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A LEMMAS FOR THE EXPONENTIAL FAMILIES

We only consider univariate distributions in this section. The domain of the distributions is assumed to be R, but
all results hold if we replace R by an open set Z C R whose Lebesgue measure is greater than 0.

A.1 Exponential family distributions

Definition 3 (Exponential family) A univariate exponential family is a set of distributions whose probability

density function can be written as
p(z) = Q(x)Z(0)e T ) (15)

where T : R — R¥ is called the sufficient statistic, @ € R¥ is the natural parameter, Q : R — R the base measure
and Z(0) the normalization constant. The dimension k € N\ {0} of the parameter is always considered to be
minimal, meaning that we can’t rewrite the density p to have the form (15) with a smaller k' < k. We call k the
size of p.

Lemma 1 Consider an exponential family distribution with k > 2 components. If there exists a € RF such that
Ti(z) = Zi:ll a;T;(z) + ag, then « = 0. In particular, the components of the sufficient statistic T are linearly
independent.

Proof: Suppose the components (7%,...,T;) are not linearly independent. Then Ja € RF \ {0} such that
Vr € R, Zle a;T;(x) = 0. Suppose oy # 0 (up to rearrangement of the indices), then we can write T}, as a
function of the remaining 7;,7 < k, contradicting the minimality of k. O

A.2 Strongly exponential distributions

Definition 4 (Strongly exponential distributions) We say that an exponential family distribution is
strongly exponential if for any subset X of R the following is true:

(36 € R |Vz € X, (T(2),0) = const) = ([(X) =0 or 6 =0) (16)
where | is the Lebesgue measure.

In other words, the density of a strongly exponential distribution has almost surely the exponential component in
its expression and can only be reduced to the base measure on a set of measure zero.

Example 1 The strongly exponential condition is very general, and is satisfied by all the usual exponential family
distributions like the Gaussian, Laplace, Pareto, Chi-squared, Gamma, Beta, etc.

We will now give useful Lemmas that will be used in the proofs of the technical Theorems.

Lemma 2 Consider a strongly exponential family distribution such that its sufficient statistic T is differentiable
almost surely. Then T} # 0 almost everywhere on R for all 1 <1i < k.

Proof: Suppose that p is strongly exponential, and let X = U;{z € R, T/(z) # 0}. Chose any 6 € R* \ {0}. Then
Vo e X,(T/(x),0) = 0. By integrating, we find that (T(z),0) = const. By hypothesis, this means that {(X) = 0.
O

Lemma 3 Consider a strongly exponential distribution of size k > 2 with sufficient statistic T(x) =
(Ty(x),...,Tk(x)). Further assume that T is differentiable almost everywhere. Then there exist k distinct
values x1 to xy, such that (T'(x1),...,T'(x1)) are linearly independent in R*.
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Proof: Suppose that for any choice of such k points, the family (T'(z1),..., T/(xx)) is never linearly independent.
That means that T'(R) is included in a subspace of R¥ of dimension at most k — 1. Let 6 a non zero vector that is
orthogonal to T/(R). Then for all € R, we have (T'(x),0) = 0. By integrating we find that (T(z),0) = const.
Since this is true for all x € R and for a 8 # 0, we conclude that the distribution is not strongly exponential,
which contradicts our hypothesis. O

Lemma 4 Consider a strongly exponential distribution of size k > 2 with sufficient statistic T. Further assume
that T is twice differentiable almost everywhere. Then

dim (Span ((T( ), T/ (x) ", 1<i< k)) > 2 (17)
almost everywhere on R.

Proof: Suppose there exists a set X' of measure greater than zero where (17) doesn’t hold. This means that
the vectors [T} (x), T!'(z)]T are collinear for any i and for all z € X. In particular, it means that there exists
a € RF\ {0} s.t. 3, ;T/(z) = 0. By integrating, we get (T(z),a) = const, Vo € X. Since [(X) > 0, this
contradicts equation (16). O

Lemma 5 Consider n strongly exponential distributions of size k > 2 with respective sufficient statistics T; =
(Tjn,...Tjk), 1 < j <n. Further assume that the suﬁicient statistics are twice differentiable. Define the vectors
el € R?" such that e = (O ,0,T: .., T"..0,..., ), where the non-zero entries are at indices (25,25 + 1).

[y N R KA 7
Let x := (z1,...,2,) € R" Then the matriz e(x) == (e (z1),...,eMF) (z),...e™V(x,),...,e™" (x,)) of
size (2n x nk) has rank 2n almost everywhere on R™.

Proof: Tt is easy to see that the matrix €(x) has at least rank n, because by varying the index j in e%"*) we change
the position of the non-zero entries. By changing the index i, we change the component within the same sufficient
statistic. Now fix j and consider the submatrix [e("V)(z;),...,el") (z;)]. By using Lemma 4, we deduce that
this submatrix has rank greater or equal to 2 because its columns span a subspace of dimensions greater or equal
to 2 almost everywhere on R. Thus, we conclude that the rank of €(x) is 2n almost everywhere on R". t

We will give now an example of an exponential family distribution that is not strongly exponential.
Example 2 Consider an exponential family distribution with density function
p(z) = 6_122(0) exp (61 min(0, z) — 3 max(0, x)) (18)

This density sums to 1 and Z(0) is well defined. Yet, T(x) = (min(0, z), — max(0,x)) is differentiable almost
everywhere, but T{(R;y) =0 and To(R_) = 0. It follows that p is not strongly exponential.

B PROOFS

B.1 Proof of Definition 2
Proposition 2 The binary relations ~4 and ~p are equivalence relations on ©.

The following proof applies to both ~ 4 and ~p which we will simply denote by ~.

It is clear that ~ is reflexive and symmetric. Let ((f, T, ), (f, T, ), (f, T,X)) € ©, s.t. (f,T,\) ~ (f, T, ) and
(f,T,A) ~ (f,T,A). Then JA;, A5 and ¢y, 3 s.t.
T(f ' (x) = AT(E (%) +
T(E () = A2T< H30)) +
= A AT(f 1(x)) + Ascy + ¢y
= A3 T(F (%) +

¢y, and

C2
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B.2 Proof of Theorem 1
B.2.1 Main steps of the proof

The proof of this Theorem is done in three steps.

In the first step, we use a simple convolutional trick made possible by assumption (i), to transform the equality of
observed data distributions into equality of noiseless distributions. In other words, it simplifies the noisy case into
a noiseless case. This step results in equation (29).

The second step consists of removing all terms that are either a function of observations x or auxiliary variables
u. This is done by introducing the points provided by assumption (iv), and using ug as a "pivot". This is simply
done in equations (29)-(32).

The last step of the proof is slightly technical. The the goal is to show that the linear transformation is invertible
thus resulting in an equivalence relation. This is where we use assumption (iii).

B.2.2 Proof

Step I We introduce here the volume of a matrix denoted vol A as the product of the singular values of A.
When A is full column rank, vol A = v/det AT A, and when A is invertible, vol A = |det A|. The matrix volume
can be used in the change of variable formula as a replacement for the absolute determinant of the Jacobian
(Ben-Israel, 1999). This is most useful when the Jacobian is a rectangular matrix (n < d). Suppose we have two
sets of parameters (£, T, A) and (f, T, ) such that pera(xu) = pt:7i5\(x|u) for all pairs (x,u). Then:

[ pratetapixia)ds = [ v 5 (e i)z (20)
Z Z
= [ prtalup.x— @)z = [ e (el (x )iz (21)
= / prA(fH(X)[u) vol Jg—1 (X)pe (x — X)dx = / pisa(f L(x)[u) vol J;_, (X)pe (x — x)dx (22)
X X
- [ w0t = 0% = [ g 00 (x - )i (23)
= (DT f,u * D) (X) = (P 5 f 0 * Pe)(X) (24)
= Elpratu](w)ee (W) = Flbg 5 §.ul (@) e (w) (25)
= Flprafulw) = Flpg 5 £ o) (@) (26)
= PTALu(X) = Di 5 fu(X) (27)
where:

e in equation (22), J denotes the Jacobian, and we made the change of variable X = f(z) on the left hand side,
and x = f(z) on the right hand side.

e in equation (23), we introduced
Prata(x) = pralf™ (x)[u) vol Je-1 (x) L (x) (28)
on the left hand side, and similarly on the right hand side.
e in equation (24), we used * for the convolution operator.

e in equation (25), we used F'[.] to designate the Fourier transform, and where p. = F[p.] (by definition of the
characteristic function).

e in equation (26), we dropped ¢.(w) from both sides as it is non-zero almost everywhere (by assumption (i)).
Equation (27) is valid for all (x,u) € X x Y. What is basically says is that for the distributions to be the same

after adding the noise, the noise-free distributions have to be the same. Note that x here is a general variable and
we are actually dealing with the noise-free probability densities.
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Step II By taking the logarithm on both sides of equation (27) and replacing pr x by its expression from (7),
we get:

k

log vol Je-1 (x) + 3 (1og Qu(fi" (x)) — log Zi(w) + 3 Ti (£ (x)) i (w)) =

j=1
n L B k B ~ B
log vol Jg_1 (x) + ) (log Qi(f (%)) = log Zy(w) + Y Ty (fi (%)) Aii(w))  (29)
i=1
Let ug, ..., u,x be the points provided by assumption (iv) of the Theorem, and define A(u) = A(u) — A(ug). We

plug each of those w; in (29) to obtain nk + 1 such equations. We subtract the first equation for ug from the
remaining nk equations to get for [ =1,..., nk:

Nz

)>:<T(? (x)), A(w) ) —I—Zlo (30)

Nz

(T(E71(x)), Alw) ) + Z log ?1((:11?

Let L bet the matrix defined in assumption (iv), and L similarly defined for A (L is not necessarily invertible).

Define b; = >, log Z: 2 ES;; E"lg and b the vector of all b; for I = 1,...,nk. Expressing (30) for all points u; in

matrix form, we get:

LTT(E ' (x) = LTT(f'(x)) +b (31)

We multiply both sides of (31) by the transpose of the inverse of LT from the left to find:

T(f(x)) = ATE ' (x)) + ¢ (32)

where A= L TL and c = L~ Tb.

Step IIT Now by definition of T and according to assumption (ili), its Jacobian exists and is an nk x n matrix
of rank n. This implies that the Jacobian of T o f~! exists and is of rank n and so is A. We distinguish two cases:

e If k = 1, then this means that A is invertible (because A is n X n).

o If k> 1, define x = f~1(x) and Ty(z;) = (TM(@) LT k(fl)) According to Lemma 3, for each ¢ € [1,...,n]
there exist k points Z},...,Z¥ such that (T%(z}),..., Ti(zF)) are hnearly independent. Collect those points
into k vectors (x!,...,x*), and concatenate the k: Jacobians Jr(x!) evaluated at each of those vectors
horizontally into the matrix Q@ = (Jr(x!), ..., Jo(X¥)) (and similarly define Q as the concatenation of the
Jacobians of T(f~!of(X)) evaluated at those points). Then the matrix Q is invertible (through a combination
of Lemma 3 and the fact that each component of T is univariate). By differentiating (32) for each x!, we get

(in matrix form): )
Q= AQ (33)
The invertibility of @ implies the invertibility of A and C~2
Hence, (32) and the invertibility of A mean that (f,T,X) ~ (f, T, ).

Moreover, we have the following observations:

e the invertibility of A and L imply that L is invertible,

e because the Jacobian of T o f~! is full rank and f is injective (hence its Jacobian is full rank too), J4 has to
be full rank too, and T} ;(z) # 0 almost everywhere.

e the real equivalence class of identifiability may actually be narrower that what is defined by ~, as the matrix
A and the vector ¢ here have very specific forms, and are functions of A and A. O
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B.2.3 Understanding assumption (iv) in Theorem 1

Let u’ be an arbitrary point in its support U, and h(u) = (Ar1(u) = Ar1(u®),..., Ay k(w) — Apk(u®)) € R™ .
Saying that there exists nk distinct points u! to u™* (all different from u®) such that L is invertible is equivalent
to saying that the vectors h := (h(u!),..., h(u™*)) are linearly independent in R™*. Let’s suppose for a second
that for any such choice of points, these vectors are not linearly independent. This means that h(lf) is necessarily
included in a subspace of R™* of dimension at most nk — 1. Such a subspace has measure zero in R™*. Thus,
if h(U) isn’t included in a subset of measure zero in R™, this can’t be true, and there exists a set of points u'
to u™ (all different from u”) such that L is invertible. This implies that as long as the \; ;(u) are generated
randomly and independently, then almost surely, h(U) won’t be included in any such subset with measure zero,
and the assumption holds.

We next gvive a simple example where this assumption always holds. Suppose n = 2 and k£ = 1, and that
the auxiliary variable is a positive scalar. Consider sources z; ~ N (0, A\;(u)) that are distributed according to
Gaussian distributions with zero mean and variances modulated as follows:

Ar(u) =u (34)
Ao (u) = u? (35)
Because the functions u + u and u +— u? are linearly independent (as functions), then for any choice of "pivot"

point ug, for instance ug = 1, and any choice of distinct non-zero scalars u; and uo, the columns of the matrix
L:= (A(u1) — 1, A(uz) — 1) are linearly independent, and the matrix is invertible.

B.3 Proof of Theorem 2
B.3.1 Main steps of the proof

The proof of this Theorem is done in two main steps.

The first step is to show that flofisa pointwise function. This is done by showing that the product of any
two distinct partial derivatives of any component is always zero. Along with invertibility, this means that each
component depends exactly on one variable. This is where we use the two additional assumptions required by the
Theorem.

In the second step, we plug the result of the first step in the equation that resulted from Theorem 1 (see equation
(41)). The fact that T, T and f=! o f are all pointwise functions implies that A is necessarily a permutation
matrix.

B.3.2 Proof
Step I In this Theorem we suppose that & > 2. The assumptions of Theorem 1 hold, and so we have
T(f(x)) = AT(f ' (x)) + ¢ (36)

for an invertible A € R™*"k  We will index A by four indices (7,1, a,b), where 1 <1i <n,1 < < k refer to the
rows and 1 <a <n,1 <b <k to the columns. Let v(z) = f1o f(z) : Z — Z. Note that v is bijective because
f and f are injective. Our goal is to show that v;(z) is a function of only one z;,, for all 7. We will denote by
vi = g;}z (z), and vt := szg;t (z). For each 1 <i<mnand1<I<k, we get by differentiating (36) with respect
to z4:

dis 11 Zz ZAzlab ab Ua( )) (Z) (37)
and by differentiating (37) with respect to z;,t > s:

o_zA”ab( Lo(La@)03 " (2) + Ty (va ()i (2)0h(2)) (38)

This equation is valid for all pairs (s,t),t > s. Define B,(z) (v 2(z),...,0"
n(n 1)
Cu(z) = (vi(z)v2(z),..., 007 (z)vl(z)) € R™ =z , M(z) = (Bl( ),Cl(z) ,Bn(z),Cn(z)), e(a’b) =
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(07...,O,Té,b,TC’Lib,O,...,O) € R?" such that the non-zero entries are at indices (2a,2a + 1) and &(z) :=

(e (z1),...,eMF) (z), ... e™(z,),...,e™F)(z,)) € R*" Finally, denote by A;; the (i,1)-th row of
A. Then by grouping equation (38) for all valid pairs (s,t) and pairs (¢,!) and writing it in matrix form, we get:

M(z)é(z)A =0 (39)

Now by Lemma 5, we know that €(z) has rank 2n almost surely on Z. Since A is invertible, it is full rank, and
thus rank(e (z)A) = 2n almost surely on Z. It suffices then to multiply by its pseudo-inverse from the right to get

M(z)=0 (40)

In particular, Cq(z) = 0 for all 1 < a < n. This means that the Jacobian of v at each z has at most one non-zero
entry in each row. By invertibility and continuity of Jy, we deduce that the location of the non-zero entries are
fixed and do not change as a function of z. This proves that f=! o f is point-wise nonlinearity.

Step IT Let T(z) = T(v(z)) + A~'c. Tisa composition of a permutation and pointwise nonlinearity. Without
any loss of generality, we assume that the permutation in T is the identity. Plugging this back into equation (36)
yields:

T(z) = AT(z) (41)
Let D = A~'. The last equation is valid for every component:

Tii(z) = ZDi,l,a,bTaﬁb(Za) (42)
a,b

By differentiating both sides with respect to zs where s # i we get
0= DisssTly(2s) (43)
b

By Lemma 1, we get D; ;s =0 for all 1 <b < k. Since (43) is valid for all [ and all s # i, we deduce that the
matrix D has a block diagonal form:

D,
D= . (44)
D,

We conclude that A has the same block diagonal form. Each block i transforms T;(z) into T;(z), which achieves
the proof. O

B.4 Proof of Theorem 3
B.4.1 Main steps of the proof

This proof uses concepts borrowed from differential geometry. A good reference is the monograph by Lee (2003).

By defining v =f"'o f, equation (32) implies that each function T; o v; can be written as a separable sum, i.e. a
sum of n maps where each map h; , is function of only one component z,.

Intuitively, since T; is not monotonic, it admits a local extremum (supposed to be a minimum). By working
locally around this minimum, we can suppose that it is global and attained at a unique point y;. The smoothness
condition on v imply that the manifold where T; o v; is minimized has dimension n — 1. This is where we need
assumption (3.ii) of the Theorem.

On the other hand, because of the separability in the sum, each non constant h; j (minimized as a consequence of
minimizing T; o v;) introduces a constraint on this manifold that reduces its dimension by 1. That’s why we can
only have one non constant h; ;. for each .



Ilyes Khemakhem, Diederik P. Kingma, Ricardo Pio Monti, Aapo Hyvirinen

B.4.2 Proof

In this Theorem we suppose that k = 1. For simplicity, we drop the exponential family component index:

T; :=T;. By introducing v =f"'o f and h; a(za) = AWT (24) + - into equation (32), we can rewrite it as:

n

Z hia(za) (45)
a=1

for all 1 <i<n.

By assumption, h; , is not monotonic, and so is 7;. So for each a, there exists ¢; , where h; , reaches an extremum,
which we suppose is a minimum without loss of generality. This implies that T; o v; reaches a minimum at
Vi = (¥i1,-.-,Tin), which in turn implies that y; := v;(¥;) is a point where T; reaches a local minimum. Let U
be an open set centered around y;, and let V= v, [U] the preimage of U by v;. Because v; is continuous, Vis
open in R™ and non-empty because y; € V. We can then restrict ourselves to a cube V C V that contains y;
which can be written as V =V x --- x V,, where each V, is an open interval in R.

We can chose U such that T; has only one minimum that is reached at y;. This is possible because T} # 0 almost
everywhere by hypothesis. Similarly, we chose the cube V' such that each h; , either has only one minimum that
is reached at §; 4, or is constant (possible by setting A; , = 0). Define

i =minT; ov; R 46
m; =minTj o (z) € (46)
Hia = zinei\r}a hia(za) € R (47)

for which we have m; =), fia-

Define the sets C; = {z € V|T; o v;(z) = m;} , CZ o =1{2 € Vl|hio(za) = 43, o} and Ci=n C, o- We trivially have
C; C C;. Next, we prove that C; € C;. Let z € C;, and suppose z ¢ C;. Then there exist an index k, e € R
and z = (zl, sz te, ., zn) such that m; = >, hia(za) > D, hia(Za) = Y, Mi,a = m; which is not possible.
Thus z € C;. Hence C C’i.

Since m; is only reached at y;, we have C; = {z € V|v;(z) = y;}. By hypothesis, v; is of class C*, and its Jacobian
is non-zero everywhere on V' (by invertibility of v). Then, by Corollary 5.14 in Lee (2003), we conclude that C; is
a smooth (C!) submanifold of co-dimension 1 in R”, and so is C; by equality.

On the other hand, if h; , is not constant, then it reaches its minimum p; , at only one point ¢; , in V. In this
case, CZ a = Vo] X {Fi,a} X Viiga - Suppose that there exist two different indices a # b, such that h; , and
h;p are not constant. Then C; a C’Z p is a submanifold of co-dimension 2. This would contradict the fact that
the co-dimension of C’Z is 1.

Thus, exactly one of the h; , is not constant for each ¢. This implies that the i-th row of matrix A has exactly
one non-zero entry. The non-zero entry should occupy a different position in each row to guarantee invertibility,
which proves that A is a scaled permutation matrix. Plugging this back into equation (32) implies that f o f is a
point-wise nonlinearity. O

B.5 Proof of Proposition 1

For simplicity, denote Q(z) := [[; Qi(z;) and Z(u) :=[]; Zi(u). Let A be an orthogonal matrix and z = Az It is
easy to check that z ~ pg(z|u) where this new exponential family is defined by the quantities @ = @, T =T
2

X = AX and Z = Z. In particular, the base measure @ does not change when Qi(z) =1 or Qi(z) = e %
because such a @ is a rotationally invariant function of z. Further, we have

)

(z,A(w)) = (AT2,A(v)) = (2, AN (u)) = (2,A(u)) (48)
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Finally let f = f o AT, and 6 := (f“,’i‘,&) We get:

polxiw) = | po(xlzpo(zfu)dz (19)
= [ 1l = £ Z 2 explla, Aw))z (50)
-/ pe<x—f<2>>§((3 exp( (5, A(u) ))dz (51)
~ pg(xlu) (52)

where in equation (51) we made the change of variable Z = Az, and removed the Jacobian because it is equal to
1. We then see that it is not possible to distinguish between 0 and @ based on the observed data distribution. [

B.6 Proof of Theorem 4

The loss (8) can be written as follows:

L(0,¢) = log pe(x|u) — KL (g4 (2[x, u)[|pe (z[x, u)) (53)

If the family g4(z|x, u) is large enough to include pg(z|x,u), then by optimizing the loss over its parameter ¢,
we will minimize the KL term, eventually reaching zero, and the loss will be equal to the log-likelihood. The
VAE in this case inherits all the properties of maximum likelihood estimation. In this particular case, since our
identifiability is guaranteed up to equivalence classes, the consistency of MLE means that we converge to the
equivalence class’ (Theorem 1) of true parameter 8* i.e. in the limit of infinite data. O

C DISCRETE OBSERVATIONS

As explained in Maddison et al. (2016); Jang et al. (2016), categorical distributions can be viewed as a infinitesimal-
temperature limit of continuous distributions. We can use this fact to extend our theory to discrete latent variables.

For example, let:

m = f(z) (54)
x = sigmoid((m + €)/T") (55)
Ve; € € : ¢; ~ Logistic(0, 1) (56)

where sigmoid() is the element-wise sigmoid nonlinearity, and T € (0, 00) is a temperature variable.
If we let T approach 0 from above, then:

x ~ Bernoulli(p) with p = sigmoid(m) (57)
For proof that this holds, we refer to Maddison et al. (2016), appendix B.

The sigmoid(-/T) function is invertible, and the Logistic distribution has a probability density function that
allows for deconvolution since its Fourier transform is non zero almost everywhere. As a result, for a given value
of T, the distribution p(x) has a one-to-one mapping to a distribution p(m). This means that we can apply a
small change to equations (20)-(27) and arrive at the same identifiability result. This example with a Bernoulli
distribution can be extended to a categorical distribution with any number of components (Maddison et al., 2016;
Jang et al., 2016).

D UNIDENTIFIABILITY OF GENERATIVE MODELS WITH
UNCONDITIONAL PRIOR

In this section, we present two well-known proofs of unidentifiability of generative models. The first proof is
simpler and considers factorial priors, which are widely-used in deep generative models and the VAE literature.

“this is easy to show: because true identifiability is one of the assumptions for MLE consistency, replacing it by
identifiability up to equivalence class doesn’t change the proof but only the conclusion.
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The second proof is extremely general, and shows how any random vector can be transformed into independent
components, in particular components which are standardized Gaussian. Thus, we see how in the general nonlinear
case, there is little hope of finding the original latent variables based on the (unconditional, marginal) statistics of
x alone.

D.1 Factorial priors

Let us start with factorial, Gaussian priors. In other words, let z ~ pg(z) = N(0,I). Now, a well-known result
says that any orthogonal transformation of z has exactly the same distribution. Thus, we could transform the
latent variable by any orthogonal transformation z' = Mz, and cancel that transformation in p(x|z) (e.g. in the
first layer of the neural network), and we would get exactly the same observed data (and thus obviously the same
distribution of observed data) with z’.

Formally we have

() = pa(MTE) det M| = o exp(—5 M) (59)

= gy el 5 €1°) = pe(6) -

where we have used the fact that the determinant of an orthogonal matrix is equal to unity.

This result applies easily to any factorial prior. For z; of any distribution, we can transform it to a uniform
distribution by F;(z;) where F; is the cumulative distribution function of z;. Next, we can transform it into
standardized Gaussian by ®~1(F;(z;)) where ® is the standardized Gaussian cdf. After this transformation, we
can again take any orthogonal transformation without changing the distribution. And we can even transform
back to the same marginal distributions by F; (®(.)). Thus, the original latents are not identifiable.

D.2 General priors

The second proof comes from the theory of nonlinear ICA (Hyvérinen and Pajunen, 1999), from which the
following Theorem is adapted.

Theorem 5 (Hyvérinen and Pajunen (1999)) Let z be a d-dimensional random vector of any distribution.
Then there exists a transformation g : R? — R? such that the components of 2’ := g(z) are independent, and each
component has a standardized Gaussian distribution. In particular, z| equals a monotonic transformation of z;.

The proof is based on an iterative procedure reminiscent of Gram-Schmidt, where a new variable can always be
transformed to be independent of any previously considered variables, which is why z; is essentially unchanged.

This Theorem means that there are infinitely many ways of defining independent components z that nonlinearly
generated an observation x. This is because we can first transform z any way we like and then apply the
Theorem. The arbitrariness of the components is seen in the fact that we will always find that one arbitrary
chosen variable in the transformation is one of the independent components. This is in some sense an alternative
kind of indeterminacy to the one in the previous subsection.

In particular, we can even apply this Theorem on the observed data, taking x instead of z. Then, in the case of
factorial priors, just permuting the data variables, we would arrive at the conclusion that any of the x; can be
taken to be one of the independent components, which is absurd.

Now, to apply this theory in the case of a general prior on z, it is enough to point out that we can transform any
variable into independent Gaussian variables, apply any orthogonal transformation, then invert the transformation
in the Theorem, and we get a nonlinear transformation z’ = g~!(Mg(z)) which has exactly the same distribution
as z but is a complex nonlinear transformation. Thus, no matter what the prior may be, by looking at the
data alone, it is not possible to recover the true latents based an unconditional prior distribution, in the general
nonlinear case.
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E ALTERNATIVE FORMULATION OF THEOREM 1

Theorem 6 Assume that we observe data sampled from a generative model defined according to (5)-(7), with
parameters (£, T, X). Assume the following holds:

(i) The set {x € X|p.(x) = 0} has measure zero, where . is the characteristic function of the density p. defined
in (6).

(i) The mizing function f in (6) is injective.

(i11) The sufficient statistics T; ; in (7) are differentiable almost everywhere, and Ti'd- # 0 almost everywhere for
alll1<i<nandl <j<k.

(iv) X is differentiable, and there exists ug € U such that Jx(ug) is invertible.

then the parameters (£, T,\) are ~-identifiable. Moreover, if there exists (£,T,\) such that p;j_;(x|u) =
pera(x|u), then T and X verify assumptions (iii) and (iv).

Proof: The start of the proof is similar to the proof of Theorem 1. When we get to equation (29):
k

log vol Je-1 (x) + 3 (log Qu(f;" (x)) = log Zu(w) + 3 T (£ (x)) iy (w)) =

j=1

))Aij(w)  (60)

HM;V

log vol J3_. (x) + Z(log Qi(f; 1 (x)) —log Zi(
i=1

we take the derivative of both sides with respect to u (assuming that X is also differentiable). All terms depending
on x only disappear, and we are left with:

IA@)TTE (%)) = ) Vieg Zi(u) = J5(w) " T(E ' (x)) = ) _ Vlog Zi(u) (61)
By evaluating both sides at ug provided by assumption (iv), and multiplying both sides by Jx(ug)~7 (invertible
by hypothesis), we find: o
T(f '(x) = AT(f ' (x)) + ¢ (62)
where A = Jx(ug) T J5(uo)” and c =", Vlog = Zi Euoi The rest of the proof follows proof of Theorem 1, where
in the last part we deduce that J5(up) is 1nvert1ble. O
F LINK BETWEEN MAXIMUM LIKELIHOOD AND TOTAL
CORRELATION
Consider the noiseless case:
x = f(z) (63)

u) = Hpi(zz-\u) (64)

where the components of the latent variable are independent given the auxiliary variable u. We can relate the
log-likelihood of the data to the total correlation of the latent variables. To see this connection, let’s use the
change of variable formula in the expression of the log-likelihood:

IEp()(,u) [10gp(x|u)] = IE:p(z,u) Z Ingi(Zilu) — log |Jf(z>‘ (65)

%

= —Ep(s.u) [log | J¢ (2 ZH ziu) (66)
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where H(z;|u) is the conditional differential entropy of z; given u. The same change of variable formula applied
to H(x|u) yields:

H(x|u) = H(z[u) + Ep(z,u) [log | J¢(z)]] (67)

which we then use in the expression of the conditional total correlation:

TC(z|u) := Z H(z|u) — H(z|u)

(68)
= H(zilw) — H(x|u) + Ey ) [log | Jr(z)
Putting equations (66) and (68) together, we get:
Epxuw[log p(x[u)] = = TC(z[u) — H(x|u) (69)

The last term in this equation is a function of the data only and is thus a constant. An algorithm which learns to
maximize the data likelihood is decreasing the total correlation of the latent variable. The total correlation is
measure of independence as it is equal to zero if and only if the components of the latent variable are independent.
Thus, by using a VAE to maximize a lower bound on the data likelihood, we are trying to learn an estimate of
the inverse of the mixing function that gives the most independent components.

G REMARKS ON PREVIOUS WORK

G.1 Previous work in nonlinear ICA

ICA by Time Contrastive Learning Time Contrastive Learning (TCL) introduced in Hyvérinen and
Morioka (2016) is a method for nonlinear ICA based on the assumption that while the sources are independent,
they are also non-stationary time series. This implies that they can be divided into known non-overlapping
segments, such that their distributions vary across segments. The non-stationarity is supposed to be slow compared
to the sampling rate, so that we can consider the distributions within each segment to be unchanged over time;
resulting in a piecewise stationary distribution across segments. Formally, given a segment index 7 € T, where T
is a finite set of indices, the distribution of the sources within that segment is modelled as an exponential family,
which is in their notation:

d
log pr(s) := log p(s|segment = 7) = Z Aj(T)q(sj) —log Z(T) (70)

j=1

where g; o is a stationary baseline and ¢ is the sufficient statistic for the exponential family of the sources (note
that exponential families with different sufficient statistics for each source, or more than one sufficient statistic
per source are allowed, but we focus on this simpler case here). Note that parameters A; depend on the segment
index, indicating that the distribution of sources changes across segments. It follows from equation (11) that the
observations are piece-wise stationary.

TCL recovers the inverse transformation £~! by self-supervised learning, where the goal is to classify original data
points against segment indices in a multinomial classification task. To this end, TCL employed a deep network
consisting of a feature extractor h(x(?;n) with parameters 7 in the form of a neural network, followed by a final
classifying layer (e.g. softmax). The theory of TCL, as stated in Theorem 1 of Hyvérinen and Morioka (2016), is
premised on the fact that in order to optimally classify observations into their corresponding segments the feature
extractor, h(x(i); 7)), must learn about the changes in the underlying distribution of latent sources. The theory
shows that the method can learn the independent components up to transformations by sufficient statistics and a
linear transformation, as in ~ 4 identifiability. It is further proposed that a linear ICA can recover the final A
if the number of segments grows infinite and the segment distributions are random in a certain sense, but this
latter assumption is unrealistic in applications where the number of segments is small. We also emphasize that
our estimation method based on VAE is very different from such a self-supervised scheme.
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ICA using auxiliary variables A more recent development in nonlinear ICA is given by Hyvérinen et al.
(2019) where it is assumed that we observe data following a noiseless conditional nonlinear ICA case:

x = f(z) (71)
p(zu) = Hpi(zi\u) (72)

This formulation is so general that it subsumes previous models by Hyvérinen and Morioka (2016, 2017) in the
sense of the data model. However, their estimation method is very different from TCL: They rely on a self-
supervised binary discrimination task based on randomization to learn the unmixing function. More specifically,
from a dataset of observations and auxiliary variables pairs D = {x(i), u(i)}7 they construct a randomized dataset
D* = {x, u*} where u* is randomly drawn from the observed distribution of u. To distinguish between both
datasets, a deep logistic regression is used. The last hidden layer of the neural network is a feature extractor
denoted h(x); like in TCL, the purpose of the feature extractor is therefore to extract the relevant features which
will allow to distinguish between the two datasets. The identifiability results by Hyvérinen et al. (2019) have a lot
of similarity to ours, and several of our proofs are inspired by them. However, we strengthen those results, while
concentrating on the case of exponential family models. In particular, we show how any non-monotonic sufficient
statistics for k = 1 leads to identifiability in Theorem 3, and also Theorem 2 generalizes the corresponding result
(Theorem 2, case 2) in Hyvérinen et al. (2019). Again, their estimation method is completely different from ours.

G.2 Previous work on identifiability in VAEs

Our framework might look similar to semi-supervised learning methods in the VAE context, due to the inclusion
of the auxiliary variable u. However, the auxiliary variable u can play a more general role. For instance, in
time-series, it can simply be the the time index or history; in audiovisual data, it can be either one of the
modalities, where the other is used as an observation. More importantly, and to our knowledge, there is no proof
of identifiability in the semi-supervised literature.

The question of identifiability, or lack of, in deep latent variable models especially VAEs has been tackled in work
related to disentanglement. In Mathieu et al. (2018); Rolinek et al. (2018); Locatello et al. (2018) the authors
show how isotropic priors lead to rotation invariance in the ELBO. We proved here (section 2.3 and supplementary
material D) a much more general result: unconditional priors lead to unidentifiable models. These papers however
focused on showcasing this problem, or how it can avoided in practice, and didn’t provide alternative models
that can be shown to be identifiable. This is what we try to achieve in this work, to provide a complementary
analysis to previous research. Our proof of identifiability applies to the generative model itself, regardless of
the estimation method. This is why we didn’t focus in our analysis on the role of the encoder, which has been
claimed to have a central role in some of the work cited above.

H SIMULATION DETAILS

H.1 Implementation detail for VAE experiments

We give here more detail on the data generation process for our simulations. The dataset is described in section 5.1.
The conditioning variable u is the segment label, and its distribution is uniform on the integer set [1, M]. Within
each segment, the conditional prior distribution is chosen from the family (7), where k = 1, T; 1 (2;) = 2? and
Qi(z;) = 1, and the true \; were randomly and independently generated across the segments and the components
so that the variances have a uniform distribution on [.5,3]. We sample latent variable z from these distribution,
and then mix them using a 4-layer multi-layer perceptron (MLP). An example of what the sources look like is
plotted in Figure 5a. We finally add small noise (02 = 0.01) to the observations. When comparing to previous
ICA methods, we omit this step, as these methods are for the noiseless case.

For the decoder (6), we chose p. = N (0, o2l ) a zero mean Gaussian, where the scalar o2 controls the noise level. We
fix the noise level 0 = 0.01. As for the inference model, we let go(2z[x, u) = N (z|g(x, u; ¢g), diag o2(x, u; ¢ ) )
be a multivariate Gaussian with a diagonal covariance. The functional parameters of the decoder (f) and the
inference model (g, 02) as well as the conditional prior (A) are chosen to be MLPs, where the dimension of the
hidden layers is varied between 10 and 200, the activation function is a leaky ReLLU, and the number of layers is
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(a) (b)

Figure 5: Visualization of various sources following the generative distribution detailed in equation (7). (a) single
source with segment modulated variance; (b) two sources where the mean of the second source, z3, is significantly
modulated as a function of the segment, thus potentially serving to greatly facilitate the surrogate classification
task performed in TCL.

chosen from {3,4,5,6}. Mini-batches are of size 64, and the learning rate of the Adam optimizer is chosen from
{0.01,0.001}. We also use a scheduler to decay the learning rate as a function of epochs.

To implement the VAE, we followed Kingma and Welling (2013). We made sure the range of the hyperparameters
(mainly number of layers and dimension of hidden layers) of the VAE is large enough for it to be comparable
in complexity to our method (which has the extra A network to learn). To implement a 8-VAE, we followed
the instructions of Higgins et al. (2016) for the choice of hyperparameter 8, which was chosen in the set [1,45].
Similarly, we followed Chen et al. (2018) for the choice of the hyperparameters «, § and v when implementing a
B-TC-VAE: we chose o = v =1 and 8 was chosen in the set [1,35].

H.2 Description of significant mean modulated data

Here, we generated non-stationary 2D data from a modified dataset as follows: z*|u ~ N (u(u), diag(o?(u)) where
u is the segment index, u1(uw) = 0 for all w and po(u) = ay(u) where o € R and + is a permutation. Essentially,
the mean of the second source, 23, is significantly modulated by the segment index. An example is plotted in
Figure 5b. The variance o?(u) is generated randomly and independently across the segments. We then mix the
sources into observations x such that ©; = MLP(z1, z3) and x5 = 23, thus preserving the significant modulation
of the mean in x5. We note that this is just one of many potential mappings from z to x which could have been
employed to yield significant mean modulation in x5 across segments. TCL learns to unmix observations, x, by
solving a surrogate classification task. Formally, TCL seeks to train a deep network to accurately classify each
observation into its corresponding segment. As such, the aforementioned dataset is designed to highlight the
following limitation of TCL: due to its reliance on optimizing a self-supervised objective, it can fail to recover
latent variables when the associated task is too easy. In fact, by choosing a large enough value of the separation
parameter « (in our experiments o = 2), it is possible to classify samples by looking at the mean of xs.

I FURTHER EXPERIMENTS

I.1 Additional general nonlinear ICA experiments

As discussed in section 3.4, our estimation method has many benefits over previously proposed self-supervised
nonlinear ICA methods: it allows for dimensionality reduction, latent dimension selection based on the ELBO as
a cross validation metric, and solving discrete ICA. We performed a series of simulations to test these claims.

Discrete observations To further test the capabilities of our method, we tested it on discrete data, and
compared its identifiability performance to a vanilla VAE. The dimensions of the data and latents are d = 100 and
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n = 10. The results are shown in Figure 6a and proves that our method is capable of performing discrete ICA.

Dimensionality selection and reduction The examples in section 5.1 already showcased dimensionality
reduction. In Figure 2b for example, we have a mismatch between the dimensions of the latents and observations.
In real world ICA applications, we usually don’t know the dimension of the latents beforehand. One way to guess
it is to use the ELBO as a proxy to select the dimension. Our method enables this when compared to previous
nonlinear ICA methods like TCL (Hyvérinen and Morioka, 2016). This is showcased in Figure 6b, where the real
dimensions of the simulated data are d* = 80 and n* = 15, and we run multiple experiments where we vary the
latent dimensions between 2 and 40. We can see that the ELBO can be a good proxy for dimension selection,
since it has a "knee" around the right value of dimension.

Hyperparameter selection One important benefit of the proposed method is that it seeks to optimize an
objective function derived from the marginal log-likelihood of observations. As such, it follows that we may
employ the ELBO to perform hyperparameter selection. To verify this claim, we run experiments for various
distinct choices of hyperparameters (for example the dimension of hidden layers, number of hidden layers in
the estimation network, learning rate, nonlinearities) on a synthetic dataset. Results are provided in Figure 6¢
which serves to empirically demonstrate that the ELBO is indeed a good proxy for how accurately we are able
to recover the true latent variables. In contrast, alternative methods for nonlinear ICA, such as TCL, do not
provide principled and reliable proxies which reflect the accuracy of estimated latent sources.
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Figure 6: (a) Performance of iVAE and VAE on discrete ICA task. (b) Evolution of the post training ELBO as a
function of the latent dimension. The real dimension of the data is d* = 80 and the real dimension of the latent
space is n* = 15. We observe an elbow at around 15, thus successfully guessing the real dimension. (¢) ELBO as
a function of the performance. Each star is an experiment run for a different set of hyperparameters.

1.2 Additional causality experiments for comparison to TCL

Setup The data generation process used by (Monti et al., 2019, Section 4) is similar to the one we described in
section 5.1, with the difference that the mixing should be in such a way that we get an acyclic causal relationship
between the observations. This can be achieved by ensuring weight matrices in the mixing network are all
lower-triangular, thereby introducing acyclic causal structure over observations.

Experiments on "normal" simulated data We seek to compare iVAE and TCL in the context of causal
discovery, as described in Section 5.2. Such an approach involves a two-step procedure whereby first either TCL
or iVAE are employed to recover latent disturbances, followed by a series of independence tests. Throughout
all causal discovery experiments we employ HSIC as a general test of statistical independence (Gretton et al.,
2005). When comparing iVAE and TCL in this setting we report the proportion of times the correct causal
direction is reported. It is important to note that the aforementioned testing procedure can produce one of three
decisions: 1 — x2, x2 — x1 or a third decision which states that no acyclic causal direction can be determined.
The first two outcomes correspond to identifying causal structure and will occur when we fail to reject the null
hypothesis in only one of the four tests. Whereas the third decision (no evidence of acyclic causal structure) will
be reported when either there is evidence to reject the null in all four tests or we fail to reject the null more than
once. Typically, this will occur if the nonlinear unmixing has failed to accurately recover the true latent sources.
The results are reported in Figure 7a where we note that both TCL and iVAE perform comparably.
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Figure 7: (a) Performance of nonlinear causal discovery for "normal" data, as described in Section 1.2 when
iVAE or TCL are employed to recover latent disturbances. (b) Similarly, but when underlying sources display
significant mean modulation across segments, making them easy to classify. (¢) Classification accuracy of TCL
when applied on data displaying significant mean modulation. We note that the accuracy of TCL is significantly
above a random classifier, indicating that the surrogate classification problem employed in TCL training has been
effectively optimized.

Experiments on significant mean modulated data As a further experiment, we consider causal discovery
in the scenario where one or both of the underlying sources demonstrate a significant mean modulation as shown
in Figure 5. In such a setting the surrogate classification problem which is solved as part of TCL training becomes
significantly easier, to the extent that TCL no longer needs to learn an accurate representation of the log-density
of sources within each segment. This is to the detriment of TCL as it implies that it cannot accurately recover
latent sources and therefore fails at the task of causal discovery. This can be seen in Figure 7b where TCL based
causal discovery fails whereas iVAE continues to perform well. This is a result of the fact that iVAE directly
optimizes the log-likelihood as opposed to a surrogate classification problem. Moreover, Figure 7c visualizes the
mean classification accuracy for TCL as a function of the number of segments. We note that TCL consistently
obtains classification accuracy that are significantly better that random classification. This provides evidence
that the poor performance of TCL in the context of data with significant mean modulations is not a result of
sub-optimal optimisation but are instead a a negative consequence of TCL’s reliance on solving a surrogate
classification problem to perform nonlinear unmixing.

1.3 Real data experiments

Hippocampal fMRI data Here we provide further details relating to the resting-state Hippocampal data
provided by Poldrack et al. (2015) and studied in Section 5.2, closely following the earlier causal work using TCL
by Monti et al. (2019). The data corresponds to daily fMRI scans from a single individual (Caucasian male, aged
45) collected over a period of 84 successive days. We consider data collected from each day as corresponding to a
distinct segment, encoded in u. Within each day 518 BOLD observations are provided across the following six
brain regions: perirhinal cortex (PRc), parahippocampal cortex (PHc), entorhinal cortex (ERc), subiculum (Sub),
CA1 and CA3/Dentate Gyrus (DG).

1.4 Additional visualisations for comparison to VAE variants

As a further visualization we show in Figures 8 and 9 the recovered latents for VAE and iVAE ; we sampled a
random (contiguous) subset of the sources from the dataset, and compared them to the recovered latents (after
inverting any permutation in the components). We can see that iVAE has an excellent estimation of the original
sources compared to VAE (other models were almost indistinguishable from vanilla VAE).
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Figure 8: Comparison of the recovered latents of our model to the latents recovered by a vanilla VAE. The
dashed blue line is the true source signal, and the recovered latents are in solid coloured lines. We also reported
the correlation coefficients for every (source, latent) pair.
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Figure 9: Comparison of the recovered latents of our model to the latents recovered by a vanilla VAE, a 5-VAE
and a 0-TC-VAE, where the dimension of the data is d = 40, and the dimension of the latents is n = 10, the
number of segments is M = 40 and the number of samples per segment is L = 4000. The dashed blue line is the
true source signal, and the recovered latents are in solid coloured lines. We reported the correlation coefficients for
every (source, latent) pair. We can see that iVAE have an excellent estimation of the original sources compared
to the other models.



