m] of size |σ|, then the algorithm would error with constant probability on
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this alternative permutation. The next lemma guarantees the existence of such a set of size dm/ke and the final
result follows from the fact that there are about n

dm/ke such disjoint choices in [n] \ [m].

We introduce the following notation: for any j ≤ m let
(

[m]
j

)
denote all subsets of {1, . . . ,m} of size j.

Lemma 1. Fix m ∈ N and let S be a random subset of size k ≤ m drawn from an arbitrary distribution over(
[m]
k

)
. For any ` ≤ m− k there exists a subset σ ⊂ [m] with |σ| = ` such that

P(σ ∩ S 6= ∅) ≥ 1−
(
m− k
`

)
/

(
m

`

)
≥ 1− e−`k/m

If ` > m− k then P(σ ∩ S 6= ∅) = 1.

Proof. Because the max of a set of positive numbers is always at least the average, we have

max
σ∈([m]

` )
P(σ ∩ S 6= ∅) ≥ 1(

m
`

) ∑
σ∈([m]

` )

P(σ ∩ S 6= ∅)

=
1(
m
`

) ∑
σ∈([m]

` )

∑
s∈([m]

k )

P(S = s)1{σ ∩ s 6= ∅)

=
1(
m
`

) ∑
s∈([m]

k )

P(S = s)
∑

σ∈([m]
` )

1{σ ∩ s 6= ∅)

=
1(
m
`

) ∑
s∈([m]

k )

P(S = s)

((
m

`

)
−
(
m− k
`

))

= 1−
(
m− k
`

)
/

(
m

`

)
where the last line follows from the fact that

∑
s∈([m]

k ) P(S = s) = 1 because it is a probability distribution. Now(
m− k
`

)
/

(
m

`

)
=

(m− k)! (m− `)!
(m− k − `)!m!

=

k−1∏
i=0

m− i− `
m− i

=

k−1∏
i=0

(
1− `

m− i

)
≤
k−1∏
i=0

(
1− `

m

)
≤ e−`k/m.

Fix any σ ⊂ [m] with |σ| = dm/ke that satisfies Pρ
(
Ŝ ∩ σ 6= ∅

)
≥ 1 − e−1 (which must exist by the above

lemma). Now fix any σ′ ⊂ [n] \ [m] with |σ′| = |σ| and define ρ′ as swapping the arms of σ and σ′, maintaining
their relative ordering of the indices within the sets. Note that by the correctness assumption at the relative
stopping times of ρ and ρ′ we have

Pρ(Ŝ ⊂ [m]) ≥ 1− δ, Pρ′(Ŝ ∩ σ 6= ∅) ≤ δ, Pρ(Ŝ ∩ σ 6= ∅) ≥ 1− e−1

which implies

TV(Pρ,Pρ′) = sup
E
|Pρ(E)− Pρ′(E)| ≥ |Pρ(Ŝ ∩ σ 6= ∅)− Pρ′(Ŝ ∩ σ 6= ∅)| ≥ 1− δ − e−1. (9)

Remark 1. Given (9), one is tempted to apply Pinsker’s inequality to obtain the right-hand-side of Lemma 1
from Kaufmann et al. (2016) and then provide a lower bound on Eρ[

∑
i∈σ∪σ′ Ti]. The difficulty here is that once

we cover [n] \ [m] with alternative σ′ sets, they would all share the same σ in this lower bound, which suggests
putting all samples on σ and a trivial lower bound. Alternatively, one could consider using the technique of Chen
et al. (2017) which compares a given instance to a degenerate instance where the means of σ′ would be copied to σ
and argue that the probability of error is at least 1/2 since there truly is no difference. This strategy is successful
if k = 1 so that |σ| = m but breaks down when k > 1 because one cannot reason about what the algorithm would
have to do if the means of σ were changed like one could if k = 1. Consequently, we employ the use of the
Simulator argument from Simchowitz et al. (2017) that is much more powerful at the cost of the introduction of
some machinery.



Julian Katz-Samuels, Kevin Jamieson

The Simulator (background)

The simulator argument is a kind of thought experiment where the player is playing against a non-stationary
distribution. In the real game when the player pulls arm It = i arm at time t she observes a sample from
the ith distribution of instance ρ: Xi,t ∼ ρi. However, when playing against the simulator she observes a
sample form the ith distribution of an instance denoted Sim(ρ, {I1, . . . , It}) that depends on all past requests:
Xi,t ∼ Sim(ρ, {I1, . . . , It})i with probability law Q given ρ, {Is = is}ts=1. That is, instead of receiving rewards
from a stationary distribution ρ at each time t, the simulator is an instance that depends on all the indices of
past pulls (but not their values). For any set A ⊂ R define

PSim(ρ,(i1,...,it)) (Xit,t ∈ A) := Q
(
Xit,t ∈ A|ρ, {Is = is}ts=1

)
.

We allow the algorithm to have internal randomness with probability law P so that for B ⊂ [n] define

PAlg((i1,x1,...,it−1,xt−1)) (It ∈ B) := P
(
It ∈ B|{Is = is, XIs = xs}t−1

s=1

)
so that for any event E ∈ FT we define

PAlg,Sim(ρ)(E)

:=
∑

i1,...,iT

∫
x1,...,xT

1E

T∏
t=1

Q
(
XIt = xt|ρ, {Is = is}ts=1

)
P
(
It = it|{Is = is, XIs = xs}t−1

s=1

)
dx1 . . . dxT

=
∑

i1,...,iT

∫
x1,...,xT

1E

T∏
t=1

PSim(ρ,(i1,...,it)) (XIt = xt)PAlg((i1,x1,...,it−1,xt−1)) (It = it) dx1 . . . dxT

so that for any T we have KL
(
PAlg,Sim(ρ),PAlg,Sim(ρ′)

)
=

∑
i1,...,iT

∫
x1,...,xT

PAlg,Sim(ρ)({Is = is, XIs = xs}Ts=1) log

(
PAlg,Sim(ρ)({Is = is, XIs = xs}Ts=1)

PAlg,Sim(ρ′)({Is = is, XIs = xs}Ts=1)

)
dx1 . . . dxT

=
∑

i1,...,iT

∫
x1,...,xT

PAlg,Sim(ρ)({Is = is, XIs = xs}Ts=1) log

(∏T
t=1 PSim(ρ,(i1,...,it)) (XIt = xt)∏T
t=1 PSim(ρ′,(i1,...,it)) (XIt = xt)

)
dx1 . . . dxT

=

T∑
t=1

∑
i1,...,iT

∫
x1,...,xT

PAlg,Sim(ρ)({Is = is, XIs = xs}Ts=1) log

( PSim(ρ,(i1,...,it)) (XIt = xt)

PSim(ρ′,(i1,...,it)) (XIt = xt)

)
dx1 . . . dxT

=

T∑
t=1

∑
i1,...,iT

PAlg,Sim(ρ)({Is = is}Ts=1)

∫
xt

PSim(ρ,(i1,...,it)) (XIt = xt) log

( PSim(ρ,(i1,...,it)) (XIt = xt)

PSim(ρ′,(i1,...,it)) (XIt = xt)

)
dxt

=

T∑
t=1

∑
i1,...,iT

PAlg,Sim(ρ)({Is = is}Ts=1)KL
(
PSim(ρ,(i1,...,it)),PSim(ρ′,(i1,...,it))

)
=

∑
i1,...,iT

PAlg,Sim(ρ)({Is = is}Ts=1)

T∑
t=1

KL
(
PSim(ρ,(i1,...,it)),PSim(ρ′,(i1,...,it))

)
≤ max
i1,...,iT

T∑
t=1

KL
(
PSim(ρ,(i1,...,it)),PSim(ρ′,(i1,...,it))

)
The simulator will be defined so that the right hand side is always finite for any T . When it is clear from
context we will simply write Pρ(E) or PSim(ρ)(E) to represent PAlg,ρ(E) or PAlg,Sim(ρ)(E), respectively. Let
Ωt = {I1, . . . , It} denote the history of all arm pulls requested by the player up to time t. Note that Ωt is a
multi-set so that |Ωt| = t.

Definition 5. We say an event W is truthful under a simulator Sim with respect to instance ρ if for all events
E ∈ FT

Pρ(E ∩W ) = PSim(ρ,ΩT )(E ∩W ).
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Lemma 2 (Simchowitz et al. (2017)). Let ρ(1) and ρ(2) be two instances, Sim(·, ·) be a simulator, and let Wi

be two truthful FT -measureable events under Sim(ρ(i),ΩT ) for i = 1, 2 where ΩT is the history of pulls up to a
stopping time T . Then

Pρ(1)(W c
1 ) + Pρ(2)(W c

2 ) ≥ TV(ρ(1), ρ(2))−Q
(
KL

(
PAlg,Sim(ρ(1)),PAlg,Sim(ρ(2))

))
where Q(β) = min{1− 1

2e
−β ,

√
β/2}.

Constructing the Simulator

Recall the definitions of ρ, ρ′ and σ, σ′ from above. For some τ ∈ N and multiset Ω of requested arm pulls, define
Wσ(Ω) = {

∑
i∈Ω 1{i ∈ σ} ≤ τ} and Wσ′(Ω) = {

∑
i∈Ω 1{i ∈ σ′} ≤ τ}. For these events, an instance ν ∈ {ρ, ρ′},

and any multiset Ωt denoting the indices the player has played up to the current time t, define a simulator

Sim(ν,Ωt)i =



νi if i /∈ σ ∪ σ′

νi if i ∈ σ ∪ σ′, Wσ(Ωt) ∩Wσ′(Ωt)

νi if i ∈ σ, Wσ(Ωt) ∪W c
σ′(Ωt)

νi if i ∈ σ′, W c
σ(Ωt) ∪Wσ′(Ωt)

ρi if i ∈ σ, Wσ(Ωt)
c ∩Wσ′(Ωt)

ρσ(σ′−1(i)) if i ∈ σ′, Wσ(Ωt) ∪W c
σ′(Ωt)

where σ(i) denotes the ith element of σ and σ−1(i) ∈ {1, . . . , |σ|} so that σ(σ′−1(i)) ∈ σ for any i ∈ σ′.

Observe that Wσ′(Ωt) is truthful under Sim(·,Ωt) with respect to ρ since if Wσ′(Ωt) occurs Sim(ρ,Ωt)i = ρi
for all i ∈ [n] and all t ∈ N by construction. Similarly, Wσ(Ωt) is truthful under Sim(·,Ωt) to ρ′. Note that
Sim(ρ,Ωt)i = Sim(ρ′,Ωt)i for all i ∈ [n] \ σ ∪ σ′ and if min{

∑
j∈Ωt

1{j ∈ σ},
∑
j∈Ωt

1{j ∈ σ′}} > τ then
Sim(ρ,Ωt)i = Sim(ρ′,Ωt)i for all i ∈ [n]. Therefore, we can easily upper bound the KL divergence:

max
i1,...,iT∈[n]

T∑
t=1

KL
(
Sim(ρ, {is}ts=1),Sim(ρ′, {is}ts=1)

)
≤ max

i∈σ
τKL(ρi, ρ

′
i) + max

j∈σ′
τKL(ρj , ρ

′
j)

= max
i=1,...,`

τ(µσ(i) − µσ′(i))2.

As shown in (Simchowitz et al., 2017, Lemma 1) averaging over all permutations is equivalent to constructing a
symmeterized version of the algorithm such that given any bandit instance, the algorithm randomly permutes
the arms internally and then after making its set selection, returns the set inverted by the randomly chosen
permutation. This modified algorithm is symmetric in the sense that

Pρ((i1, . . . , iT , s) = (I1, . . . , IT , Ŝ)) = Pπ(ρ)((i1, . . . , iT , , s) = (π(I1), . . . , π(IT ), π(Ŝ))).

In what follows, we assume the algorithm is symmetric which, in particular, implies

Pρ(W c
σ′) + Pρ′(W c

σ) = 2Pρ(W c
σ′).

Putting all the pieces together we have

Pρ

(∑
i∈σ′

Ti > τ

)
= Pρ(W c

σ′) =
1

2
(Pρ(W c

σ′) + Pρ′(W c
σ))

≥ 1

2

(
1− δ − e−1 −

√
τ max
i=1,...,`

(µσ(i) − µσ′(i))2/2

)

>
1

2
(1/8− δ)
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if τ = 1
2 maxi=1,...,`(µσ(i)−µσ′(i))2

. By Markov’s inequality, Eρ[
∑
i∈σ′ Ti] ≥ τPρ

(∑
i∈σ′ Ti > τ

)
. Noting that σ′ ⊂

[n] \ [m] was arbitrary, we apply the above calculation for all connected subsets of size dm/ke

Eρ

[
n∑

i=m+1

Ti

]
≥ 1

4
(1/8− δ)

(n−m)k/m∑
r=1

(µ1 − µm+rm/k)−2

≥ 1

4
(1/8− δ) k

m

n∑
i=m+m/k+1

(µ1 − µi)−2

≥ 1

4
(1/8− δ)

[
−(µ1 − µm+1)−2 +

k

m

n∑
i=m+1

(µ1 − µi)−2

]

≥ 1

64

[
−(µ1 − µm+1)−2 +

k

m

n∑
i=m+1

(µ1 − µi)−2

]

where the last line follows since δ ∈ (0, 1
16 ).

C.1 Unverifiable Sample Complexity of LUCB and Median Elimination

We note that a very wide class of algorithms satisfy the two conditions in the following proposition.

Proposition 1. Let ε ∈ (0, 1
2 ) and δ ∈ (0, 1

4 ). Let A be any algorithm that (i) begins by pulling every arm once

and (ii) for all t ∈ N, for all i, j ∈ [n] if µ̂i,Ti(t) > µ̂j,Tj(t) and Ti(t) ≥ Tj(t), then Ŝt 6= j. Then, there exists a
problem instance ρ such that

Eπ∼SnEπ(ρ)[τU,ε,δ] ≥
n

4
, Hlow,1(ε) =

1

64
ε−2.

Proof. Define

ρi =

{
bernoulli(1/2 + ε) i ∈ [n/2]

bernoulli(1/2) i ∈ {n/2 + 1, . . . , n}
.

Let Xi,j denote the jth iid realization of arm i. Define the event E = {
∑
i∈[n]\[n/2]Xi,1 ≥ n

4 }. Note that E

occurs with probability at least 1/2. Consider t = n, the round at which A has pulled all arms once. Define the

event F = {Ŝt ∈ [n/2]}, the event that an ε-good arm occurs. Since the arms have been randomly permuted
before the beginning of the game, notice that all of the arms in G = {i ∈ [n] : Xi,1 = 1} are statistically
indistinguishable. Therefore, at time t = n, since the Algorithm outputs one of the arms in G,

P(Ŝt 6∈ [n/2]|E) ≥ |G ∩ {n/2 + 1, . . . , n}|
|G|

≥
n
4

n
=

1

4
.

Thus, since δ ∈ (0, 1/4), we have that conditional on E, τU,ε,δ ≥ n. This implies that

Eπ∼SnEπ(ρ)[τU,ε,δ] ≥ Eπ∼SnEπ(ρ)[τU,ε,δ|E]
1

4
≥ n

4

D Additional Algorithms

In this section, we briefly introduce two additional algorithms that are very similar to the Algorithm 1 presented
earlier but have stronger guarantees for the task of identifying means above a threshold. A FWER-TPR (family-
wise error rate-true positive rate) guarantee outputs a setQt such that P(∃t : Qt∩H0 6= ∅) ≤ cδ and E[|Qt∩H1|] ≥
(1 − δ)k for large enough t. A FWER-FWPD (family-wise error rate-family-wise probability of detection)
guarantee is stronger since it requires that the outputted set Rt satisfies P(∃t : Rt ∩ H0 6= ∅) ≤ cδ and
|Rt ∩H1| ≥ k for large enough t. For more formal examples of these guarantees, see Theorems 6 and 8.
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Algorithm 2 Infinite UCB Algorithm: FWER-TPR and FWER-FWPD

1: δr = δ
r2

, δ′r = δr
6.4 log(36/δr)

R0 = 0, ` = 0, S0 = ∅, Q0 = ∅
2: for t = 1, 2, . . . do
3: if t ≥ 2`` then
4: Draw a set A`+1 uniformly at random from

(
[n]

M`+1

)
, where M` := n ∧ 2`

5: ` = `+ 1
6: Rt = 1 +Rt−1 · 1{Rt−1 < `}
7: if there exists i ∈ ARt \ St such that Ti,Rt(t) = 0 then
8: Pull an arm It belonging to {i ∈ ARt \ St : Ti,Rt(t) = 0}
9: else if FWER-TPR then

10: Pull arm It = argmaxi∈ARt\Qt
µ̂i,Rt,Ti,Rt (t) + U(Ti,Rt(t), δ)

11: Qt+1 = Qt ∪ {i ∈ ARt : µ̂i,Rt,Ti,Rt (t) − U(Ti,Rt(t),
δ

|ARt |R
2
t
) ≥ µ0} % FWER Thm.6

12: else if FWER-FWPD then
13: ξt,Rt = max{2|St ∩ARt |, 5

3(1−4δRt )
log(1/δRt)R

2
t}

14: Pull arm It = argmaxi∈ARt\St
µ̂i,Rt,Ti,Rt (t) + U(Ti,Rt(t),

δ
ξt,Rt

)

15: s(p) = {i ∈ ARt : µ̂i,Rt,Ti,Rt (t) − U(Ti,Rt(t),
p

|ARt |
δ′Rt ≥ µ0}

16: St+1 = St ∪ s(p̂) where p̂ = max{p ∈ [|ARt |] : |s(p)| ≥ p}
17: if St ∩ARt 6= ∅ then
18: νt,Rt = max(|St ∩ARt |, 1)

19: Pull arm Jt = argmaxi∈St∩ARt\Rt
µ̂i,Rt,Ti,Rt (t) + U(Ti,Rt(t),

δRt
νt,Rt

)

20: χt,Rt = |ARt | − (1− 2δ′Rt(1 + 4δ′Rt))|St ∩ARt |+
4(1+4δ′Rt

)

3
log(5 log2(|ARt |/δ′Rt)/δ

′
Rt)

21: Rt+1 = Rt ∪ {i ∈ St ∩ARt : µ̂i,Rt,Ti,Rt (t) − U(Ti,Rt(t),
δ

χt,Rt
) ≥ µ0} % FWER Thm.8

The algorithm suggests different sets depending on the objective. If FWER-TPR is desired, the algorithm
maintains a set Qt and adds arms whose lower confidence bounds are above the threshold µ0 (Line 11). If
FWER-FWPD is the goal, then an additional arm Jt is pulled each time based on an upper confidence bound
criterion and arms are accepted into the set Rt+1 (Line 21) if their lower confidence bound is above the threshold
µ0.

E Proofs of Upper Bounds

The proofs for the FDR-TPR result (the proof of Theorem 5 in Section E.1) should be read first. Then, one
can read the proofs for any of the other results. We introduce some notation that we use throughout the
proofs. We use c to denote a positive constant whose value may change from line to line. We also define
log(x) := max(ln(x), 1). Define

ρi,r = sup{ρ ∈ (0, 1] : ∩∞t=1{|µ̂i,r,t − µi| ≤ U(t, ρ)}}.

We note that {ρi,r}i∈[n],r∈N are independent and P(ρi,r ≤ δ) ≤ δ since by definition of U(·, ·) for any bracket
r ∈ N and α ∈ (0, 1), P(∩∞t=1{|µ̂i,r,t − µi| ≤ U(t, α)) ≥ 1− α. We define

Ir = {i ∈ H1 ∩Ar : ρi,r ≤ δ}.

to be those arms in bracket r whose empirical means concentrate well in the sense that ρi,r ≤ δ. We also
define U−1(γ, δ) = min(t : U(t, δ) ≤ γ). It can be shown for a sufficiently large constant c that U−1(γ, δ) ≤
cγ−2 log(log(γ−2)/δ). Recall that we make that simplifying assumption that µ0, µ1, . . . , µn ∈ [0, 1] and that we
define log(x) := max(ln(x), 1).

We note that although all of our upper bounds apply to the expectation of a stopping time, it is possible to
obtain high-probability bounds by arguing that with high probability there is an appropriately sized bracket
with enough “good” arms, e.g., an ε-good arm. Unfortunately, this argument would lead to an upper bound that
scales as log2(1/δ) and would lose the dependence on the individual gaps of the arms with mean greater than
µ1 − ε or µ0.
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E.1 Proof of FDR-TPR

Recall the relevant notation that ∆i,j := µi − µj and ∆j,0 := µj − µ0. We restate Theorem 3 from the main
body of the paper with the doubly logarithmic terms. We only consider the gap-independent upper bound here;
in the following section, we will prove a stronger result, which implies the the gap-dependent upper bound.

Theorem 5. Let δ ≤ (0, 1/40). Let k ∈ [|H1|]. For all j ∈ [m], define

H̃id(µ0; j) :=
n

j
k∆−2

j,0 log
(

log(nj k) log(∆−2
j,0)/δ

)
.

Let (Ft)t∈N be the filtration generated by playing Algorithm 1 on problem ρ. Then, Algorithm 1 has the property

that for all t ∈ N, E[ |St∩H0|
|St|∧1 ] ≤ 2δ and there exists a stopping time τk wrt (F)t∈N such that

E[τk] ≤ c min
k≤j≤m

H̃id(µ0; j) log(H̃id(µ0; j)) (10)

where c is a universal constant and for all t ≥ τk, E[|St ∩H1|] ≥ (1− δ)k.

We briefly sketch the proof. Let j0 ∈ {k, . . . ,m} minimize the upper bound (10). Then, there exists a bracket
r0 with size Θ( nj0 k) such that with constant probability Ar0 has at least k arms in [j0] and the empirical means

concentrate well enough (defined formally in Lemma 4 as the event Er0 := Er0 ∩ E0,r0 ∩ E1,r0). The argument
controls E[τk] by partitioning the sample space according to which bracket r0 + s is the first such that the
good event Er0+s occurs, i.e., according to {Er0 , Ecr0 ∩ Er0+1, E

c
r0 ∩ E

c
r0+1 ∩ Er0+2, ...}. Lemma 4 shows that

E[1{Er0}τk] has the same upper bound as (10) and that E[1{Er0+s}τk] has an upper bound that is larger than
line (10) by a factor exponential in s. On the other hand, because the brackets are independent and growing
exponentially in size, the probability of Er0+s ∩ (∩s−1

r=0E
c
r0+r) decreases exponentially in s, enabling control of

the exponential increase in E[1{Er0+s}τr0+s,k] and, by extension, E[τk].

Lemma 3 bounds the false discovery rate of Algorithm 1.

Lemma 3. For all t ∈ N, E[ |St∩H0|
|St|∨1 ] ≤ 2δ.

Proof.

E[
|St ∩H0|
|St| ∨ 1

] ≤ E[

∑∞
l=1 |St ∩Al ∩H0|
|St| ∨ 1

]

≤
∞∑
l=1

E[
|St ∩Al ∩H0|
|St ∩Al| ∨ 1

]

≤ δ
∞∑
l=1

1

l2

= δ
π2

6

where we used Lemma 1 of Jamieson and Jain (2018).

Lemma 4, below, is the key result for establishing Theorem 5. For k ∈ [|H1|] and j0 ∈ {k, . . . , |H1|}, it bounds
the expected number of iterations that it takes a bracket r (of size at least 2r ≥ k) to add k arms to the set St
when the events Er ∩ E0,r ∩ E1,r occur where

Er = {|[j0] ∩Ar| ≥ k},

E0,r = {
∑

i∈H0∩Ar

∆−2
j0,i

log(
1

ρi,r
) ≤ 5

∑
i∈H0∩Ar

∆−2
j0,i

log(
1

δ
)},

E1,r = {
∑

i∈[j0]∩Ar

∆−2
i∨j0,0 log(

1

ρi,r
) ≤ 5

∑
i∈[j0]∩Ar

∆−2
i∨j0,0 log(

1

δ
)}.
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Event Er says that there are at least k arms in Ar with µi ≥ µj0 . The event E0,r says that the empirical means
of the arms in H0 ∩Ar concentrate well on the whole; event E1,r makes the analogous claim about [j0]∩Ar. We
remark that the the events E0,r and E1,r allow us to avoid using a union bound.

Lemma 4. Fix δ ∈ (0, 1/40), k ∈ [|H1|], j0 ∈ {k, . . . , |H1|}, and r ∈ N such that 2r ≥ k. Let (Ft)t∈N be the
filtration generated by playing Algorithm 1 on problem ρ. Then, there exists a stopping time τk wrt (Ft)t∈N such
that for all t ≥ τk, E[|St ∩H1|] ≥ (1− δ)k, and

E[1{Er ∩ E0,r ∩ E1,r}τk] ≤ c[2r−1(r − 1) + |Ar|∆−2
j0,0

log(r
log(∆−2

j0,0
)

δ
) log(|Ar|∆−2

j0,0
log(r

log(∆−2
j0,0

)

δ
))] (11)

where c is a universal constant.

Proof. Step 1: Define stopping time. Define

τk = min(t ∈ N ∪ {∞} : |Ar ∩ [j0]| ≥ k and Ir ∩Ar ∩H1 ⊂ St).

Observe that for all t ≥ τk, E[|St ∩H1|] ≥ (1− δ)k since for t ≥ τk

E[|St ∩H1|] ≥ E[|Ir ∩Ar ∩H1|] ≥ (1− δ)|Ar ∩H1| ≥ (1− δ)k.

Step 2: Relate to bracket r.

In the interest of brevity, define E := Er ∩E0,r ∩E1,r and since we will only focus on bracket r, write µ̂i,t, Ti(t),
I, and ρi instead of µ̂i,r,t, Ti,r(t), Ir, and ρi,r. We will bound the number of rounds until I ∩ Ar ∩ H1 ⊂ St.
Define

T = |{t ∈ N : I ∩Ar ∩ [j0] 6⊂ St and Rt = r}|,

i.e., the number of rounds that the algorithm works on the rth bracket and I ∩Ar ∩H1 6⊂ St.

Next, we bound the number of brackets r + s that are opened before I ∩ Ar ∩ [j0] ⊂ St. The r + 1 bracket is
opened after bracket r is sampled 2r times and similarly the r+ sth bracket is opened after bracket r is sampled∑s−1
i=0 2r+i ≥ 2r+s−1 times. Thus,

2r+s−1 ≤ T =⇒ r + s− 1 ≤ log(T ).

So while I ∩ Ar ∩ H1 6⊂ St, every time bracket r is sampled, at most log(T ) total brackets are sampled. Thus,
we have that once the algorithm starts working on bracket r, after

log(T )T (12)

additional rounds, we have that I ∩Ar ∩ [j0] ⊂ St.

We note that after 2r−1(r − 1) rounds, the algorithm starts working on bracket r. Thus,

1{E}τk ≤ [2r−1(r − 1) + 1{E} log(T )T ]

= [2r−1(r − 1) + log(1{E}T )1{E}T ] (13)
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Step 3: Bounding 1{E}T . Note that we can write

1{E}T = 1{E}
∞∑
t=1

1{[j0] ∩ I ∩Ar 6⊂ St, Rt = r}

= 1{E}
∞∑

t:Rt=r

1{[j0] ∩ I ∩Ar 6⊂ St}

≤ 1{E}
∞∑

t:Rt=r

1{[j0] ∩ I ∩Ar 6⊂ St, It ∈ H0}

+ 1{[j0] ∩ I ∩Ar 6⊂ St, It ∈ H1 ∩ [j0]c}+ 1{It ∈ [j0]}

≤ 1{E}
∞∑

t:Rt=r

1{[j0] ∩ I ∩Ar 6⊂ St, It ∈ H0}

+ 1{[j0] ∩ I ∩Ar 6⊂ St, It ∈ H1 ∩ [j0]c, µ̂It,TIt (t) < µ0 +
∆j0,0

2
}

+ 1{It ∈ H1 ∩ [j0]c, µ̂It,TIt (t) ≥ µ0 +
∆j0,0

2
}+ 1{It ∈ [j0]}

To begin, we bound the first sum.

For any l ∈ I ∩ [j0] ∩Ar we have ρl ≥ δ by definition, so

µ̂l,Tl(t) + U(Tl(t), δ) ≥ µl − U(Tl(t), ρl) + U(Tl(t), δ) ≥ µl ≥ µj0 .

For any i ∈ H0 ∩Ar,

µ̂i,Ti(t) + U(Ti(t), δ) ≤ µi + U(Ti(t), ρi) + U(Ti(t), δ) ≤ µi + 2U(Ti(t), ρiδ).

Thus, µ̂i,Ti(t) + U(Ti(t), δ) ≤ µj0 if Ti(t) ≥ U−1(
∆j0,i

2 , ρiδ), so that arm i would not be pulled this many times
as long as [j0] ∩ I ∩Ar 6⊂ St. Thus,

1{E}
∞∑

t:Rt=r

1{[j0] ∩ I ∩Ar 6⊂ St, It ∈ H0} ≤ 1{E}
∑

i∈H0∩Ar

U−1(
∆j0,i

2
, ρiδ)

≤ 1{E}
∑

i∈H0∩Ar

c∆−2
j0,i

log(
log(∆−2

j0,i
)

δρi
)

= 1{E}
∑

i∈H0∩Ar

c∆−2
j0,i

log(
log(∆−2

j0,i
)

δ
) + c∆−2

j0,i
log(

1

ρi
)

≤ 1{E}
∑

i∈H0∩Ar

c′∆−2
j0,i

log(
log(∆−2

j0,i
)

δ
)

≤
∑

i∈H0∩Ar

c′∆−2
j0,i

log(
log(∆−2

j0,i
)

δ
) (14)

where the second to last inequality follows from Er ⊆ E.

Next, we consider the second sum. If [j0] ∩ I ∩ Ar 6⊂ St, for any arm i satisfying µ̂i,Ti(t) < µ0 +
∆j0,0

2 , we have
that

µ̂i,Ti(t) + U(Ti(t), δ) < µ0 +
∆j0,0

2
+ U(Ti(t), δ)

so that if Ti(t) ≥ U−1(
∆j0,0

2 , δ), then µ̂i,Ti(t) + U(Ti(t), δ) < µj0 and therefore arm i is not pulled again until
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[j0] ∩ I ∩Ar ⊂ St. Thus,

∞∑
t:Rt=r

1{[j0] ∩ I ∩Ar 6⊂ St, It ∈ H1 ∩ [j0]c ∩Ar, µ̂It,TIt (t) < µ0 +
∆j0,0

2
}

≤
∑

i∈H1∩[j0]c∩Ar

U−1(
∆j0,0

2
, δ)

≤ c|H1 ∩ [j0]c ∩Ar|∆−2
j0,0

log(
log(∆−2

j0,0
)

δ
).

Next, we bound the final summands

1{E}
∞∑

t:Rt=r

1{It ∈ H1 ∩ [j0]c, µ̂It,TIt (t) ≥ µ0 +
∆j0,0

2
}+ 1{It ∈ [j0]}.

Let p ≤ |Ar|. If j ∈ H1 ∩ [j0]c ∩Ar and µ̂j,Tj(t) ≥ µ0 +
∆j0,0

2 , then

µ̂j,Tj(t) − U(Tj(t), δ
′
r

p

|Ar|
) ≥ µ0 +

∆j0,0

2
− U(Tj(t), δ

′
r

p

|Ar|
)

so that µ̂j,Tj(t) − U(Tj(t), δ
′
r

p
|Ar| ) ≥ µ0 if Ti(t) ≥ U−1(

∆j0,0

2 , δ′r
p
|Ar| ), which implies that j ∈ s(p).

Next, if j ∈ [j0] ∩Ar, then

µ̂j,Tj(t) − U(Tj(t), δ
′
r

p

|Ar|
) ≥ µj − U(Tj(t), ρj)− U(Tj(t), δ

′
r

p

|Ar|
)

≥ µj − 2U(Tj(t), ρjδ
′
r

p

|Ar|
)

so that µ̂j,Tj(t) − U(Tj(t), δ
′
r

p
|Ar| ) ≥ µ0 if Ti(t) ≥ U−1(

µj−µ0

2 , ρjδ
′
r

p
|Ar| ), which implies that j ∈ s(p).

While there is some p associated with each arm when it is added to s(p) and then consequently to St, we don’t
know the order in or time at which particular arms are added. However, in the worst case, the arms of H1 are
added one at a time to St instead of in a big group so that the first reqires p = 1, the second p = 2, etc. Letting
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Γ = {f : f : H1 −→ [|H1|] is a bijection},

1{E}
∞∑

t:Rt=r

1{It ∈ H1 ∩ [j0]c, µ̂It,TIt (t) ≥ µ0 +
∆j0,0

2
}+ 1{It ∈ [j0]}

≤ 1{E}cmax
σ∈Γ

( ∑
j∈H1∩[j0]c∩Ar

U−1(
∆j0,0

2
, δ′r

σ(j)

|Ar|
) +

∑
j∈[j0]∩Ar

U−1(
µj − µ0

2
, ρjδ

′
r

σ(j)

|Ar|
)

)

≤ 1{E}cmax
σ∈Γ

( ∑
j∈H1∩[j0]c∩Ar

∆−2
j0,0

log(
|Ar|
σ(j)

log(∆−2
j0,0

)

δ′r
) +

∑
j∈[j0]∩Ar

∆−2
j,0 log(

|Ar|
σ(j)

log(∆−2
j,0)

ρjδ′r
)

)

= 1{E}cmax
σ∈Γ

( ∑
j∈H1∩[j0]c∩Ar

∆−2
j0,0

log(
|Ar|
σ(j)

log(∆−2
j0,0

)

δ′r
)

+
∑

j∈[j0]∩Ar

∆−2
j,0 log(

|Ar|
σ(j)

log(∆−2
j,0)

δ′r
) +

∑
j∈[j0]∩Ar

∆−2
j,0 log(

1

ρj
)

)

= 1{E}cmax
σ∈Γ

( ∑
j∈H1∩[j0]c∩Ar

∆−2
j0,0

log(
|Ar|
σ(j)

log(∆−2
j0,0

)

δ′r
)

+
∑

j∈[j0]∩Ar

∆−2
j,0 log(

|Ar|
σ(j)

log(∆−2
j,0)

δ′r
) + 5

∑
j∈[j0]∩Ar

∆−2
j,0 log(

1

δ
)

)

≤ c′max
σ∈Γ

∑
i∈H1∩Ar

∆−2
i∨j0,0 log(

|Ar|
σ(i)

r2
log(∆−2

i∨j0,0)

δ
) (15)

≤ c′
|H1∩Ar|∑
i=1

∆−2
j0,0

log(
|Ar|
i
r2

log(∆−2
j0,0

)

δ
)

≤ c′′|Ar|∆−2
j0,0

log(r
log(∆−2

j0,0
)

δ
) (16)

where the last line follows from the fact that for any p ≤ |Ar|,
∑p
i=1 log( |Ar|i ) ≤ |Ar|.

Step 4: finishing bound (11). Using lines (16) and (13),

1{E}τk ≤ c′[2r−1(r − 1) + log(|Ar|∆−2
j0,0

log(r
log(∆−2

j0,0
)

δ
))|Ar|∆−2

j0,0
log(r

log(∆−2
j0,0

)

δ
)]

deterministically, which yields line (11).

Proof of Theorem 5. As in the proof of Lemma 4, define

τk = min(t ∈ N ∪ {∞} : ∃s such that |As ∩ [j0]| ≥ k and Is ∩As ∩H1 ⊂ St),

τ
(r)
k = min(t ∈ N ∪ {∞} : |Ar ∩ [j0]| ≥ k and Ir ∩Ar ∩H1 ⊂ St)

As was argued in Step 1 of the proof of Lemma 4, for all t ≥ τk, E[|St ∩H1|] ≥ (1− δ)k.

Step 1: A lower bound on the probability of a good event. Let j0 ∈ {k, . . . ,m} minimize (10). Define
Er = Er ∩ E0,r ∩ E1,r. We note that since {ρi,r}i∈[n],r∈N and the brackets {Ar}r∈N are independent, {Er}r∈N
are independent events. Let r0 be the smallest integer such that

min(40
n

j0
k, n) ≤ 2r0 ≤ 80

n

j0
k,

Note that if 2r0 ≥ n, then the bracket r0 has n arms.
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Next, we bound P(Ecr0). If 2r0 ≥ n, then P(Ecr0) = 0, so assume that 2r0 < n. Note that since the elements of
Ar0 are chosen uniformly from [n] and |Ar0 | = 2r0 ≥ 40 n

j0
k we have that

E[|[j0] ∩Ar0 |] =
j0
n
|Ar0 |

≥ 40k.

Then, by a Chernoff bound for hypergeometric random variables,

P(|[j0] ∩Ar0 | ≤ 20k) ≤ exp(−1

8
40k) ≤ exp(−5).

Thus, Er0 occurs with probability at least 1 − exp(−5). Furthermore, we note that for any r ≥ r0, P(Ecr) ≤
exp(−5).

Furthermore, by Lemma 8 of Jamieson and Jain (2018), for any r ∈ N and i = 0, 1,

P(Eci,r) = E[P(Eci,r|Ar)] ≤ δ.

Finally, note that for every r ≥ r0 and any δ ∈ (0, 1/40) we have

P(Ecr) ≤ exp(−5) + 2δ ≤ 1

16
.

Furthermore, we claim that P(∩∞l=r0E
c
l ) = 0. Let s ≥ r0; then, using the independence between brackets,

P(∩∞l=r0E
c
l ) ≤ P(∩sl=r0E

c
l ) =

1

16s
−→ 0

as s −→∞, proving the claim.

Step 2: Gap-Independent bound on the number of samples. For the sake of brevity, write τ instead of

τk and τ (r) instead of τ
(r)
k . Then, by the independence between brackets, the fact that ∪∞r=r0Er ∩ (∩r0≤l<rEcl )

occurs with probability 1, and line 11 of Lemma 4,

E[τ ] = E[τ1{∪∞r=r0Er ∩ (∩r0≤l<rEcl )}]

≤
∞∑
r=r0

E[τ1{Er ∩ (∩r0≤l<rEcl )}]

≤
∞∑
r=r0

E[τ (r)1{Er ∩ (∩r0≤l<rEcl )}]

=

∞∑
r=r0

E[τ (r)1{Er}]P(∩r0≤l<rEcl )

≤
∞∑
r=r0

[2r−1(r − 1) + log(|Ar|∆−2
j0,0

log(r
log(∆−2

j0,0
)

δ
))|Ar|∆−2

j0,0
log(r

log(∆−2
j0,0

)

δ
))]

1

16r−r0

≤
∞∑
s=0

[2r0−1 · 2s(r0 + s− 1)

+ log(2s|Ar0 |∆−2
j0,0

log((r0 + s)
log(∆−2

j0,0
)

δ
))2s|Ar0 |∆−2

j0,0
log((r0 + s)

log(∆−2
j0,0

)

δ
))]

1

16s
.

We bound the first term as follows:
∞∑
s=0

2r0−1 · 2s(r0 + s− 1)

16s
= 2r0−1

∞∑
s=0

(r0 + s− 1)

8s
(17)

≤ c2r0r0 (18)

≤ c′ n
j0
k log(

n

j0
k)

≤ c′′H̃id(µ0; j0) log(H̃id(µ0; j0)).
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where the last inequality follows since ∆−2
i,j ≥ 1 for all i < j ∈ [n] ∪ {0} since µ0, µ1, . . . , µn ∈ [0, 1].

We note that

log((r0 + s)
log(∆−2

j0,0
)

δ
)) ≤ c[log(r0

log(∆−2
j0,0

)

δ
)) + log(s

log(∆−2
j0,0

)

δ
))]

≤ c′ log(r0

log(∆−2
j0,0

)

δ
)) + c log(s)

and

log(2s|Ar0 |∆−2
j0,0

log((r0 + s)
log(∆−2

j0,0
)

δ
)) = log(|Ar0 |∆−2

j0,0
log((r0 + s)

log(∆−2
j0,0

)

δ
)) + s

≤ log(|Ar0 |∆−2
j0,0

c′ log(r0

log(∆−2
j0,0

)

δ
) + c log(s)) + s

≤ c′′ log(|Ar0 |∆−2
j0,0

log(r0

log(∆−2
j0,0

)

δ
))) + c′′′ log(log(s)) + s

≤ c′′ log(|Ar0 |∆−2
j0,0

log(r0

log(∆−2
j0,0

)

δ
))) + c′′′′s

Then,

∞∑
s=0

log(2s|Ar0 |∆−2
j0,0

log((r0 + s)
log(∆−2

j0,0
)

δ
))2s|Ar0 |∆−2

j0,0
log((r0 + s)

log(∆−2
j0,0

)

δ
))

1

16s

≤
∞∑
s=0

[c′′ log(|Ar0 |∆−2
j0,0

log(r0

log(∆−2
j0,0

)

δ
))) + c′′′′s]|Ar0 |∆−2

j0,0
[c′ log(r0

log(∆−2
j0,0

)

δ
)) + c log(s)]

1

8s

≤ c′′c′ log(|Ar0 |∆−2
j0,0

log(r0

log(∆−2
j0,0

)

δ
)))|Ar0 |∆−2

j0,0
log(r0

log(∆−2
j0,0

)

δ
))

+ c′′′′′ log(|Ar0 |∆−2
j0,0

log(r0

log(∆−2
j0,0

)

δ
)))|Ar0 |∆−2

j0,0

+ c′′′′′′|Ar0 |∆−2
j0,0

log(r0

log(∆−2
j0,0

)

δ
)) + +c′′′′′′′|Ar0 |∆−2

j0,0

≤ c′′′′′′′′ log(|Ar0 |∆−2
j0,0

log(r0

log(∆−2
j0,0

)

δ
)))|Ar0 |∆−2

j0,0
log(r0

log(∆−2
j0,0

)

δ
))

Plugging in |Ar0 | and r0 yields the gap independent bound.

E.2 Proof of FWER-TPR

In this section, we prove an upper bound for the FWER-TPR version of our Algorithm (see Algorithm 2). We
note that the gap-dependent upper bound in Theorem 3 follows as a corollary since whenever the FWER-TPR
version of our Algorithm 2 accepts an arm, the FDR-TPR version of our Algorithm 1 accepts the same arm.

Theorem 6. Let δ ∈ (0, 1/40)5. Let k ∈ [|H1|]. For all j ∈ {k, . . . , |H1|} define

HFWER(µ0; j) :=
k

j


{

m∑
i=1

∆−2
i∨j,0

}
︸ ︷︷ ︸

top arms

log(
nk

jδ
log(∆−2

i∨j,0)) +

n∑
i=m+1

∆−2
j,i︸ ︷︷ ︸

bottom arms

log(
log(∆−2

j,i )

δ
)

 .

Let (Ft)t∈N be the filtration generated by playing Algorithm 2 on problem ρ. Then, Algorithm 2 has the property
that P(∃t : Qt ∩H0 6= ∅) ≤ 2δ and there exists a stopping time τk wrt (F)t∈N such that

E[τk] ≤ c min
k≤j≤m

HFWER(µ0; j) log(HFWER(µ0; j) + ∆−2
j,0 log(nj k log(∆−2

j,0)/δ)) (19)
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and for all t ≥ τk, E[|Qt ∩H1|] ≥ (1− δ)k.

Er, E0,r, and E1,r are defined as in Section E.1.

Lemma 5. Fix δ ∈ (0, 1/40), k ∈ [|H1|], j0 ∈ {k, . . . ,m}, and r ∈ N such that 2r ≥ k. Define

Ur :=
min(2r, n)

n
[
∑
i∈H1

∆−2
i∨j0,0 log(min(2r, n)r

log(∆−2
i∨j0,0)

δ
)) +

∑
i∈H0

∆−2
j0,i

log(
log(∆−2

j0,i
)

δ
)].

Let (Ft)t∈N be the filtration generated by playing Algorithm 2 on problem ρ. Then, there exists a stopping time
τk wrt (Ft)t∈N such that for all t ≥ τk, E[|Qt ∩H1|] ≥ (1− δ)k, and

E[1{Er ∩ E0,r ∩ E1,r}τk] ≤ c[2r−1(r − 1) + Ur log(Ur + ∆−2
j0,0

log(min(2r, n)r
log(∆−2

j0,0
)

δ
)))] (20)

where c is a universal constant.

Remark 2. Note that HFWER(µ0; j) ≈ Udlog2(nkj )e.

Proof. Step 1: Define stopping time. Define

τk = min(t ∈ N ∪ {∞} : |Ar ∩ [j0]| ≥ k and Ir ∩Ar ∩H1 ⊂ Qt).

Observe that for all t ≥ τk, E[|Qt ∩H1|] ≥ (1− δ)k since for t ≥ τk

E[|Qt ∩H1|] ≥ E[|Is ∩As ∩H1|] ≥ (1− δ)|As ∩H1| ≥ (1− δ)k.

Let r ∈ N. Define

T = |{t ∈ N : I ∩Ar ∩ [j0] 6⊂ Qt and Rt = r}|,

By the same argument used in Lemma 4 to obtain line (13),

1{E}τk ≤ [2r−1(r − 1) + log(1{E}T )1{E}T ]. (21)

We can use the same argument that was used to obtain line (14) and line (15) in Lemma 4 and the lower bounds
1 ≤ σ(i) and p ≥ 1 to obtain

1{E}T ≤ c
( ∑
i∈H0∩Ar

∆−2
j0,i

log(
log(∆−2

j0,i
)

δ
) (22)

+ |H1 ∩ [j0]c ∩Ar|∆−2
j0,0

log(
log(∆−2

j0,0
)

δ
) +

∑
i∈H1∩Ar

∆−2
i∨j0,0 log(|Ar|r2

log(∆−2
i∨j0,0)

δ
)

)

≤ c′[
∑

i∈H0∩Ar

∆−2
j0,i

log(
log(∆−2

j0,i
)

δ
) +

∑
i∈H1∩Ar

∆−2
i∨j0,0 log(|Ar|r

log(∆−2
i∨j0,0)

δ
)] (23)

:= c′Sr (24)

where the second inequality follows from the fact that ∆i∨j0,0 ≥ ∆j0,0 so the third term absorbs the second.

Using lines (23) and (21),

1{E}τk ≤ c[2r−1(r − 1) + log(Sr)Sr]

but note that now the bound depends on the particular random elements of Ar ∩H0 and Ar ∩H1.
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Step 2: Bounding E[log(Sr)Sr]. Next, taking the expectation of both sides and focusing on the expectation
of the second term,

E[log(Sr)Sr] =
∑
i∈H0

∆−2
j0,i

log(
log(∆−2

j0,i
)

δ
)E[1{i ∈ Ar} log(Sr)]

+
∑
i∈H1

∆−2
i∨j0,0 log(|Ar|r2

log(∆−2
i∨j0,0)

δ
)E[1{i ∈ Ar} log(Sr)].

It suffices to bound the first sum since the argument for the second is the same.

E[1{j ∈ Ar} log(Sr)] = E[log(Sr)|j ∈ Ar]
min(2r, n)

n
(25)

≤ log(E[Sr|j ∈ Ar])
min(2r, n)

n
(26)

= log(
min(2r − 1, n− 1)

n− 1
[
∑
i∈H1

∆−2
i∨j0,0 log(min(2r, n)r

log(∆−2
i∨j0,0)

δ
))

+
∑

i∈H0\j

∆−2
j0,i

log(
log(∆−2

j0,i
)

δ
)] + ∆−2

j0,j
log(

log(∆−2
j0,j

)

δ
))

min(2r, n)

n
(27)

≤ log(Sr + ∆−2
j0,j

log(
log(∆−2

j0,i
)

δ
))

min(2r, n)

n
, (28)

where line (25) follows by the law of total expectation, line (26) follows by Jensen’s inequality, and line (28)
follows since a

b ≤
a+1
b+1 if a ≤ b. Thus, collecting terms,

E[1{Er ∩ E0,r ∩ E1,r}τr,k] ≤ Ur log(Ur + ∆−2
j0,0

log(min(2r, n)r
log(∆−2

j0,0
)

δ
))

yielding line (20).

Proof of Theorem 6. Step 1: Showing P(∃t : Qt∩H0 6= ∅) ≤ 2δ. First, we show that P(∃t : Qt∩H0 6= ∅) ≤ 2δ.

P(∃t : Qt ∩H0 6= ∅) ≤
∞∑
r=1

P(∃t : Qt ∩Ar ∩H0 6= ∅)

≤
∞∑
r=1

P(∃t ∈ N and i ∈ H0 ∩Ar : µ̂i,r,Ti,r(t) − U(Ti,r(t),
δ

|Ar|r2
) ≥ µ0)

≤
∞∑
r=1

P(∃t ∈ N and i ∈ H0 ∩Ar : µ̂i,r,Ti,r(t) − U(Ti,r(t),
δ

|Ar|r2
) ≥ µi)

≤
∞∑
r=1

|Ar ∩H0|
δ

|Ar|r2

≤
∞∑
r=1

δ

r2

≤ δ π
2

6

Step 2: Defining the stopping time. As in the proof of Lemma 5, define

τk = min(t ∈ N ∪ {∞} : ∃s such that |As ∩ [j0]| ≥ k and Is ∩As ∩H1 ⊂ Qt),

τ
(r)
k = min(t ∈ N ∪ {∞} : |Ar ∩ [j0]| ≥ k and Ir ∩Ar ∩H1 ⊂ St).

As was argued in Step 1 of the proof of Lemma 5, for all t ≥ τk, E[|Qt ∩H1|] ≥ (1− δ)k since for t ≥ τk.
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Step 3: A lower bound on the probability of a good event. Let j0 ∈ {k, . . . ,m} minimize (19). Define
Er = Er ∩ E0,r ∩ E1,r. We note that since {ρi,r}i∈[n],r∈N and the brackets {Ar}r∈N are independent, {Er}r∈N
are independent events. Let r0 be the smallest integer such that

min(40
n

j0
k, n) ≤ 2r0 ≤ 80

n

j0
k,

Note that if 2r0 ≥ n, then the bracket r0 has n arms.

As was argued in the proof of Theorem 5 we have that

P(Ecr) ≤ exp(−5) + 2δ ≤ 1

16
.

and that P(∩∞l=r0E
c
l ) = 0.

Step 4: Gap-Dependent bound on the number of samples. For the sake of brevity, write τ instead of

τk and τ (r) instead of τ
(r)
k . Then, by the independence between brackets, the fact that ∪∞r=r0Er ∩ (∩r0≤l<rEcl )

occurs with probability 1, and Lemma 5,

E[τ ] = E[τ1{∪∞r=r0Er ∩ (∩r0≤l<rEcl )}]

≤
∞∑
r=r0

E[τ1{Er ∩ (∩r0≤l<rEcl )}]

≤
∞∑
r=r0

E[τ (r)1{Er ∩ (∩r0≤l<rEcl )}]

=

∞∑
r=r0

E[τ (r)1{Er}]P(∩r0≤l<rEcl )

≤
∞∑
r=r0

c[2r−1(r − 1) + Ur log(Ur + ∆−2
j0,0

log(min(2r, n)r
log(∆−2

j0,0
)

δ
)))]

1

16r−r0

≤
∞∑
r=r0

c[2r−r0 · 2r0−1(r − 1) + 4r−r0Ur0 log(4r−r0Ur0 + ∆−2
j0,0

log(2r0 · 2r−r0r
log(∆−2

j0,0
)

δ
)))]

1

16r−r0

where we used Lemma 4 and the fact that 4sUr ≥ Ur+s for any s ≥ 1, which holds by the following argument

4sUr = 4s
min(2r, n)

n
[
∑
i∈H1

∆−2
i∨j0,0 log(min(2r, n)r

log(∆−2
i∨j0,0)

δ
)) +

∑
i∈H0

∆−2
j0,i

log(
log(∆−2

j0,i
)

δ
)]

≥ min(2r+s, n)

n
[
∑
i∈H1

∆−2
i∨j0,0 log(min(2r2

s

, n)r
log(∆−2

i∨j0,0)

δ
)) +

∑
i∈H0

∆−2
j0,i

log(
log(∆−2

j0,i
)

δ
)]

≥ min(2r+s, n)

n
[
∑
i∈H1

∆−2
i∨j0,0 log(min(2r+s, n)r

log(∆−2
i∨j0,0)

δ
)) +

∑
i∈H0

∆−2
j0,i

log(
log(∆−2

j0,i
)

δ
)]

= Ur+s.

Next, we can bound the first term using the same argument in line (18):

∞∑
r=r0

2r−r0 · 2r0−1(r − 1)
1

16r−r0
≤ c2r0r0

≤ c′ n
j0
k log(

n

j0
k)

≤ c′′HFWER(µ0; j0) log(HFWER(µ0; j0)).

where the last inequality follows since ∆−2
i,j ≥ 1 for all i < j ∈ [n] ∪ {0} since µ0, µ1, . . . , µn ∈ [0, 1].
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Next, we bound the second term.

∞∑
r=r0

1

4r−r0
Ur0 log(4r−r0Ur0 + ∆−2

j0,0
log(2r0 · 2r−r0(s+ r0)

log(∆−2
j0,0

)

δ
)))

=

∞∑
s=0

1

4s
Ur0 log(4sUr0 + ∆−2

j0,0
log(2r0 · 2s(s+ r0)

log(∆−2
j0,0

)

δ
)))

≤
∞∑
s=0

1

4s
Ur0 log(4sUr0 + c′∆−2

j0,0
log(2r0r0

log(∆−2
j0,0

)

δ
)) + c′s)

≤ Ur0
∞∑
s=0

1

4s
[c′′ log(4sUr0 + c′∆−2

j0,0
log(2r0r0

log(∆−2
j0,0

)

δ
))) + c′′′ log(s)]

≤ Ur0
∞∑
s=0

1

4s
[c′′ log(Ur0 + c′∆−2

j0,0
log(2r0r0

log(∆−2
j0,0

)

δ
))) + c′′ log(4s) + c′′′ log(s)]

≤ c′′′′Ur0 log(Ur0 + ∆−2
j0,0

log(2r0r0

log(∆−2
j0,0

)

δ
)))

≤ c′′′′′Ur0 log(Ur0 + ∆−2
j0,0

log(2r0
log(∆−2

j0,0
)

δ
)))

≤ c′′′′′′HFWER(µ0; j0) log(HFWER(µ0; j0) + ∆−2
j0,0

log(2r0
log(∆−2

j0,0
)

δ
)))

where we used Ur0 ≤ cHFWER(µ0; j0) and

log(2r0 · 2s(s+ r0)
log(∆−2

j0,0
)

δ
)) = log(2r0(s+ r0)

log(∆−2
j0,0

)

δ
)) + cs

≤ c′ log(2r0r0

log(∆−2
j0,0

)

δ
)) + c′ log(2r0s

log(∆−2
j0,0

)

δ
)) + cs

≤ c′′ log(2r0r0

log(∆−2
j0,0

)

δ
)) + c′′′′s

E.3 Proof of ε-Good Arm Identification

We restate Theorem 2 with the doubly logarithmic terms.

Theorem 7. Let ε > 0 and δ ∈ (0, 1). Define m = |{i : µi > µ1 − ε}|. For all j ∈ [m] define

Hg(ε; j) :=
1

j


m∑
i=1

∆−2
i∨j,m+1︸ ︷︷ ︸

top arms

log(
n

jδ
log(∆−2

i∨j,m+1)) +

n∑
i=m+1

∆−2
j,i︸ ︷︷ ︸

bottom arms

log(
∆−2
j,i

δ
)

 .

Let (Ft)t∈N be the filtration generated by playing Algorithm 1 on problem ρ. Then, there exists a stopping time
τ wrt (F)t∈N such that

E[τ ] ≤ c min
j∈[m]

Hg(ε; j) log(Hg(ε; j) + ∆−2
j,m+1 log(

n

jδ
log(∆−2

j,m+1))) (29)

and P(∃s ≥ τ : µOs ≤ µ1 − ε) ≤ 2δ.

Lemma 6 is the key intermediate result in the proof of Theorem 7; its role is similar to that of Lemma 4 in the
proof of Theorem 5 and the proof is technically similar to the proof of Lemma 4. For any r ∈ N and j ∈ [m]
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define the events

F
(j)
r,1 = {Ar ∩ [j] 6= ∅}

F
(j)
r,2 = {

∑
i∈Ar:µi<

µj+µm+1
2

∆−2
j,i log(

1

ρi,r
) ≤ 5

∑
i∈Ar:µi<

µj+µm+1
2

∆−2
j,i log(

1

δ
)},

F
(j)
r,3 = {∃i0 ∈ Ar ∩ [j] s.t.∀t ∈ N : |µ̂i0,r,t − µi0 | ≤ U(t, δ)}.

F
(j)
r,1 says that there is at least one arm in bracket r with mean at least µj ≥ µm. F

(j)
r,2 allows us to avoid a union

bound and says that most of the arms in bracket r with mean at most
µj+µm+1

2 have large ρi,r. Finally, F
(j)
r,3

says that at least one of the arms in the rth bracket with mean at least µj ≥ µm that concentrates well in the
sense that ρi,r ≥ δ.
Lemma 6. Let ε > 0, m = |{i : µi > µ1 − ε}|, j0 ∈ [m], and r ∈ N. Define

Yr =
min(2r, n)

n
[

m∑
i=1

∆−2
i∨j0,m+1 log(|Ar|r

log(∆−2
i∨j0,m+1)

δ
) +

n∑
i=m+1

∆−2
j0,i

log(
log(∆−2

j0,i
)

δ
)]

Let (Ft)t∈N be the filtration generated by playing Algorithm 1 on problem ρ. Then, there exists a stopping time
τ wrt (Ft)t∈N such that P(∃s ≥ τ : µOs ≤ µ1 − ε) ≤ 2δ, and

E[1{F (j0)
r,1 ∩ F

(j0)
r,2 ∩ F

(j0)
r,3 }τ ] ≤ c[2r−1(r − 1) + Yr log(Yr + ∆−2

j0,m+1 log(|Ar|r
log(∆−2

j0,m+1)

δ
)]. (30)

Remark 3. Note that Hg(ε; j) ≈ Ydlog2(nj )e.

Proof. Step 1: Define stopping time. Our strategy is to define a stopping time τ that says that some arm
i that is ε-good has been sampled enough times so that its confidence bound is sufficiently small and then to
show that with high probability for all t ≥ τ , (i) the lower confidence bound of arm i is above µm+1 and (ii) the
algorithm always outputs an ε-good arm. To this end, define

τ = min{t ∈ N ∪ {∞} : ∃s ∈ N and ∃i ∈ As s.t. µi ≥
µj0 + µm+1

2
and Ti,s(t) ≥ U−1(

∆i∨j0,m+1

4
,

δ

|As|s2
)}.

We claim that P(∃t ≥ τ : µOt < µ1 − ε) ≤ 2δ. Define the event

F = {∀t ∈ N, s ∈ N, and i ∈ As : |µ̂i,s,t − µi| ≤ U(t,
δ

|As|s2
)}.

By a union bound, F occurs with probability at least 1− 2δ. Suppose F occurs and let t ≥ τ . Then, since t ≥ τ ,

there exists a bracket s and an arm i ∈ As such that µi ≥
µj0+µm+1

2 and Ti,s(t) ≥ U−1(
∆i∨j0,m+1

4 , δ
|As|s2 ). Then

by event F ,

µ̂i,s,Ti,s(t) − U(Ti,s(t),
δ

|As|s2
) ≥ µi − 2U(Ti,s(t),

δ

|As|s2
)

> µi −
∆i∨j0,m+1

2
≥ µm+1

where the last inequality follows by considering separately the cases (i) µi ≥ µj0 and (ii) µi < µj0 . Towards a
contradiction, suppose that there exists a bracket s0 ∈ N and another arm j ∈ As0 (j 6= i) such that µj ≤ µ1− ε
and the algorithm outputs j at time t. Then, by event F ,

µj ≥ µ̂j,s0,Tj,s0 (t) − U(Tj,s0(t),
δ

|As0 |s2
0

) ≥ µ̂i,s,Ti,s(t) − U(Ti,s(t),
δ

|As|s2
) > µm+1 ≥ µj ,

which is a contradiction. Thus, P(∃t ≥ τ : µOt < µ1 − ε) ≤ 2δ.
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Step 2: Relating τ to bracket r. Next, we bound E[1{F (j0)
r,1 ∩ F

(j0)
r,2 ∩ F

(j0)
r,3 }τ ]. For the sake of brevity, we

write Fr,i instead of F
(j0)
r,i and define Fr := Fr,1 ∩Fr,2 ∩Fr,3 and since we will only focus on bracket r, write µ̂i,t,

Ti(t), and ρi instead of µ̂i,r,t, Ti,r(t), and ρi,r. Define

T = |{t ∈ N : Rt = r and @i ∈ Ar s.t. µi ≥
µj0 + µm+1

2
and Ti(t) ≥ U−1(

∆i∨j0,m+1

4
,

δ

|Ar|r2
)}|,

i.e., the number of rounds that the algorithm works on the rth bracket and there does not exist i ∈ Ar s.t. µi ≥
µj0+µm+1

2 and Ti(t) ≥ U−1(
∆i∨j0,m+1

2 , δ
|Ar|r2 ). By the same argument given in line (13) in Lemma 4, we have

that

1{Fr}τ ≤ c[2r−1(r − 1) + log(T1{Fr})T1{Fr}].

Step 3: Bounding T1{Fr}. In the interest of brevity, define F (t) = {@i ∈ Ar s.t. µi ≥
µj0+µm+1

2 and Ti(t) ≥
U−1(

∆i∨j0,m+1

4 , δ
|Ar|r2 )}. Then,

1{Fr}T ≤ 1{Fr}
∞∑
t=1

1{Rt = r, F (t)}

≤ 1{Fr}
∞∑

t:Rt=r

1{µIt <
µj0 + µm+1

2
}+ 1{µIt ≥

µj0 + µm+1

2
, F (t)}

We bound each sum separately. Note that by Fr,3 there exists an i0 ∈ Ar ∩Gγ such that

µ̂i0,Ti0 (t) + U(Ti0(t), δ) ≥ µi0 ≥ µj0 . (31)

Let j such that µj <
µj0+µm+1

2 . Then,

µ̂j,Tj(t) + U(Tj(t), δ) ≤ µj + U(Tj(t), ρj) + U(Tj(t), δ) ≤ µj + 2U(Tj(t), ρjδ).

Thus, line (31) implies that if Tj(t) ≥ U−1(
∆j0,j

4 , ρjδ), arm j is not pulled since in that case

µ̂j,Tj(t) + U(Tj(t), δ) ≤ µj + 2U(Tj(t), ρjδ) ≤ µj +
∆j0,j

2
≤ µj0 .

Thus, by arguments made throughout this paper (e.g., line (14) of the proof of Lemma 4) and the event Fr,2,

∞∑
t:Rt=r

1{µIt ≤ µ1 − ε} ≤ c
∑

j∈Ar:µj<
µj0

+µm+1
2

∆−2
j0,j

log(
log(∆−2

j0,j
)

δ
)

Finally, by event F we clearly have

∞∑
t:Rt=r

1{µIt ≥
µj0 + µm+1

2
, F (t)} ≤ c

∑
j∈Ar:µj≥

µj0
+µm+1
2

∆−2
j0∨j,m+1 log(|Ar|r

log(∆−2
j0∨j,m+1)

δ
)

Thus,

1{Fr}T ≤ c[
∑

j∈Ar:µj<
µj0

+µm+1
2

∆−2
j0,j

log(
log(∆−2

j0,j
)

δ
) +

∑
j∈Ar:µj≥

µj0
+µm+1
2

∆−2
j∨j0,m+1 log(|Ar|r

log(∆−2
j∨j0,m+1)

δ
)]

≤ c[
∑

j∈Ar:µj≤µ1−ε

∆−2
j0,j

log(
log(∆−2

j0,j
)

δ
) +

∑
j∈Ar:µj>µ1−ε

∆−2
j∨j0,m+1 log(|Ar|r

log(∆−2
j∨j0,m+1)

δ
)]

:= cXr
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where we used the fact that for j satisfying µj <
µj0+µm+1

2 , it follows that

∆j0,j = µj0 − µj ≥
µj0 − µm+1

2
=

∆j0,m+1

2
.

Then, using the same argument from lines (25)-(28), we have that

EXr log(Xr) ≤ cYr log(Yr + ∆−2
j0,m+1 log(|Ar|r

log(∆−2
j1,m+1)

δ
)]

Thus, putting it together,

E[1{1{Fr}τ ] ≤ c[2r−1(r − 1) + Yr log(Yr + ∆−2
j0,m+1 log(|Ar|r

log(∆−2
j0,m+1)

δ
)]

Proof of Theorem 7. Let j0 ∈ [m] minimize the optimization problem in line (29). Let r0 such that be the
smallest integer such that

min(40
n

j0
, n) ≤ 2r0 ≤ 80

n

j0
.

For the sake of brevity, we write Fr0,i instead of F
(j0)
r0,i

. We bound P((Fr0,1 ∩ Fr0,2 ∩ Fr0,3)c). By a union bound
and the law of total probability,

P((Fr0,1 ∩ Fr0,2 ∩ Fr0,3)c) ≤ P(F cr0,1 ∩ F
c
r0,3) + P(F cr0,2)

≤ P(F cr0,1) + P(F cr0,3|Fr,1) + P(F cr0,2)

≤ 2δ + P(F cr0,1)

≤ 2δ + exp(−5)

≤ 1

16

The rest of the proof proceeds as the proof of Theorem 5 starting at step 2.

E.4 Proof of FWER-FWPD

Finally, we present a Theorem for the FWER-FWPD version of Algorithm 2. Although it is possible to use the
ideas from the other upper bound proofs to establish a result that depends on the distribution of the arms in
H1, for simplicity our upper bound is in terms of ∆ = mini∈H1

µi − µ0 and m := |{i : µi > µ0}.
Theorem 8. Let δ ∈ (0, 1

600 ). Let k ∈ [|H1|]. Define

Ṽk := (
n

m
k − k)∆−2 log(max(k, log log(

n

m
k

1

δ
)) log(∆−2) log(

n

m
k)/δ)

+ k log(max(
n

m
k − (1− 2δ(1 + 4δ))k, log log(

n

m
k

1

δ
)) log(∆−2) log(

n

m
k)/δ)]

. (
n

m
k − k)∆−2 log(k/δ) + k log(

n
mk − (1− 2δ(1 + 4δ))k

δ
)

Furthermore, define

λk = min(t ∈ N : |Rt ∩H1| ≥ k).

Then, Algorithm 2 has the property that P(∃t ∈ N : Rt ∩H0 6= ∅) ≤ 10δ and

E[λk] ≤ c log(Ṽk)Ṽk.



Julian Katz-Samuels, Kevin Jamieson

Lemma 7. Let δ ∈ (0, .01). Let k ∈ [|H1|]. Let r ∈ N such that 2r ≥ k. Define

λr = min(t ∈ N : |Rt ∩Ar ∩H1| ≥ k).

Define

Vr := (2r −min(|H1|,
|H1|
n

2r))∆−2 log(max(min(|H1|,
|H1|
n

2r), log log(r2r/δ)) log(∆−2)r/δ)

+ min(|H1|,
|H1|
n

2r) log(max(2r − (1− 2δ(1 + 4δ)) min(|H1|,
|H1|
n

2r), log log(
r2r

δ
)) log(∆−2)r/δ)]

Then with probability at least 1− 6δ − 2 exp(−2r−3)− P(|Ar ∩H1| < k),

λr ≤ c(2r−1(r − 1) + log(Vr)Vr).

Proof. Step 1: Definitions and events. Recall Rt is the bracket chosen at time t and define

T = |{t ∈ N : Ar ∩H1 6⊂ Rt and Rt = r}|,

i.e., the number of rounds that the algorithm works on the rth bracket and Ar ∩H1 6⊂ Rt. Define the events

Σr,1 = {|Ar ∩H1| ≥ k}

Σr,2 = {|Ar ∩H1| ≤ min(|H1|, |H1|
n 2r+1))}

Σr,3 = {|Ar ∩H1| ≥ min(|H1|, |H1|
n 2r−1))}

If 2r+1 ≥ n, then |Ar ∩ H1| ≤ |H1| implies P(Σcr,2) = 0. Therefore, suppose 2r+1 < n. Then, by multiplicative
Chernoff for hypergeometric random variables,

P(Σcr,2) = P(|Ar ∩H1| >
|H1|
n

2r+1) ≤ exp(−|H1|
n

2r−2) ≤ exp(−2r−2)

Similarly, if 2r ≥ n, then |Ar| = n and P(Σcr,2) = 0. Therefore, suppose 2r < n.

P(Σcr,3) = P(|Ar ∩H1| <
|H1|
n

2r−1)) ≤ exp(−|H1|
n

2r−3) ≤ exp(−2r−3)

Since the algorithm essentially runs the FWER-FWDP version of the algorithm from Jamieson and Jain (2018)
on each bracket r with confidence δ/r2, we can apply Theorem 4 of Jamieson and Jain (2018) directly to obtain
that there exists an event Σr,4, which only depends on the samples of the arms in bracket r, such that P(Σcr,4) ≤ 6δ
and on Σr,4

T ≤ c[(|Ar| − |Ar ∩H1|)∆−2 log(max(|Ar ∩H1|, log log(|Ar|/δr)) log(∆−2)/δr)

+ |Ar ∩H1|∆−2 log(max(|Ar| − (1− 2δr(1 + 4δr)|Ar ∩H1|, log log(
|Ar|
δr

)) log(∆−2)/δr)].

This roughly says

T . (|Ar| − |Ar ∩H1|)∆−2 log(|Ar ∩H1|/δ) + |Ar ∩H1|∆−2 log((|Ar| − |Ar ∩H1|)/δ).

Step 2: Bounding λr. In what follows, assume Σr,1∩Σr,2∩Σr,3∩Σr,4 occurs, which happens with probability
at least

1− 6δ − 2 exp(−2r−3)− P(Σcr,1).

By the same argument given in lines (12) and (13), event Σr,1 implies that

λr ≤ c(2r−1(r − 1) + log(T )T ).
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Furthermore, using Σr,2 ∩ Σr,3 ∩ Σr,4,

T ≤c[(|Ar| − |Ar ∩H1|)∆−2 log(max(|Ar ∩H1|, log log(|Ar|/δr)) log(∆−2)/δr)

+ |Ar ∩H1|∆−2 log(max(|Ar| − (1− 2δr(1 + 4δr))|Ar ∩H1|, log log(
|Ar|
δr

)) log(∆−2)/δr)]

≤c′[(|Ar| − |Ar ∩H1|)∆−2 log(max(|Ar ∩H1|, log log(r|Ar|/δ)) log(∆−2)r/δ)

+ |Ar ∩H1|∆−2 log(max(|Ar| − (1− 2δ(1 + 4δ))|Ar ∩H1|, log log(
r|Ar|
δ

)) log(∆−2)r/δ)]

≤c′′[(2r −min(|H1|,
|H1|
n

2r))∆−2 log(max(min(|H1|,
|H1|
n

2r), log log(r2r/δ)) log(∆−2)r/δ)

+ min(|H1|,
|H1|
n

2r)∆−2 log(max(2r − (1− 2δ(1 + 4δ)) min(|H1|,
|H1|
n

2r), log log(
r2r

δ
)) log(∆−2)r/δ)]

Proof of Theorem 8. We note that the algorithm essentially runs the FWER-FWDP version of the algorithm
from Jamieson and Jain (2018) on each bracket r with confidence δ/r2. Therefore, by Theorem 4 from Jamieson
and Jain (2018),

P(∃t ∈ N : Ar ∩Rt ∩H0 6= ∅) ≤ 6
δ

r2

Thus,

P(∃t ∈ N : Rt ∩H0 6= ∅) ≤ P(∃t ∈ N, r ∈ N : Ar ∩Rt ∩H0 6= ∅)

≤
∑
r∈N

P(∃t ∈ N : Ar ∩Rt ∩H0 6= ∅)

≤
∑
r∈N

6
δ

r2

≤ 10δ.

Let r0 ∈ N be the smallest integer such that r0 ≥ 6 and

min(40
n

m
k, n) ≤ 2r0 ≤ 80

n

m
k.

If 2r0 ≥ n, then P(|Ar∩H1| < k) = 0. Otherwise,by multiplicative Chernoff for hypergeometric random variables,

P(|Ar ∩H1| < k) ≤ exp(−5).

In the interest of brevity, define Σr = Σr,1 ∩Σr,2 ∩Σr,3 ∩Σr,4. Observe that {Σr}r∈N are mutually independent.
Further, using δ ∈ (0, 1

600 ), for all brackets r ≥ r0, the events occur which happens with probability at least

P(Σcr) ≤ 6δ + 2 exp(−2r−3) + P(Σcr,1) ≤ 1

16

The rest of the proof proceeds as in Step 2 of the proof of Theorem 5.

F ε-Good Arm Identification: Favorable Verifiable and Unverifiable Sample
Complexity

One practical concern about the SimplePAC setting is that it is not clear when to stop the algorithm. To
address this concern we propose Algorithm 3, which combines Algorithm 1 and LUCB from Kalyanakrishnan
et al. (2012) to achieve the best of both worlds of PAC and SimplePAC. Let LUCB(ε) denote the LUCB algorithm
that terminates once it finds an ε-good arm. Let β(t, δ) denote the confidence bound used in Kalyanakrishnan
et al. (2012); although, it is possible to tighten these confidence bounds, for the sake of simplicity and brevity we
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Algorithm 3 To Verify or not to Verify: ε-Good Arm Identification

1: Input: ε > 0
2: for t = 1, 2, . . . do
3: Pull arm according to sampling rule given by the ε-good arm identification version of Algorithm 1
4: Pull arm according to sampling rule given by LUCB(ε)
5: Let Ot be the arm returned by the ε-good arm identification version of Algorithm 1
6: if LUCB(ε) terminates then

7: Let ĵ denote the arm returned by LUCB(ε)
8: r0 = argmaxr∈Nµ̂Ot,r,TOt,r(t) − U(TOt,r(t),

δ
|Ar|r2

)

9: if µ̂Ot,r0,Ti,r(t) − U(TOt,r0(t), δ
|Ar0 |r

2 ) ≥ µ̂ĵ,T
ĵ
(t) − β(Tĵ(t), δ) then

10: Set ît = Ot
11: else
12: Set ît = ĵ

13: Output ît and terminate.
14: else
15: Set ît = Ot
16: Output ît

use theirs so that we can appeal to their sample complexity results. Algorithm 3 takes a desired tolerance ε > 0
as input, runs LUCB(ε) and the ε-good arm identification version of Algorithm 1 in parallel without sharing

samples between the algorithms,3 and outputs an arm ît at every iteration. This arm ît is the arm Ot suggested
by Algorithm 1 for every iteration until the termination condition of LUCB(ε) obtains at which point algorithm
3 decides whether to output Ot or the arm suggested by LUCB(ε). Let µ̂i,t denote the empirical mean at time t
of arm i based on the samples collected by LUCB(ε) and Ti,t denote the number of pulls of arm i at time t by
LUCB(ε).

Theorem 9. Let ρ be a problem instance and let δ ∈ (0, 1/40) and ε1, ε2 > 0. Let (Ft)t∈N be the filtration
generated by running Algorithm 3 with input ε1 on ρ. There is a stopping time τsimple wrt (Ft)t∈N such that

E[τsimple] . min
γ∈(0,ε2)

Uε2(γ) log(Uε2(γ) + ∆−2
m,ε2,γ) (32)

and P(∃s ≥ τsimple : µîs ≤ µ1 − ε2) ≤ 2δ. Furthermore, there exists a stopping time τPAC wrt (Ft)t∈N such that

E[τPAC ] . Hε/2 log(
Hε/2

δ
) (33)

where Hγ =
∑
i∈[n] max(µ1 − µi, γ)−2 and at time τPAC the Algorithm 3 terminates and returns an arm îτPAC

such that P(µîτPAC
≤ µ1 −min(ε1, ε2)) ≤ 3δ.

To interpret the Theorem 9, suppose that ε1 > ε2 > 0 are such that E[τsimple] ≤ E[τPAC ]. Then, Theorem 9
says that Algorithm 3 with input ε1 starts outputting an ε2-good arm in nearly optimal time and certifies that
it is an ε1-good arm in nearly optimal optimal. Thus, Algorithm 3 achieves the best of both worlds.

Proof of Theorem 9. Theorem 6 of Kalyanakrishnan et al. (2012) implies that there exists a stopping time τPAC
wrt (Ft)t∈N such that at time τPAC the Algorithm 3 terminates and (33) holds. Theorem 2 implies the existence
of stopping time τsimple wrt (Ft)t∈N such that (32) holds and P(∃s ≥ τsimple : µOs ≤ µ1 − ε2) ≤ 2δ.

It remains to show that when the Algorithm 3 terminates at t = τPAC , P(µîτPAC
≤ µ1 − min(ε1, ε2)) ≤ 3δ.

Define the event

F = {∀t ∈ N, s ∈ N, and i ∈ As : |µ̂i,s,t − µi| ≤ U(t,
δ

|As|s2
)}.

By a union bound, F occurs with probability at least 1− 2δ. By the argument in Step 1 of the proof of Lemma
6, on F , for all t ≥ τsimple

maxr∈Nµ̂Ot,r,TOt,r(t) − U(TOt,r(t),
δ

|Ar|r2
) > max

i:µi≤µ1−ε2
µi.

3Samples should be shared in practice.
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Next, define the event

E = {∀t ∈ N and ∀i ∈ [n] : |µ̂i,t − µi| ≤ β(t, δ)}

By Theorem 1 of Kalyanakrishnan et al. (2012), P(E) ≥ 1− δ and on E,

µ̂ĵ,Tĵ(τPAC) − β(Tĵ(τPAC), δ) > µ1 − ε1

Suppose F and E occur, which by a union bound occur with probability at least 1 − 3δ. Either îτPAC = ĵ or

îτPAC = OτPAC . Suppose îτPAC = ĵ. Then,

µîτPAC
= µĵ

≥ µ̂ĵ,Tĵ(τPAC) − β(Tĵ(τPAC), δ)

> maxr∈Nµ̂Ot,r,TOt,r(t) − U(TOt,r(t),
δ

|Ar|r2
)

≥ max
i:µi≤µ1−ε2

µi,

which implies that µîτPAC
≥ µ1 −min(ε1, ε2). A similar argument proves the case îτPAC = OτPAC .

G Experiment Details

We used two publicly available datasets to base our simulated experiments on.

G.1 ε-good arm identification

For the ε-good arm identification experiment, we used the New Yorker Magazine Caption Contest data available
at https://github.com/nextml/caption-contest-data. Specifically, we used contest 641 conducted the first
week of December of 2018. Briefly, visitors to the site nextml.org/captioncontest are shown a fixed image
and one of n captions that they rate as either Unfunny, Somewhat funny, or Funny. When they make their
selection, the image stays the same but one of n other captions are shown (uniformly at random for this contest).
Contest 641 has n = 9061 arms and each one was shown about 155 times. For the ith caption we define µ̂i,Ti as
the proportion of times Somewhat funny of Funny was clicked relative to the total number of times it was rated
denoted Ti. These empirical means µ̂i,Ti were treated as ground truth so that in our experiments a pull of the
ith arm was an iid draw from a Bernoulli distribution with mean µ̂i,Ti . Figure 4 shows the histogram µ̂i,Ti and
Ti for all n = 9061 arms.

To measure τU,ε, we run LUCB and BUCB for 3 million rounds; for a given ε > 0, τU,ε is the first round at which
the empirical probability of returning an ε-good arm is above 1 − δ at every t ∈ [τU,ε, 3 · 106]. To measure τV,ε
for LUCB, we run LUCB for 20 million rounds and report its guarantee on the returned arm at every t.

G.2 Identifying arms above a threshold

This dataset is from Hao et al. (2008). The study was interested in identifying genes in Drosophila that inhibit
virus replication. Essentially, for each individual gene i ∈ [n] for n = 13071 the researchers used RNAi to
“knock-out” the gene from a population of cells, infected the cells with a virus connected to a florescing tag,
and then measured the amount of florescence after a period of time. The idea is that if a lot of florescence was
measured when the ith gene was knocked out, that means that gene was very influential for inhibiting virus
replication because more virus was present. A control or baseline amount of florescence µ0 (and its variance) was
established by infecting cells without any genes knocked out. Using these controls, each measurement (pull) from
the ith gene (arm) is reported as a Z-score such that under the null (gene i has no impact on virus replication)
an observation is normally distributed with mean µi = µ0 with variance 1. We make the simplifying assumption
that if the gene did have non-negligible influence so that µi > 0, then the variance was still equal to 1.
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Figure 4: Empirical means and counts from the New Yorker Magazine caption contest 641. There were n = 9061
arms.

Figure 5: Drosophila data.

As described in Hao et al. (2008), the researchers measured each of the n = 13071 genes twice and eliminated
all but the 1000 most extreme observations, and then measured each of these 1000 genes 12 times. Finally, they
reported the 100 genes that were statistically significant of these 1000 genes measured 12 times. To generate
the data for our experiments, we average just the two initial measurements from all n = 13071 measurements.
Two averaged Z-scores of the ith gene, denoted µ̂i, have a variance of 1/2 which more or less buries any signal
in noise. If we adopt the model µ̂i ∼ N (µi, 1/2) then we can perform a a maximum likelihood estimate (MLE)
of the original distribution of underlying {µi}ni=1 using a fine grid on [−4, 4], the range of the observations.
The normalized histogram of {µ̂i}i as well as the MLE of the {µi}i are shown in the first panel of Figure 5.
Reassuringly, there is a spike with mass of about .97 at 0 indicating that the vast majority of genes have no
influence on inhibiting virus proliferation. The majority of the remaining mass lies in a spike around 1. To
encourage the distribution of the means not at 0 to have a bit more shape, we use a small amount of entropic
regularization without increasing negative log likelihood too much. For our experiments we used λ = 1e−4.

G.3 Algorithm Details

We use δ = 0.05 for all of the algorithms. For the implementation of our algorithms, we chose the starting
bracket to have size 26. We share samples between the brackets and stop opening brackets after a bracket of size
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n is opened.

For the ε-good arm identification experiment, we change the sampling rule slightly to mirror LUCB in the
following sense: at each round, the algorithm pulls both a maximizer of the empirical mean and a maximizer
of the upper confidence on the mean. The theory on BUCB directly applies since once of these arms must be
the same arm that BUCB would pull. We also use a heuristic where we remove a bracket if its maximum lower
confidence bound is less than the maximum lower confidence bound of a larger bracket.

For the experiment concerning the dataset of Hao et al. (2008) we used the FDR-TPR versions of our algorithm
and the algorithm of Jamieson and Jain (2018). Following the advice of Jamieson and Jain (2018), we use the
Benjamini-Hochberg procedure developed for multi-armed bandits at level δ instead of O(δ/ log(1/δ)). We used
the following two heuristics for our algorithm. First, we give each bracket a point if it pulls an accepted arm more
than any of the other brackets. Then, we remove a bracket if its score is less than the score of a larger bracket.
Second, we estimate the number of pulls required for each bracket to accept 5 additional arms and choose the
bracket with lowest estimate 90% of the time and otherwise cycle through the brackets.4 We calculate this
estimate as follows. For each bracket, we take the 5 arms with the largest empirical means and estimate the
remaining number of times that they need to be pulled by

µ̂−2
i,Ti(t)

log[ size of the bracket · number of total brackets to open /δ]− Ti(t).

For the other arms, we estimate the number of times that they need to be pulled before accepting 5 arms with
the largest empirical means in the following way. Let λ denote the value of the fifth smallest mean multiplied
by a factor of 2, which estimates roughly the value of its upper confidence bound at the point at which it is
accepted. Then, the estimate is

(λ− µ̂i,Ti(t))
−2 log[ number of total brackets to open /δ]− Ti(t).

We note that while the above heuristics for removing brackets break the sample complexity guarantees of the
algorithms because they may remove a good bracket, the algorithms are still correct in the sense that the
confidence bounds hold with high probability. We ran each experiment for 100 trials. We also plot 95% confidence
intervals.
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