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Abstract

We consider two multi-armed bandit prob-
lems with n arms: (i) given an ✏ > 0, iden-
tify an arm with mean that is within ✏ of
the largest mean and (ii) given a thresh-
old µ0 and integer k, identify k arms with
means larger than µ0. Existing lower bounds
and algorithms for the PAC framework sug-
gest that both of these problems require ⌦(n)
samples. However, we argue that the PAC
framework not only conflicts with how these
algorithms are used in practice, but also that
these results disagree with intuition that says
(i) requires only ⇥( n

m
) samples where m =

|{i : µi > maxj2[n] µj � ✏}| and (ii) requires
⇥( n

m
k) samples where m = |{i : µi > µ0}|.

We provide definitions that formalize these
intuitions, obtain lower bounds that match
the above sample complexities, and develop
explicit, practical algorithms that achieve
nearly matching upper bounds.

1 Introduction

We consider the multi-armed bandit (MAB) problem
of ✏-good arm identification. In this problem
there are n distributions ⇢1, . . . , ⇢n (also referred to
as arms) with means µ1, . . . , µn; an agent plays a se-
quential game where at each round t, she chooses (or
“pulls”) an arm It 2 {1, . . . , n} and observes an i.i.d.
realization from ⇢It . The goal of the game is to use as
few total pulls as possible to identify an ✏-good arm,
that is, an arm i that satisfies µi > maxj µj � ✏ for a
given ✏ > 0. In the well-studied PAC framework, the
sample complexity of an agent is measured by the to-
tal number of pulls until the agent can terminate the
game and return an ✏-good arm with probability at
least 1� �.
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✏-good arm identification has received much at-
tention in the MAB literature and has many poten-
tial applications ranging from clinical trials to crowd-
sourcing. The literature has focused on designing algo-
rithms that optimize the PAC notion of sample com-
plexity; in this paper, we argue that PAC sample
complexities are impractically large even for a mod-
est number of arms. Consider our experiment on the
recently crowdsourced New Yorker Caption Contest
with 9061 Bernoulli arms (presented in Section 1.3),
where the top arm has a mean of about 0.45 and the
bottom arm a mean of about 0.04. On this realis-
tic bandit problem, it takes a state-of-the-art ✏-good
arm identification algorithm LUCB over 1 million
samples to identify an arm as 0.45-good with proba-
bility at least 0.95. But, if one simply chose a random
arm without taking any samples, then with probabil-
ity 1 the returned arm would be 0.45-good! As we
discuss in detail below, lower bounds show that these
impractical sample complexities are unavoidable, scal-
ing like⇥(n) because the PAC framework requires that
the agent verify that the returned arm is ✏-good. For
this reason, we also refer to PAC sample complexity
as verifiable sample complexity.

In this paper, we propose a novel framework for quan-
tifying the sample complexity of an algorithm for ✏-
good arm identification. We suppose that the
agent outputs an arm bit at every round t and, infor-
mally, we consider the sample complexity of the agent
to be the round at which the agent begins to output an
✏-good arm with high probability at every subsequent
round. We call this unverifiable sample complexity be-
cause, in contrast to the PAC notion of sample com-
plexity, it does not require that the algorithm verify
that an arm is ✏-good. bit represents the “best guess”
of the algorithm and unverifiable sample complexity is
the number of rounds until the agent happens to be
right with high probability on all subsequent rounds.
Through the development of lower bounds and algo-
rithms with nearly matching upper bounds, we show
that unverifiable sample complexity can be arbitrar-
ily smaller than PAC sample complexity, scaling like
⇥( n

m
) where m is the number of ✏-good arms.
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As a corollary to our study of the unverifiable sample
complexity of ✏-good arm identification, we ob-
tain results for the intimately related problem of iden-
tifying k  n arms that satisfy µi > µ0 2 R, where µ0

is known. We call this the k-identifications prob-
lem. By contrast to the optimization flavor of ✏-good
arm identification, this problem can be thought of
as akin to satisficing, an approach to decision prob-
lems that seeks to find acceptable options (Simon,
1956). This problem is relevant to applications where
it su�ces to find k arms that meet a known standard.
For example, consider the task of hiring crowdsourcing
workers where a practitioner often wishes to hire a cer-
tain number of workers that meet a certain standard
(e.g., answer a question correctly with probability at
least 0.9). As another example, consider the biological
sciences where a scientist is often interested in deter-
mining which of a collection of genes are important
for a biological process, and is satisfied if she makes a
few discoveries (Hao et al., 2008). Although satisficing
problems are ubiquitous in applications, they have re-
ceived far less attention in the MAB pure exploration
literature.

1.1 Multi-armed bandits

Define a multi-armed bandit instance ⇢ as a collection
of n distributions over R where the ith distribution ⇢i
has expectation EX⇠⇢i

[X] = µi. We assume without
loss of generality that µ1 � µ2 � . . . � µn. At round
t 2 N a player selects an index It 2 [n] := {1, . . . , n},
immediately observes an independent realization Zt of
⇢It , and then outputs bSt, which is either a subset of
[n] or an element in [n], depending on the problem.
Formally, defining the filtrations (Ft)t2N and (F�

t
)t2N

where Ft = {(Is, Zs, bSs) : 1  s  t} and F
�

t
= Ft�1[

{(It, Zt)}, we require that It is Ft�1 measurable while
bSt is F

�

t
measurable, each with possibly additional

external sources of randomness.

The player strategically chooses an arm It at each time
t in order to accomplish a goal for bSt as quickly as
possible. We consider the following two objectives.

1. ✏-good arm identification: for a given ✏ > 0,
minimize ⌧ such that the index bSt 2 [n] satisfies
µbSt

> maxi2[n] µi� ✏ for all t � ⌧ with high prob-
ability.

2. k-identifications problem: for a given thresh-
old µ0 2 R and k 2 [n], minimize ⌧k such that
the set bSt ✓ [n] satisfies |bSt \ {i : µi > µ0}| �

min(k, |{i : µi > µ0}|) for every t � ⌧k subject to
bSs \ {i : µi  µ0} = ; for all s 2 N with high
probability1.

1
The constraint bSs \ {i : µi  µ0} = ; is known as

When ✏ = 0 and arm 1 is uniquely optimal, ✏-good
arm identification is the well-studied problem of
best arm identification.

Why study both objectives simultane-
ously? ✏-good arm identification and the
k-identifications problem are closely related.
If k = 1, then the k-identifications problem is
essentially ✏-good arm identification where the
threshold µ0 = µ1 � ✏ is known, but ✏ = µ1 � µ0

is unknown. The same algorithmic ideas can be
applied to both problems, and, indeed, our proposed
algorithms and analyses for both problems are very
similar.

Furthermore, the fundamental di�culty of the objec-
tives are closely related: for a fixed set of means
µ1 � · · · � µn and any threshold µ0, we may consider
✏ = µ1�µ0 so that {µi : µi > µ1�✏} = {µi : µi > µ0}.
Thus, identifying k arms above the threshold µ0 is
equivalent to identifying k ✏-good means for ✏ = µ1 �

µ0. Consequently, if m = |{i 2 [n] : µi > µ1 � ✏}| then
we can study lower bounds on the sample complexity of
both problems simultaneously by considering the nec-
essary number of samples required to identify k of the
m largest means (i.e., to have bSt ⇢ [m] with |bSt| = k)
for any value of 1  k  m. Henceforth, we use m to
denote |{i 2 [n] : µi > µ1 � ✏}| or |{i 2 [n] : µi > µ0}|;
the context will leave no ambiguity.

Intuition for unverifiable sample complexity.
Suppose that it is known that there are m ✏-good arms
and consider the following algorithm: let A be a set of
n/m arms chosen uniformly at random from [n] and
apply any nearly optimal best arm identification al-
gorithm to A. Observe that one of the arms in A is
✏-good with constant probability since

P(A \ [m] = ;)  (1�m/n)n/m  exp(�1).

Thus, this algorithm will return an ✏-good arm with
constant probability in a number of samples that scales
like n/m (instead of the typical n). Although this
algorithm requires knowledge of m, it suggests that
when there arem ✏-good distributions, the unverifiable
sample complexity to identify an ✏-good distribution
scales as n/m, not n. In an extreme case, if half the
distributions are ✏-good, then one should expect the
number of samples to identify an ✏-good distribution
to be constant with respect to n. A similar argument
applies to the k-identifications problem : if there
are m means above the threshold µ0, then one would
expect that the number of samples required to identify
at least 1  k  m of them scales like k n

m
, not n.

a family-wise error rate (FWER) condition. We will also

consider a more relaxed condition known as false discovery

rate (FDR) which controls E[|bSs \ {i : µi  µ0}|/|bSs|].
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While considering m is helpful for analysis, it should
be stressed that the algorithm does not know m and

must adapt to it.

Finally, we stress that although the same algorith-
mic ideas apply to both ✏-good arm identification
and k-identifications problem, our notion of un-
verifiable sample complexity (made rigorous shortly)
does not apply to the k-identifications problem
because µ0 is known and, hence, an agent can verify
once k arms above µ0 have been found.

1.2 Revisiting ✏-good arm identification: an
unverifiable sample complexity
perspective

We begin by considering the standard verifiable no-
tion of sample complexity from the well-studied PAC
framework.

Definition 1. Fix a class of bandit instances P. Fix

an algorithm A ⌘ (It, bSt, ⌧V,✏,�) where ⌧V,✏,� is a stop-

ping time with respect to the filtration (Ft)t2N. Then

A is (✏, �)-PAC (Probably Approximately Cor-
rect) wrt P if 8⇢ 2 P A terminates at ⌧V,✏,� and

P⇢(µbS⌧V,✏,�

> maxi µi � ✏) � 1 � �. We call E⇢[⌧V,✏,�]

the expected (✏, �)-verifiable sample complexity
of A with respect to ⇢.

In words, ⌧V,✏,� is the point at which an algorithm
A has collected enough data about ⇢ to declare con-
fidently that a particular arm is ✏-good. Setting
P = {N (µ0, I) : µ0

2 Rn
}, one can show that for a

given ✏, �, and instance ⇢ 2 P,

E⇢[⌧V,✏,�] & log(1/�)
nX

i=1

max(µ1 � µi, ✏)
�2

for any (✏, �)-PAC algorithm over P (Kaufmann et al.,
2016; Mannor et al., 2004) (see Appendix B for a for-
mal statement). That is, the expected verifiable sam-

ple complexity E[⌧V,✏,�] is at least ⌦(n), regardless of

m. Intuitively, this is necessary because if there is
some unpulled arm j, then no information is known
about j and, thus, the algorithm cannot guarantee
that µj < µi + ✏ for any other arm i. We now pro-
pose a definition for unverifiable sample complexity.

Definition 2. Fix an algorithm A ⌘ (It, bSt) and an

instance ⇢. Let ⌧U,✏,� be a stopping time with respect

to the filtration (Ft)t2N such that

P⇢( 8t � ⌧U,✏,� : µbSt
> max

i

µi � ✏) � 1� � (1)

and for any other stopping time ⌧ 0 with respect to the

filtration (Ft)t2N that satsifies (1) ⌧U,✏,�  ⌧ 0. Then,

E⇢[⌧U,✏,�] is the expected (✏, �)-unverifiable sample
complexity of A with respect to ⇢.

⌧U,✏,� is the number of samples until an algorithm be-
gins to recommend an ✏-good arm with high probabil-
ity on instance ⇢. We emphasize that ⌧U,✏,� is for anal-
ysis purposes only and is unknown to the algorithm.
Clearly, if an algorithm A is (✏, �)-PAC, then for an in-
stance ⇢, we have that ⌧U,✏,�  ⌧V,✏,�. However, as the
above discussion suggests, E⌧U,✏,� may be significantly
smaller than E⌧V,✏,�, even as small as E⌧U,✏,� = O(1)
while E⌧V,✏,� = ⌦(n). Henceforth, when there is no
ambiguity, we will write ⌧U and ⌧V instead of ⌧U,✏,�

and ⌧V,✏,� respectively.

Two of the main contributions in this work are (i) an
instance-dependent lower bound on E⌧U and (ii) an
Algorithm BUCB (Bracketing UCB, see Algorithm 1)
that achieves a nearly matching upper bound on E⌧U .

Practical Considerations. It may be unclear how
a practitioner would decide to stop collecting samples
without a guarantee that the currently most promising
arm bSt is ✏-good. We address this concern in several
ways. First, at each round, our algorithm BUCB pro-
vides a high probability confidence lower bound Lt 2 R
on the mean of the recommended arm µbSt

. Therefore,
a practitioner can assess the quality of µbSt

using Lt and
use this information to decide whether to stop sam-
pling. Second, it is possible to design an algorithm that
has nearly optimal verifiable and unverifiable sample
complexity (see the Appendix for details). Third, a
practitioner can interpret our algorithm BUCB as find-
ing as good an arm as possible in a time horizon T (for
any T 2 N), that is, as minimizing the high-probability
simple regret µ1 � µbST

(Bubeck et al., 2011). Finally,
we note that in some applications, practitioners are
more interested in finding a good arm quickly than in
certifying that a returned arm is ✏-good.

1.3 Motivating Experiments

Next, we briefly present some illustrative experiments
that motivate our framework.

✏-good arm identification. The LUCB algorithm
of Kalyanakrishnan et al. (2012) is an (✏, �)-PAC algo-
rithm whose sample complexity is within log(n) of the
lower bound of any (✏, �)-PAC algorithm and is known
to have excellent empirical performance (Jamieson and
Nowak, 2014). LUCB does not use ✏ as a sampling rule
(only a stopping condition), and thus can be evaluated
after any number of pulls using its empirical best arm.
We compare its performance to our algorithm BUCB
in this paper designed to optimize unverifiable sam-
ple complexity. We obtain a realistic bandit instance
of 9061 Bernoulli arms with parameters defined by
the empirical means from a recent crowd-sourced New

Yorker Magazine Caption Contest, where each caption
was shown uniformly at random to a participant, and
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Figure 1: ✏-good arm identification Figure 2: Identifying means above a threshold

received on average 155 votes of funny/unfunny (see
Appendix G for details). We run LUCB and BUCB
with � = 0.05 for 100 trials. Figure 1 depicts the re-
sults from the experiment. For a given ✏ > 0, ⌧U,✏

is the first round at which the empirical probability
of returning an ✏-good arm is above 1 � � at every
t � ⌧U,✏. We observe that our proposed algorithm be-
gins to recommend ✏-good arms with high probability
using orders of magnitude fewer samples than LUCB
for a large range of values of ✏. In addition, the verifi-
able complexity ⌧V,✏ of LUCB is worse than the unver-
ifiable sample complexity of BUCB by several orders
of magnitude.

k-Identifications Problem. The recent work of
Jamieson and Jain (2018) proposed an algorithm
(UCB) that identifies nearly allm arms above a thresh-
old in a number of samples that is nearly optimal,
but has a sample complexity that scales with n. We
compare its performance to our algorithm BUCB that
optimizes identifying k < m arms. Consider the ex-
perimental data of Hao et al. (2008), which aimed to
discover genes in Drosophila that inhibit virus replica-
tion. Hao et al. (2008) measured 13,071 genes using a
total budget of about 38, 000 measurements. Figure 2
depicts a simulation of 100 trials based on plug-in es-
timates of the experimental data of Hao et al. (2008)
(described in Appendix G) and shows that our algo-
rithm (BUCB) is able to make discoveries much more
quickly than the algorithm from Jamieson and Jain
(2018) (UCB). See Appendix G for more details on
the experiments.

1.4 Related work

In addition to the lower bounds for the (✏, �)-PAC set-
ting discussed in Section 1.2 (Kaufmann et al., 2016;
Mannor et al., 2004), a related line of work has studied
the exact PAC sample complexity in the asymptotic

regime as � ! 0 (Degenne and Koolen, 2019; Garivier
and Kaufmann, 2019). By contrast, our results con-
cern the moderate confidence regime where � is treated
as a constant (e.g., around 0.05).

Our definition of unverifiable sample complexity may
be interpreted as a high probability version of the ex-
pected simple regret metric (c.f. Bubeck et al. (2011)),
however, neither definition subsumes the other. The
closest work to our setting is that of Chaudhuri and
Kalyanakrishnan (2017, 2019); Aziz et al. (2018) that
also aimed to identify multiple arms, but with the crit-
ical di↵erence that m is assumed to be known. Specif-
ically, given a tolerance ⌘ � 0, they say an arm i is
(⌘,m)-optimal if µi � µm � ⌘. The objective, given
m and ⌘ as inputs to the algorithm, is to identify k
(⌘,m)-optimal arms with probability at least 1 � �.
The case when ⌘ = 0 and m = |{i : µi > µ1 � ✏}|
coincides with our setting, with the critical di↵erence
that in our setting the algorithm never has knowledge
of m. With just knowledge of ✏ but not m, as in our
setting, there is no guide a priori to how many arms we
need to consider in order to get just one ✏-good arm.
However, still relevant from a lower bound perspective,
they prove worst-case results for ⌘ > 0. In contrast,
our work demonstrates instance-specific lower-bounds
(i.e., those that depend on the particular means µ)
that directly apply to their setting, a contribution of
its own.

Algorithms for ✏-good identification. The last
few decades have seen many proposed (✏, �)-PAC algo-
rithms for identifying an ✏-good arm (Even-Dar et al.,
2006; Kalyanakrishnan et al., 2012; Gabillon et al.,
2012; Kaufmann and Kalyanakrishnan, 2013; Karnin
et al., 2013; Simchowitz et al., 2017; Garivier and
Kaufmann, 2019). A closely related problem is known
as the infinite armed-bandit problem where the player
has access to an infinite pool of arms such that when
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a new arm is requested, its mean is drawn iid from a
distribution ⌫. In principle, an infinite armed bandit
algorithm could solve the problem of interest of this
paper by taking ⌫(x) = 1

n

P
n

i=1 1{µi  x}. With the
exception of Li et al. (2017), nearly all of the existing
work makes parametric2 assumptions about ⌫ in some
way (Berry et al., 1997; Wang et al., 2009; Carpen-
tier and Valko, 2015; Chandrasekaran and Karp, 2014;
Jamieson et al., 2016). However, the algorithm of Li
et al. (2017) was designed for a much more general
setting and therefore sacrifices both theoretical and
practical performance, and was not designed to take a
fixed confidence � as input.

Algorithms for identifying means above µ0. In
the thresholding bandit problem, the agent is given a
budget of T pulls, and the goal is to maximize the
probability of identifying every arm as either above or
below a threshold µ0 (Locatelli et al., 2016; Mukherjee
et al., 2017). These works explicitly assume no arms
are equal to µ0 and penalize incorrectly predicting a
mean above or below the threshold equally. For our
problem setting, the most related work is Jamieson
and Jain (2018) which proposes an algorithm that
takes a confidence � and threshold µ0 as input. The au-
thors characterize the total number of samples the al-
gorithm takes before all k = m arms with means above
the threshold are output with probability at least 1��
for all future times, that is, the k-identifications
problem where k = m. While this sample complex-
ity is nearly optimal for the k = m case (see the lower
bounds of Simchowitz et al. (2017); Chen et al. (2014))
this work is silent on the issue of identifying just a sub-
set of size k  m means above the threshold (and the
algorithm does not generalize to this setting).

2 Lower bounds

For the rest of the paper, we focus on developing lower
bounds and algorithms with upper bounds for unveri-
fiable sample complexity, as well as analogous results
for the k-identifications problem. We begin by
presenting a lower bound. To avoid trivial algorithms
that deterministically output an index that happens
to be the best arm, we adopt the random permuta-
tion model of Simchowitz et al. (2017) and Chen et al.
(2017). We say ⇡ ⇠ Sn if ⇡ is drawn uniformly at ran-
dom from the set of permutations over [n], denoted
Sn. For any ⇡ 2 Sn, ⇡(i) denotes the index that i is
mapped to under ⇡. Also, let Ti(t) denote the number
of pulls of arm i up to time t. For a bandit instance
⇢ = (⇢1, . . . , ⇢n) let ⇡(⇢) = (⇢⇡(1), ⇢⇡(2), . . . , ⇢⇡(n)) so

2
For example, for a drawn arm with random mean µ it is

assumed P(µ  x) � c(x� µ⇤)
�
for some fixed parameters

c, µ⇤,� that are known (or not).

that E⇡(⇢)[T⇡(i)(t)] denotes the expected number of
samples taken by the algorithm up to time t from the
arm with mean µ⇡(i) when run on instance ⇡(⇢). The
sample complexity of interest is the expected number
of samples taken by the algorithm under ⇡(⇢) averaged
over all possible ⇡ 2 Sn.

As pointed out in the introduction, there is a one-
to-one correspondance between a problem instance for
identifying k arms above a threshold µ0 and a problem
instance for identifying k ✏-good arms, where ✏ = µ1�

µ0. Thus, if m = |{i : µi > µ1 � ✏}| then a lower
bound for identifying k ✏-good arms or k arms above a
threshold µ0 is implied by a lower bound for identifying
k arms among the m largest means for any 1  k 

m. The next theorem handles all 1  k  m cases
simultaneously for a specific instance (i.e., not worst-
case as in (Chaudhuri and Kalyanakrishnan, 2019)).

Theorem 1. Fix ✏ > 0, � 2 (0, 1/16), and a vector

µ 2 Rn
. Consider n arms where rewards from the

ith arm are distributed according to N (µi, 1). Assume

without loss of generality that µ1 � µ2 � · · · � µn and

let m = |{i 2 [n] : µi > µ1�✏}|. For every permutation

⇡ 2 Sn let (F⇡
t
)t2N be the filtration generated by the

algorithm playing on instance ⇡(⇢), and let ⌧⇡ be a

stopping time with respect to (F⇡
t
)t2N at which time

the algorithm outputs a set bS⌧⇡
✓ [n] with |bS⌧⇡

| = k.
If P⇡(⇢)(bS⌧⇡

⇢ ⇡([m])) � 1� �, then

E⇡⇠SnE⇡(⇢)

h
⌧⇡
i
� Hlow,k(✏)

:=
1

64

⇣
� (µ1 � µm+1)

�2 +
k

m

nX

i=m+1

(µ1 � µi)
�2
⌘
.

Since the theorem applies to any stopping time ⌧⇡
that satisfies P⇡(⇢)(bS⌧⇡

⇢ ⇡([m])) � 1 � �, in par-
ticular it yields a lower bound for expected unverifi-
able sample complexity. Furthermore, by definition,
(µ1 � µm+1)�2

 ✏�2 so aside from pathological cases
such as µ1 � µi � ✏ for all i > m+ 1 the lower bound
will be positive and non-trivial. Consider the following
examples.

Example 1. If (µ1 � µm+1)�2


k

2m

P
n

i=m+1(µ1 �

µi)�2
, then Hlow,k(✏) �

1
128✏

�2 + 1
256

k

m

P
n

i=m+1(µ1 �

µi)�2
.

Example 2. If µ1 = . . . = µm = µ0 + ✏ and

µm+1 = . . . µn = µ0, then Hlow,k(✏) �
1
64

k(n�m)
m

✏�2
.

If in addition n � 2m, then Hlow,k(✏) �
1

128
kn

m
✏�2

.

Example 2 shows that Theorem 1 yields a lower bound
matching our intuition for the n/m scaling of (i) un-
verifiable sample complexity of ✏-good arm identi-
fication, and (ii) the sample complexity of the k-
identifications problem.
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Algorithm 1 Bracketing UCB: ✏-good arm identi-
fication and k-identifications problem
1: �r =

�

r2
, �

0
r =

�r

6.4 log(36/�r)
, ` = 0, R0 = 0, S0 = ;

2: for t = 1, 2, . . . do
3: if t � 2

`
` then

4: A`+1 ⇠ Uniform(
�

[n]
M`+1

�
), where M` := n ^ 2

`

5: ` = `+ 1

6: Rt = 1 +Rt�1 · 1{Rt�1 < `}
7: if 9i 2 ARt

\ St such that Ti,Rt
(t) = 0 then

8: Pull It 2 {i 2 ARt
\ St : Ti,Rt

(t) = 0}
9: else
10: Pull It = argmax

i2ARt
\St

bµi,Rt,Ti,Rt
(t) + U(Ti,Rt

(t), �)

11: if ✏-good arm identification then
12: Ot = argmax

i2Ar for some r`

bµi,r,Ti,r(t)�U(Ti,r(t),
�

|Ar|r2
)

13: else if k-identifications problem then

14: s(p) = {i : bµi,Rt,Ti,Rt
(t)�U(Ti,Rt

(t),
p�

0
Rt

|ARt
| ) � µ0}

for all p 2 [|ARt
|]

15: St+1 = St [ s(bp)
where bp = max{p 2 [|ARt

|] : |s(p)| � p}

The proof of Theorem 1 employs an extension of the
Simulator argument (Simchowitz et al., 2017). While
the k = 1 case can be proven using an argument sim-
ilar to Chen et al. (2017), we needed the Simulator
strategy for the k > 1 case. The technique may be
useful for proving lower bounds for other combinatorial
settings where many outcomes are potentially correct
(e.g., choose any k of m) (Chen et al., 2014, 2017).

Finally, we close this section by noting that the unver-
ifiable sample complexity of popular algorithms like
LUCB or Median Elimination can be greater than
Hlow,k(✏) by a factor of n (see Appendix C.1). This
motivates the development of new algorithms.

3 Algorithm

Algorithm 1 simultaneously handles both ✏-good arm
identification (Line 12) and the k-identifications
problem (Line 15). To motivate the intuition behind
the algorithm, we consider ✏-good arm identifica-
tion. Suppose the number of ✏-good arms m were
known. Because a random subset A of size n

m
con-

tains an ✏-good arm with constant probability, apply-
ing any reasonable best arm identification algorithm
to A would achieve our goal of a sample complexity
that scales like n

m
. However, m is not known, so the

algorithm applies the doubling trick on the number of
✏-good arms, subsampling progressively larger random
subsets of the arms over time.

We call the random subset A` ⇢ [n] the `th bracket.
After (`� 1)2`�1 rounds, the bracket A` is drawn uni-
formly at random from

� [n]
M`

�
, where

� [n]
M`

�
denotes all

subsets of [n] of size M` := n ^ 2`, at which point we

say that `th bracket is open (Line 4). At each round t,
Algorithm 1 chooses one of the open brackets Rt (Line
6) and pulls an arm It 2 Rt that maximizes an up-
per confidence bound bµi,Rt,Ti,Rt

(t) + U(Ti,Rt
(t), �) on

its mean (Line 10). Here, bµi,r,t denotes the empirical
mean of arm i in bracket r after t pulls, Ti,r(t) denotes
the number of times arm i has been pulled in bracket

r up to time t, and finally U(t, �) = c
q

1
t
log(log(t)/�)

denotes an anytime confidence bound (thus, satisfiy-
ing for any r 2 N and i 2 [n] P(\1

t=1|bµi,r,t � µi| 

U(t, �)) � 1� �) based on the law of the iterated log-
arithm (LIL) (Jamieson et al., 2014; Kaufmann et al.,
2016). We note that this sampling rule is similar to
the sampling rule of lil’UCB (Jamieson et al., 2014),
a nearly optimal algorithm for best arm identification
with good empirical performance.

In addition to a sampling rule, we need a recommenda-
tion rule. For ✏-good arm identification, the algo-
rithm outputs a maximizer Ot of its lower confidence
bound (Line 12). The reason for this is that once an
✏-good arm i has been pulled roughly (µi � µm+1)�2

times, then with high probability for all subsequent
rounds, its confidence lower bound will exceed µ1 � ✏
and the algorithm will only output ✏-good arms.

For the problem of multiple identifications above a
threshold, various suggested sets are possible depend-
ing on the desired guarantees. In the main body of the
paper, we focus on building a set St that satisfies the
following property (Jamieson and Jain, 2018).

Definition 3 (False Discovery Rate, FDR). Fix some

� 2 (0, 1). We say an algorithm is FDR-� if for all

possible instances (⇢, µ0), it satisfies E[ |St\H0|

|St|^1 ]  �

for all t 2 N, where H0 = {i 2 [n] : µi  µ0}.

For this goal, the algorithm builds a set St (Line 15)
based on the Benjamini-Hochberg procedure devel-
oped for multi-armed bandits in Jamieson and Jain
(2018). In the Appendix, we present algorithms that
satisfy stronger guarantees, but are also less practical.

We note that the above algorithms do not require ✏
or k as an input, and a practitioner can choose to
terminate at any point.

4 Upper Bounds

Our upper bounds all have a similar form. They are
characterized in terms of �i,j = µi � µj , the gap be-
tween the ith arm and the jth arm. In Appendix E
we state our theorems including all factors, but for the
purposes of exposition, here we use “.” to hide con-
stants and doubly logarithmic factors. For simplicity,
we assume that the distributions are 1-sub-Gaussian
and that µ0, µ1, . . . , µn 2 [0, 1].



Julian Katz-Samuels, Kevin Jamieson

Figure 3: Our sample complexity results rely on picking a bracket of an appropriate size: n

m
is too small, n is

too large, and n

j
appears to be about a good size.

4.1 ✏-Good Arm Identification

To begin, we state our theorem for the unverififiable
sample complexity of ✏-good arm identification in
full generality. Next, we state several more accessible
corollaries that demonstrate the power of the result.

Theorem 2 (✏-good identification). Let �  0.025
and ✏ > 0. Let (Ft)t2N be the filtration generated by

playing Algorithm 1 on problem ⇢. Then, there exists a
stopping time ⌧U,✏ wrt (Ft)t2N such that P(9s � ⌧U,✏ :
µOs

 µ1 � ✏)  2� and

E[⌧U,✏] . min
j2[m]

Hg(✏; j) ln(Hg(✏; j) +��2
j,m+1) (2)

where Hg(✏; j) :=

1

j

 
mX

i=1

(�j,i _�i,m+1)
�2 ln(

n

j�
) +

nX

i=m+1

��2
j,i

ln(
1

�
)

!
.

Define H̄✏ =
P

n

i=1 max(✏, (µ1 � µi))�2 ln( n

m�
).

Corollary 1. Let P = {N (µ0, I) : µ0
2 Rn

} and

⇢ 2 P. Define m = {i : µi > µ1 � ✏}|. Let A be

any (2✏, �)-PAC algorithm wrt P and let ⌧V,2✏ be its

associated stopping rule. Then, the ⌧U,2✏ associated

with Algorithm 1 defined in Theorem 2 satisfies

E[⌧U,2✏] .
1

m
H̄✏ ln(

1

m
H̄✏)

. ln(
1

m
E[⌧V,2✏]) ln(n/m)

E[⌧V,2✏]
m

.

Corollary 2. Let ⌧U,✏ be the stopping time associated

with Algorithm 1 defined in Theorem 2. Consider the

following inequalities:

E[⌧U,✏] .
1

m
H̄✏ ln(

1

m
H̄✏) (3)

. Hlow,1(✏) ln(
n

m�
) ln(Hlow,1(✏)). (4)

(3) holds if |{i 2 [n] : µi � µ1 � ✏/2}| � m

2 , and (4)
holds if (µ1 � µm+1)�2


1

2m

P
n

i=m+1(µ1 � µi)�2
.

Corollary 3. Suppose µ1 = . . . = µm = µ0 + ✏,
µm+1 = . . . = µn = µ0, and n � 2m. Then, the

stopping time ⌧U,✏ associated with Algorithm 1 defined

in Theorem 2 satisfies

E[⌧U,✏] . ✏�2 n

m
ln(

n

m�
) ln(✏�2 n

m
)

= Hlow,1(✏) ln(
n

m�
) ln(Hlow,1(✏)).

Corollary 1 says that Algorithm 1 has an unverifiable
sample complexity for identifying a 2✏-good arm that
is better than the verifiable sample complexity of any

(2✏, �)-PAC algorithm over P by a factor of the number

of ✏-good arms (ignoring logarithmic factors). Corol-
lary 2 gives two general conditions under which the un-
verifiable sample complexity of Algorithm 1 matches
the lower bound from Theorem 1 up to logarithmic
factors. In words, these conditions are (i) a constant
proportion of the ✏-good arms are ✏

2 -good and (ii) the
cost of determining that a random set of n/m arms of
the bottom n�m arms are not ✏-good dominates the
cost of determining that µ1 > µm+1. Finally, Corol-
lary 3 shows that the unverifiable sample complexity
of Algorithm 1 attains the desired n/m scaling on the
basic problem where m arms have mean µ0 + ✏ and
n�m have mean µ0.

Theorem 2 Discussion. For j 2 [m], Hg(✏; j)
bounds the expected unverifiable sample complexity
of a random set of size n/j (call it Bj) identifying an
✏-good arm conditional on (i) an arm in [j] belonging
to Bj and (ii) the empirical means of the arms in Bj

concentrating well. ln(Hg(✏; j) +��2
j,m+1) is the num-

ber of brackets that Algorithm 1 opens by the time Bj

unverifiably identifies an ✏-good arm. The minimiza-
tion problem in (2) says that Algorithm 1 uses the
bracket of size about n/j that minimizes the overall
unverifiable sample complexity.

It is worthwhile to consider the tradeo↵ in the bracket
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size at some length. Although a bracket of size ⇥( n

m
)

is su�ciently large to contain an ✏-good arm with
constant probability, it may be advantageous to use
a much larger bracket in hopes of getting an ✏-good
arm that is much easier to identify as ✏-good unver-
ifiably. Informally, if one randomly chooses n

j
arms

then one expects the highest mean amongst these to
have an index J uniformly distributed in [j]. Thus,
a bracket of size about n

m
would require distinguish-

ing J ⇠ Uniform([m]) from the bottom n � m arms,
which could require an enormous number of samples
on average if many of the arms in [m] are very close to
the means of the bottom n�m arms. Thus, for some
problems, it is advantageous to use a bracket of size
n

j
if µj is much easier to distinguish from the bottom

n � m arms (see Figure 3 for an illustration of this
phenomenon).

Proof Discussion. Algorithm 1 essentially applies
lil’UCB to random sets separately, so the analysis may
focus on lil’UCB applied to a random set Bj of size
n/j. A key observation in our proof is that we can
analyze lil’UCB on a fixed set Bj such that an ✏-good
arm belongs to Bj and the empirical means of the arms
in Bj concentrate well. Then, we can take the expec-
tation with respect to the randomness in Bj , which
results in a scaling of n/j because each arm belongs to
Bj with probability 1/j.

4.2 k-identifications problem

H1 := {i 2 [n] : µi > µ0} consists of the arms that we
wish to identify and H0 := {i 2 [n] : µi  µ0} all the
other arms. Let m = |H1| and recall �j,0 := µj � µ0.
We measure the sample complexity of the algorithm
in the following way (Jamieson and Jain, 2018).

Definition 4 (True Positive Rate, TPR). Fix some

� 2 (0, 1) and k  |H1|. We say an algorithm is TPR-
(k, �, ⌧) on an instance (⇢, µ0) if E[|St\H1|] � (1��)k
for all t � ⌧ .

In the Appendix, we present algorithms that have
stronger guarantees, but are also less practical. The-
orem 3 bounds the sample complexity in the above
sense while showing the FDR of St in Algorithm 1 is
controlled. The subsequent corollaries give more ac-
cessible consequences of this result.

Theorem 3 (FDR-TPR). Let � 2 (0, .025). Let

k  |H1|. Let (Ft)t2N be the filtration generated by

playing Algorithm 1 on problem ⇢. Then, for all t 2 N,
E[ |St\H0|

|St|^1 ]  2� and there exists a stopping time ⌧k wrt

(Ft)t2N such that for all t � ⌧k, E[|St\H1|] � (1��)k

and

E[⌧k] . min
kjm

Hid(µ0; j) ln(Hid(µ0; j) +��2
j,0), (5)

E[⌧k] . min
kjm

H̃id(µ0; j) ln(H̃id(µ0; j)) (6)

where

Hid(µ0; j) :=
k

j
(

mX

i=1

��2
i_j,0 ln(

nk

j�
) +

nX

i=m+1

��2
j,i

ln(
1

�
))

H̃id(µ0; j) :=
n

j
k��2

j,0 ln (1/�) .

Corollary 4. Let ⌧k be the stopping time associated

with Algorithm 1 defined in Theorem 3. Consider the

following inequalities.

E[⌧k] .
k

m
H̄ ln(

nk

m�
) ln(

k

m
H̄) (7)

. Hlow,k(µ1 � µ0) ln(
nk

m�
) ln(Hlow,k(µ1 � µ0)) (8)

where H̄ = m��2
1,0 ln(

nk

m�
) +

P
n

i=m+1 �
�2
j,i

ln( 1
�
). (7)

holds if |{i 2 [m] : �i,0 �
1
2�1,0}| �

m

2 , and (8) holds
if (µ1 � µm+1)�2


1

2m

P
n

i=m+1(µ1 � µi)�2
.

Corollary 5. Suppose µ1 = . . . = µm = µ0 + ✏,
µm+1 = . . . = µn = µ0, and n � 2m. Then, the

stopping time ⌧k defined in Theorem 3 satisfies

E[⌧k] . Hlow,k(µ1 � µ0) ln(
1

�
) ln(Hlow,k(µ1 � µ0)).

Corollary 4 gives conditions under which our algorithm
for identifying k arms above a threshold improves by
a factor of k

m
on the result of Jamieson and Jain

(2018) for identifying all of the arms above a thresh-
old. Corollary 5 shows that we improve on the gap-
independent version of the bound in Jamieson and Jain
(2018) by a factor of k

m
. In addition, these corollaries

give conditions under which the sample complexity of
Algorithm 1 is within a logarithmic factor of our lower
bound.

Theorem 3 Discussion. (5) gives a gap-dependent
bound, while (6) sacrifices the dependence on the indi-
vidual gaps to remove an additional logarithmic factor
on the arms in H1. Hid(µ0; j) bounds the expected
number of samples required by a bracket of size ⇥(nk

j
)

to identify k arms satisfying µi > µ0 when (i) at least
k of its arms have means greater than µj > µ0 and (ii)

the empirical means of the arms in the bracket concen-
trate well. H̃id(µ0; j) plays a similar role but removes a
logarithmic factor on the arms in H1 at the cost of los-
ing the dependence on the individual gaps. Similarly
to ✏-good arm identification, there is a tradeo↵ in
the size of the bracket, and the minimization problem
in (5) and (6) shows that the algorithm picks an op-
timal bracket for the overall sample complexity. The
proof is quite similar to the proof of Theorem 2.
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