
Kenji Kawaguchi*, Haihao Lu*

Appendix

A Proofs

In Appendix A, we provide complete proofs of the theoretical results.

A.1 Proof of Theorem 1

Proof. We just need to show that g̃ is an unbiased estimator of a sub-gradient of Lq(θ) at θ
t, namely Eg̃ ∈ ∂Lq(θ

t).

At first, it holds that

Eg̃t =
1

q
E

∑

i∈Q

gti + gtR =
1

q

n
∑

i=1

P (i ∈ Q)gti + gtR =
1

q

n
∑

j=1

P ((j) ∈ Q)gt(j) + gtR ,

where gti ∈ ∂Li(θ
t) is a sub-gradient of Li at θ

t and gtR ∈ ∂R(θt). In the above equality chain, the third equality
is simply the definition of expectation, and the last equality is because ((1), (2), . . . , (n)) is a permutation of
(1, 2, . . . , n).

For any given index j, define Aj = ((1), (2), . . . , (j − 1)), then

P ((j) ∈ Q) = P ((j) ∈ q-argmaxi∈SLi(θ))
= P ((j) ∈ S and S contains at most q − 1 items in Aj)
= P ((j) ∈ S)P (S contains at most q − 1 items in Aj |(j) ∈ S)

= P ((j) ∈ S)
∑q−1

l=0 P (S contains l items in Aj |(j) ∈ S) .

(6)

Notice that S is randomly chosen from sample index set (1, 2, . . . , n) without replacement. There are in total
(

n
s

)

different sets S such that |S| = s. Among them, there are
(

n−1
s−1

)

different sets S which contains the index
(j), thus

P ((j) ∈ S) =

(

n−1
s−1

)

(

n
s

) . (7)

Given the condition (j) ∈ S, S contains l items in Aj means S contains s− l−1 items in {(j+1), (j+2) . . . , (n)},
thus there are

(

j−1
l

)(

n−j
s−l−1

)

such possible set S, whereby it holds that

P (S contains l items in Aj |(j) ∈ S) =

(

j−1
l

)(

n−j
s−l−1

)

(

n−1
s−1

) . (8)

Substituting Equations (7) and (8) into Equation (6), we arrive at

P ((j) ∈ T) =

(

n−1
s−1

)

(

n
s

)

q−1
∑

l=0

(

j−1
l

)(

n−j
s−l−1

)

(

n−1
s−1

) =

∑q−1
l=0

(

j−1
l

)(

n−j
s−l−1

)

(

n
s

) = γj .

Therefore,

Eg̃t =
1

q

n
∑

j=1

P ((j) ∈ Q)gt(j) + gtR =
1

q

n
∑

j=1

γjg
t
(j) + gtR ∈ ∂Lq(θ

t) ,

where the last inequality is due to the aditivity of sub-gradient (for both convex and weakly convex function)

A.2 Proof of Proposition 1

We just need to show that

lim
j,n→∞,j/n=z

γj =

q−1
∑

l=0

1

n

(

j

n

)l (
n− j

n

)s−l−1
s!

l!(s− l − 1)!
, (9)

Ordered SGD: A New Stochastic Optimization Framework for Empirical Risk Minimization

then we finish the proof by changing variable z = j
n .

At first, the Stirling’s approximation yields that when n and j are both sufficiently large, it holds that

(

n

j

)

∼
√

n

2πj(n− j)

nn

jj(n− j)n−j
. (10)

Thus,

lim
j,n→∞,j/n=z

(

n−s
j−1−l

)

(

n−1
j−1

) =

nn−s

jj−1−l(n−j)n−j−s+1+l

nn−1

jj−1(n−j)n−j

=
jl(n− j)s−l−1

ns−1
=

(

j

n

)l (
n− j

n

)s−l−1

, (11)

where the first equality utilize Equation (10) and the fact that s, l, 1 are negligible in the limit case (except the
exponent terms).

On the other hand, it holds by rearranging the factorial numbers that

1

n

(

n−s
j−1−l

)

(

n−1
j−1

)

s!

l!(s− l − 1)!
=

(

j−1
l

)(

n−j
s−l−1

)

(

n
s

) . (12)

Combining Equations (11) and (12) and summing l, we arrive at Equation (9).

By noticing s > q, it holds that

d

dz
γ(z) =

q−1
∑

l=1

lzl−1(1− z)s−l−1 s!

l!(s− l − 1)!
−

q−1
∑

l=0

(s− l − 1)zl(1− z)s−l−2 s!

l!(s− l − 1)!

=

q−1
∑

l=1

zl−1(1− z)s−l−1 s!

(l − 1)!(s− l − 1)!
−

q−1
∑

l=0

zl(1− z)s−l−2 s!

l!(s− l − 2)!

=

q−2
∑

l=0

zl(1− z)s−l−2 s!

l!(s− l − 2)!
−

q−1
∑

l=0

zl(1− z)s−l−2 s!

l!(s− l − 2)!

= −zq−1(1− z)s−q−1 s!

l!(s− l − 2)!

∝ −zq−1(1− z)s−q−1.

In other word, 1− 1
sγ(z) is the cumulative of Beta(q, s− q) when n → ∞.

A.3 Proof of Theorem 2

Proof. Notice that g̃t is a sub-gradient of LQ(θ
t) where LQ(θ

t) = 1
q

∑

i∈Q Li(θ
t) + R(θt). Suppose g̃t =

1
q

∑

i∈Q gi(θ
t) + gR(θ

t) where gi(θ
t) is a sub-gradient of Li(θ

t) and gR(θ
t) is a sub-gradient of R(θt). Then

‖g̃t‖2 =

∥

∥

∥

∥

∥

∥

1

q

∑

i∈Q

gi(θ
t) + gR(θ

t)

∥

∥

∥

∥

∥

∥

2

≤ 2







∥

∥

∥

∥

∥

∥

1

q

∑

i∈Q

gi(θ
t)

∥

∥

∥

∥

∥

∥

2

+
∥

∥gR(θ
t)
∥

∥

2






≤ 2(G2

1 +G2
2) . (13)

Meanwhile, it follows Theorem 1 that g̃t is an unbiased estimator of a sub-gradient of Lq(θ
t). Together with

Equation (13), we obtain the statement (1) by the analysis of convex stochastic sub-gradient descent in Boyd
and Mutapcic (2008).

Furthermore, suppose Li(θ)+
ρ
2‖θ‖2 is convex for any i, then Lq(θ)+

ρ
2‖θ‖2 = 1

q

∑n
j=1 γj

(

L(j)(θ) +
ρ
2‖θ‖2

)

+R(θ)

is also convex, whereby Lq(θ) is ρ-weakly convex. We obtain the statement (2) by substituting into Theorem 2.1
in Davis and Drusvyatskiy (2018).

Kenji Kawaguchi*, Haihao Lu*

A.4 Proof of Theorem 3

Before proving Theorem 3, we first show the following proposition, which gives an upper bound for γj :

Proposition 2. For any j ∈ {1, . . . , n}, γj ≤ s
n .

Proof. The value of γj is equal to the probability of ordered SGD choosing the j-th sample in the ordered sequence
(L(1)(θ;D), . . . , L(n)(θ;D)), which is at most the probability of mini-batch SGD choosing the j-th sample. The
probability of mini-batch SGD choosing the j-th sample is s

n .

We are now ready to prove Theorem 3 by finding an upper bound on supθ∈Θ E(x,y)[ℓ(f(x; θ), y)]−Lq(θ;D) based
on McDiarmid’s inequality.

Proof of Theorem 3. Define Φ(D) = supθ∈Θ E(x,y)[ℓ(f(x; θ), y)] − Lq(θ;D). In this proof, our objective is to
provide the upper bound on Φ(D) by using McDiarmid’s inequality. To apply McDiarmid’s inequality to Φ(D),
we first show that Φ(D) satisfies the remaining condition of McDiarmid’s inequality. Let D and D′ be two
datasets differing by exactly one point of an arbitrary index i0; i.e., Di = D′

i for all i 6= i0 and Di0 6= D′
i0
. Then,

we provide an upper bound on Φ(D′)− Φ(D) as follows:

Φ(D′)− Φ(D) ≤ sup
θ∈Θ

Lq(θ;D)− Lq(θ;D′).

= sup
θ∈Θ

1

q

n
∑

j=1

γj(L(j)(θ;D)− L(j)(θ;D′))

≤ sup
θ∈Θ

1

q

n
∑

j=1

|γj ||L(j)(θ;D)− L(j)(θ;D′)|

≤ sup
θ∈Θ

1

q

s

n

n
∑

j=1

|L(j)(θ;D)− L(j)(θ;D′)|

where the first line follows the property of the supremum, sup(a)− sup(b) ≤ sup(a− b), the second line follows
the definition of Lq, and the last line follows Proposition 2 (|γj | ≤ s

n).

We now bound the last term
∑n

j=1 |L(j)(θ;D) − L(j)(θ;D′)|. This requires a careful examination because
|L(j)(θ;D) − L(j)(θ;D′)| 6= 0 for more than one index j (although D and D′ differ only by exactly one point).
This is because it is possible to have (j;D) 6= (j;D′) for many indexes j where (j;D) = (j) in L(j)(θ;D) and
(j;D′) = (j) in L(j)(θ;D′). To analyze this effect, we now conduct case analysis. Define l(i;D) such that (j) = i
where j = l(i;D); i.e., Li(θ;D) = L(l(i;D))(θ;D).

Consider the case where l(i0;D′) ≥ l(i0;D). Let j1 = l(i0;D) and j2 = l(i0;D′). Then,

n
∑

j=1

|L(j)(θ;D)− L(j)(θ;D′)| =
j2−1
∑

j=j1

|L(j)(θ;D)− L(j)(θ;D′)|+ |L(j2)(θ;D)− L(j2)(θ;D′)|

=

j2−1
∑

j=j1

|L(j)(θ;D)− L(j+1)(θ;D)|+ |L(j2)(θ;D)− L(j2)(θ;D′)|

=

j2−1
∑

j=j1

(L(j)(θ;D)− L(j+1)(θ;D)) + L(j2)(θ;D)− L(j2)(θ;D′)

= L(j1)(θ;D)− L(j2)(θ;D′)

≤ M,

where the first line uses the fact that j2 = l(i0;D′) ≥ l(i0;D) = j1 where i0 is the index of samples differing in
D and D′. The second line follows the equality (j;D′) = (j + 1;D) from j1 to j2 − 1 in this case. The third line
follows the definition of the ordering of the indexes. The fourth line follows the cancellations of the terms from
the third line.

Ordered SGD: A New Stochastic Optimization Framework for Empirical Risk Minimization

Consider the case where l(i0;D′) < l(i0;D). Let j1 = l(i0;D′) and j2 = l(i0;D). Then,

n
∑

j=1

|L(j)(θ;D)− L(j)(θ;D′)| = |L(j1)(θ;D)− L(j1)(θ;D′)|+
j2
∑

j=j1+1

|L(j)(θ;D)− L(j)(θ;D′)|

= |L(j1)(θ;D)− L(j1)(θ;D′)|+
j2
∑

j=j1+1

|L(j)(θ;D)− L(j−1)(θ;D)|

= L(j1)(θ;D)− L(j1)(θ;D′) +

j2
∑

j=j1+1

(L(j)(θ;D)− L(j−1)(θ;D))

= L(j1)(θ;D′)− L(j2)(θ;D)

≤ M.

where the first line uses the fact that j1 = l(i0;D′) < l(i0;D) = j2 where i0 is the index of samples differing in
D and D′. The second line follows the equality (j;D′) = (j − 1;D) from j1 + 1 to j2 in this case. The third line
follows the definition of the ordering of the indexes. The fourth line follows the cancellations of the terms from
the third line.

Therefore, in both cases of l(i0;D′) ≥ l(i0;D) and l(i0;D′) < l(i0;D), we have that

Φ(D′)− Φ(D) ≤ s

q

M

n
.

Similarly, Φ(D) − Φ(D′) ≤ s
q
M
n , and hence |Φ(D) − Φ(D′)| ≤ s

q
M
n . Thus, by McDiarmid’s inequality, for any

δ > 0, with probability at least 1− δ,

Φ(D) ≤ ED̄[Φ(D̄)] +
Ms

q

√

ln(1/δ)

2n
.

Moreover, since

n
∑

i=1

ri(θ;D)Li(θ;D) =

n
∑

j=1

γj

n
∑

i=1

✶{i = (j)}Li(θ;D) =

n
∑

j=1

γjL(j)(θ;D),

we have that

Lq(θ;D) =
1

q

n
∑

i=1

ri(θ;D)Li(θ;D) +R(θ).

Therefore,

ED̄[Φ(D̄)]

= ED̄

[

sup
θ∈Θ

E(x̄′,ȳ′)[ℓ(f(x̄
′; θ), ȳ′)]− L(θ; D̄) + L(θ; D̄)− Lq(θ; D̄)

]

≤ ED̄

[

sup
θ∈Θ

E(x̄′,ȳ′)[ℓ(f(x̄
′; θ), ȳ′)]− L(θ; D̄)

]

−Qn(Θ; s, q)

≤ ED̄,D̄′

[

sup
θ∈Θ

1

n

n
∑

i=1

(ℓ(f(x̄′
i; θ), ȳ

′
i)− ℓ(f(x̄i; θ), ȳi))

]

−Qn(Θ; s, q)

≤ Eξ,D̄,D̄′

[

sup
θ∈Θ

1

n

n
∑

i=1

ξi(ℓ(f(x̄
′
i; θ), ȳ

′
i)− ℓ(f(x̄i; θ), ȳi))

]

−Qn(Θ; s, q)

≤ 2Rn(Θ)−Qn(Θ; s, q).

where the third line and the last line follow the subadditivity of supremum, the forth line follows the Jensen’s
inequality and the convexity of the supremum, the fifth line follows that for each ξi ∈ {−1,+1}, the distribution

Kenji Kawaguchi*, Haihao Lu*

of each term ξi(ℓ(f(x̄
′
i; θ), ȳ

′
i) − ℓ(f(x̄i; θ), ȳi)) is the distribution of (ℓ(f(x̄′

i; θ), ȳ
′
i) − ℓ(f(x̄i; θ), ȳi)) since D̄ and

D̄′ are drawn iid with the same distribution. Therefore, for any δ > 0, with probability at least 1− δ,

Φ(D) ≤ 2Rn(Θ)−Qn(Θ; s, q) +
Ms

q

√

ln(1/δ)

2n
.

B Additional discussion

The subset Θ in Theorem 3 characterizes the hypothesis space that is {x 7→ f(x; θ) : θ ∈ Θ}. An impor-
tant subtlety here is that given a parameterized model f , one can apply Theorem 3 to a subset Θ that de-
pends on an algorithm and a distribution (but not directly on a dataset) such as Θ = {θ ∈ R

dy : (∃D ∈
A)[θ is the possible output of ordered SGD given (f,D)]} where A is a fixed set of the training datasets such
that D ∈ A with high probability. Thus, even for the exact same model f and problem setting, Theorem 3 might
provide non-vacuous bounds for some choices of Θ but not for other choices of Θ.

Moreover, we can easily obtain data-dependent bounds from Theorem 3 by repeatedly applying Theorem 3 to
several subsets Θ and taking an union bound. For example, given a sequence (Θk)k∈N+ , by applying Theorem 3
to each Θk with δ = δ′ 6

π2k2 (for each k) and by taking a union bound over all k ∈ N
+, the following statement

holds: for any δ′ > 0, with probability at least 1− δ′ over an iid draw of n examples D = ((xi, yi))
n
i=1, we have

that for all k ∈ N
+ and θ ∈ Θk,

E(x,y)[ℓ(f(x; θ), y)] ≤ Lq(θ;D) + 2Rn(Θk) +
Ms

q

√

ln(π2k2/6δ′)

2n
−Qn(Θk; s, q).

For example, let us choose Θk = {θ ∈ R
dy : ‖θ‖ ≤ ck} with some constants c1 < c2 < · · · . Then, when we

obtain a θ̂q after training based on a particular training dataset D such that ck̄−1 < ‖θ̂q‖ ≤ ck̄ for some k̄,

we can conclude the following: with probability at least 1 − δ′, E(x,y)[ℓ(f(x; θ), y)] ≤ Lq(θ̂q;D) + 2Rn(Θk̄) +

Ms
q

√

ln(πk2/6δ′)
2n − Qn(Θk̄; s, q). This is data-dependent in the sense that Θk̄ is selected in the data-dependent

manner from (Θk)k∈N+ . This is in contrast to the fact that as logically indicated in the theorem statement, one
cannot directly apply Theorem 3 to a single subset Θ that directly depends on training dataset; e.g., one cannot
apply Theorem 3 to a singleton set Θ̂(D) = {θ̂(D)} where θ̂(D) is the output of training given D.

C Additional experimental results and details

C.1 Additional results

Wall-clock time. Table 4 summarises the wall-clock time values (in seconds) of mini-batch SGD and ordered
SGD. The wall-clock time was computed with identical, independent, and freed GPUs for fair comparison. The
wall-clock time measures the time of the whole computations, including the extra computation of finding a set Q
of top-q samples in S in term of loss values. As it can be seen, the extra computation of finding a set Q of top-q
samples is generally negligible. Furthermore, for larger scale problems, ordered SGD tends to be faster per epoch
because of the computational saving of not using the full mini-batch for the backpropagation computation.

Effect of different learning rates and mini-batch sizes. Figures 5 and 6 show the results with different
learning rates and mini-batch sizes. Both use the same setting as that for CIFAR-10 with no data augmentation
in others results shown in Table 1 and Figure 3. Figures 5 and 6 consistently show improvement of ordered SGD
over mini-batch SGD for all learning rates and mini-batch sizes.

Behaviors with different datasets. Figure 7 shows the behaviors of mini-batch SGD vs ordered SGD. As it
can be seen, ordered SGD generally improved mini-batch SGD in terms of test errors. With data argumentation,
we also tried linear logistic regression for the Semeion dataset, and obtained the mean test errors of 19.11 for
mini-batch SGD and 16.54 for ordered SGD (the standard deviations were 1.48 and 1.24); i.e., ordered SGD

Ordered SGD: A New Stochastic Optimization Framework for Empirical Risk Minimization

Figure 5: Test error and training loss (in log scales) versus the number of epoch with CIFAR-10 and no data
augmentation by using different learning rates (LRs). The plotted values indicate the mean values over 10
random trials. The training loss values of LR=0.5 were ‘nan’ for both methods.

Figure 6: Test error versus the number of epoch with CIFAR-10 and no data augmentation by using different
mini-batch sizes s.

improved over mini-batch SGD, but the mean test errors without data-augmentation were better for both mini-
batch SGD and ordered SGD. This is because the data augmentation made it difficult to fit the augmented
training dataset with linear models.

Effect of different values of q. Figure 8 shows the behaviors of mini-batch SGD vs ordered SGD with
different q values. In the figure, label ‘ordered SGD’ corresponds to ordered SGD with the fixed adaptive rule,
and other labels (e.g., ‘ordered SGD: q = 10’) corresponds to ordered SGD with the fixed value of q over the whole
training procedure (e.g., with q = 10). All experiments in the figure were conducted with data augmentations.
PreActResNet18 was used for CIFAR-10, while LeNet was used for other datasets. As it can be seen in Figure
8, ordered SGD generally improved the test errors of mini-batch SGD, even with fixed q values. When the value
of q is fixed to be small as in q = 10, the small q value can be effective during the latter stage of training (e.g.,
Figure 8 b) while the training can be inefficient during the initial stage of training (e.g., Figure 8 c).

Results with ordered Adam. Table 5 compares the testing performance of ordered Adam and (standard)
Adam for different models and datasets. The table reports the mean and the standard deviation of test errors
(i.e., 100 × the average of 0-1 losses on test dataset) over 10 random experiments with different random seeds.
The procedures of ordered Adam follow those of Adam except the additional sample strategy (line 3 - 4 of
Algorithm 1). Table 5 shows that ordered Adam improved Adam for all settings, except CIFAR-10 with data
augmentation. For CIFAR-10 with data augmentation, ordered SGD preformed the best among mini-batch SGD,
Adam, ordered SGD, and ordered Adam, as it can be seen in Tables 1 and 5.

Kenji Kawaguchi*, Haihao Lu*

Table 4: Average wall-clock time (seconds) per epoch.

Data Aug Datasets Model mini-batch SGD ordered SGD difference

No Semeion Logistic model 0.15 (0.01) 0.15 (0.01) 0.00

No MNIST Logistic model 7.16 (0.27) 7.32 (0.24) -0.16

No Semeion SVM 0.17 (0.01) 0.17 (0.01) 0.00

No MNIST SVM 8.60 (0.31) 8.72 (0.29) -0.12

No Semeion LeNet 0.18 (0.01) 0.18 (0.01) 0.00

No MNIST LeNet 9.00 (0.34) 9.12 (0.27) -0.12

No KMNIST LeNet 9.23 (0.33) 9.04 (0.55) 0.19

No Fashion-MNIST LeNet 8.56 (0.48) 9.45 (0.31) -0.90

No CIFAR-10 PreActResNet18 45.55 (0.47) 43.72 (0.93) 1.82

No CIFAR-100 PreActResNet18 46.83 (0.90) 43.95 (1.03) 2.89

No SVHN PreActResNet18 71.95 (1.40) 66.94 (1.67) 5.01

Yes Semeion LeNet 0.28 (0.02) 0.28 (0.02) 0.00

Yes MNIST LeNet 14.44 (0.54) 14.77 (0.41) -0.32

Yes KMNIST LeNet 12.17 (0.33) 11.42 (0.29) 0.75

Yes Fashion-MNIST LeNet 12.23 (0.40) 12.38 (0.37) -0.14

Yes CIFAR-10 PreActResNet18 48.18 (0.58) 46.40 (0.97) 1.78

Yes CIFAR-100 PreActResNet18 47.37 (0.84) 44.74 (0.91) 2.63

Yes SVHN PreActResNet18 72.29 (1.23) 67.95 (1.54) 4.34

Ordered SGD: A New Stochastic Optimization Framework for Empirical Risk Minimization

(a) Semeion & Logistic (b) MNIST & Logistic (c) Semeion & SVM (d) MNIST & SVM

(e) Semeion & LeNet (f) MNIST & LeNet (g) KMNIST (h) Fashion-MNIST

(i) CIFAR-10 (j) CIFAR-100 (k) SVHN (l) Semeion & LeNet

(m) MNIST & LeNet (n) KMNIST (o) Fashion-MNIST (p) CIFAR-10

(q) CIFAR-100 (r) SVHN

Figure 7: Test error and training loss (in log scales) versus epoch for all experiments with mini-batch SGD
and ordered SGD. These are without data augmentation in subfigures (a)-(k), and with data augmentation in
subfigures (l)-(r). The plotted values are the mean values over ten random trials.

Kenji Kawaguchi*, Haihao Lu*

(a) CIFAR-10 (b) KMNIST

(c) Fashion-MNIST (d) Semeion

Figure 8: Effect of different values of q.

Ordered SGD: A New Stochastic Optimization Framework for Empirical Risk Minimization

Table 5: Test errors (%) of Adam and ordered Adam. The last column labeled “Improve” shows relative
improvements (%) from Adam to ordered Adam. In the other columns, the numbers indicate the mean test
errors (and standard deviations in parentheses) over ten random trials. The first column shows ‘No’ for no data
augmentation, and ‘Yes’ for data augmentation.

Data Aug Datasets Model Adam ordered Adam Improve

No Semeion Logistic model 12.12 (0.71) 10.37 (0.77) 14.46

No MNIST Logistic model 7.34 (0.03) 7.20 (0.03) 1.97

No Semeion SVM 11.45 (0.90) 10.91 (0.86) 4.71

No MNIST SVM 7.53 (0.03) 7.43 (0.02) 1.38

No Semeion LeNet 6.21 (0.64) 5.75 (0.42) 7.34

No MNIST LeNet 0.70 (0.04) 0.63 (0.04) 10.07

No KMNIST LeNet 3.14 (0.13) 3.13 (0.14) 0.60

No Fashion-MNIST LeNet 7.79 (0.17) 7.79 (0.21) 0.01

No CIFAR-10 PreActResNet18 13.21 (0.42) 12.98 (0.27) 1.68

No CIFAR-100 PreActResNet18 45.33 (0.89) 44.42 (0.72) 2.01

No SVHN PreActResNet18 4.72 (0.12) 4.64 (0.09) 1.52

Yes Semeion LeNet 5.80 (0.85) 5.70 (0.60) 1.74

Yes MNIST LeNet 0.45 (0.05) 0.44 (0.02) 3.10

Yes KMNIST LeNet 2.01 (0.08) 1.94 (0.16) 3.49

Yes Fashion-MNIST LeNet 6.61 (0.14) 6.56 (0.14) 0.82

Yes CIFAR-10 PreActResNet18 7.92 (0.28) 8.03 (0.13) -1.39

Yes CIFAR-100 PreActResNet18 32.24 (0.52) 32.03 (0.52) 0.65

Yes SVHN PreActResNet18 4.42 (0.12) 4.19 (0.11) 5.29

Kenji Kawaguchi*, Haihao Lu*

C.2 Additional details

For all experiments, mini-batch SGD and ordered SGD (as well as Adam and ordered Adam) were run with the
same machine and the same PyTorch codes except a single-line modification:

• loss = torch.mean(loss) for mini-batch SGD and Adam

• loss = torch.mean(torch.topk(loss, min(q, s), sorted=False, dim=0)[0]) for ordered SGD and
ordered Adam.

For 2-D illustrations in Figure 1. We used the (binary) cross entropy loss, s = 100, and 2 dimensional
synthetic datasets with n = 200 in Figures 1a–1b and n = 1000 in Figures 1c–1d. The artificial neural network
(ANN) used in Figures 1c and 1d is a fully-connected feedforward neural network with rectified linear units
(ReLUs) and three hidden layers, where each hidden layer contained 20 neurons in Figures 1c and 10 neurons in
Figures 1d.

For other numerical results. For mixup and random erasing, we used the same setting as in the corresponding
previous papers (Zhong et al., 2017; Verma et al., 2019). For others, we divided the learning rate by 10 at the
beginning of 10th epoch for all experiments (with and without data augmentation), and of 100th epoch for those

with data augmentation. With y ∈ {1, . . . , dy}, we used the cross entropy loss ℓ(a, y) = − log
exp(ay)∑
k′ exp(ak′)

for

neural networks as well as multinomial logistic models, and a multiclass hinge loss ℓ(a, y) =
∑

k 6=y max(0, 1 +
ak − ay) for SVMs (Weston et al., 1999). For the variant of LeNet, we used the following architecture with five
layers (three hidden layers):

1. Input layer

2. Convolutional layer with 64 5× 5 filters, followed by max pooling of size of 2 by 2 and ReLU.

3. Convolutional layer with 64 5× 5 filters, followed by max pooling of size of 2 by 2 and ReLU.

4. Fully connected layer with 1014 output units, followed by ReLU.

5. Fully connected layer with the number of output units being equal to the number of target classes.

	q_SGD_AISTATS2020

