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1 Proof of Proposition 1.

We can easily check that
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where wk is the weight defined in (2) of the paper, and thus the proof is done. �

2 Proof of Proposition 2.

Note that the Chi-squared distance is defined as

χ2(p||q) = Ez∼p

(
p(z)

q(z)

)
− 1

for given two density functions p and q. We remind the dominated convergence theorem (DCT) in the sense

of the convergence in probability which is summarized in the following lemma.

Lemma 1. Suppose Xn → X in probability and there is a continuous function g with g(x) > 0 for large x

with |x|/g(x)→ 0 as |x| → ∞ so that Eg(Xn) ≤ C <∞ for all n. Then EXn → EX as n→∞.
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Now we are ready to prove Proposition 2. Let z1, ..., zK be random vectors whose density is q(z). Using

Eq
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q(z)

)
= 1,

we have

χ2(p||q) = Eq
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)2

− 1 = V arq
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)
In turn, the central limit theorem implies
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and thus
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The rest of proof consists of two steps.

[Step 1.] Let YK := 1
K

∑K
k=1

(
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− 1
)

. We are going to show that E(KY 3
K)→ 0 as K →∞. First, note

that KY 3
K converges to 0 in probability since YK = Op(K

−1/2). Let g(x) := |x|4/3, then
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= O(K−2/3) <∞.

Thus we conclude that E(KY 3
K)→ 0 by Lemma 1.

[Step 2.] By Taylor’s theorem, there exists ξK between 0 and YK such that

− log
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)
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1
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Since ξK is bounded, there exists a positive constant C > 0 such that

−YK +
1

2
Y 2
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K ≤ − log(1 + YK) ≤ −YK +
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Y 2
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K .

By taking expectation and multiplying 2K and using the result of Step 1, we have

2K ·DIW (q||p) = χ2(p||q) + o(1),

thus the proof is done. �
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3 Image generation of IWEM

Figure 1: Randomly generated images of IWEM with (Upper) MLP and (Lower) CNN architectures over

4 datasets.


