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Supplementary Information A: Proofs of theorems

Proof of Theorem 1

Proof. We first define the following quantities.
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 From Eqs. (4) and (6) (7)

To prove the theorem, we visit each term in the model in Theorem 1, yTΛy, xTΘy, |Λ|, and
exp

(
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)
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det(Λ) = det(mΩ+∆) det(∆)m−1

The equation above on determinants follows from Theorem 3 in Silvester (2000).

Proof of Theorem 2

We first show that the following lemma holds, which is then used to prove Theorem 2.
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Lemma 1. Let K = C+C = CTC+T = KT . Then, for Σ = Λ−1 = [Im×m ⊗∆ + 1m×m ⊗ Ω]−1, we have
KΣ = ΣK.

Proof. Using a block inversion of a matrix, we can show Σ = Im×m⊗E+1m×m⊗Φ, where Φ = −∆−1Ω(mΩ+
δ)−1 and E = ∆−1, and verify this by checking ΣΛ = I. K is an orthogonal projection matrix with Ki,i =
Ki,2i = K2i,i = K2i,2i =

1
2 for i ∈ H for outputs with missing individual-level observations. For observed outputs

i ∈ V , Ki,i = K2i,2i = 1, and Ki,2i = K2i,i = 0. Then, using the repeat block structure of Σ, we define all the
elements of KΣ and ΣK:

(KΣ)i,i = (KΣ)i,2i = (KΣ)2i,i = (KΣ)2i,2i = Φi,i +
1

2
ǫi for i ∈ H, and

(KΣ)i,i = (KΣ)i,2i = (KΣ)2i,i = (KΣ)2i,2i = Φi,i + ǫi for i ∈ V.

For (i, j) ∈ {i, j : i 6= j, i = 1, . . . , q, j = 1, . . . , q}, (KΣ)i,j = (KΣ)i,2j = (KΣ)2i,j = (KΣ)2i,2j = Φi,j . The
elements of ΣK are identical to those of KΣ.

Now we prove Theorem 2.

Proof. From our model in Eq. (2), we derive the probability distribution for the observed outputs. We begin by
re-writing Eq. (2) in the form of Gaussian distribution to make the marginal distribution explicitly represented:

p(y | x;Λ,Θ) ∼ N (−CaΛ
−1ΘTx,CaΛ

−1Ca), (8)

where Ca =

[

Iq×q 0q×q

0q×q Iq×q

]

. Then, the output sum variables are also Gaussian distributed:

p(ys | x;Λ,Θ) ∼ N (−CsΛ
−1ΘTx,CsΛ

−1CT
s ), (9)

where Cs = [Iq×q Iq×q].

We combine the marginal distributions for the observed output variables in V from Eq. (8) and for output
variables in H with missing individual-level observations but only with group-level sum data from Eq. (9) to
form a joint distribution of the observed variables yH

s and yV :

p(yH
s ,yV | x;Λ,Θ) ∼ N (−CΛ−1ΘTx,CΛ−1CT ), (10)

given C =

[

CH
s

CV
a

]

. CH
s and CV

a are the submatrices of Cs and Ca with only the rows corresponding to the

variables in yH
s and yV . To show the distribution in Eq. (10) is a CGGM, we only need to show Eq. (10) can

be written as

p(yH
s ,yV | x;Λ,Θ) = N

(

− Λ̃−1Θ̃Tx, Λ̃−1
)

, (11)

by obtaining the explicit forms of the mean and inverse covariance of the above, since expanding the quadratic
term in this distribution above leads to the CGGM in Theorem 2.

We first show Λ̃ = [CΛ−1CT ]−1 = C+TΛC+, where C+ is the Moore-Penrose inverse of C, by showing
CΛ−1CTC+TΛC+ = I:

CΣCTC+TΛC+ = CCTC+TΛ−1ΛC+ from Lemma 1

= CCTC+TC+

= CC+CC+ since C+C is symmetric from the definition of Moore-Penrose inverse

= CC+ from CC+ = I

= I
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Then the mean of Eq. (10) can be written as

−CΛ−1ΘTx = −CC+CΛ−1ΘTx from C = CC+C

= −CΛ−1C+CΘTx from Lemma 1

= −CΛ−1CTC+TΘTx from C+C = CTC+T since C+C is symmetric

= −Λ̃−1Θ̃Tx Θ̃ = ΘC+

Thus, we have Eq. (11) with Θ̃ = ΘC+ and Λ̃ = C+TΛC+.

The corollary below follows from the theorem above.

Corollary 2. Learning the collapsed multi-level CGGM in Eq. (3) with randomly missing individual-level output

data is equivalent to learning the full multi-level model with imputed data ỹ = C+

[

yH
s

yv

]

.

Proof. From Theorem 2, given Λ̃ = C+TΛC+ and Θ̃T = C+TΘT , we can re-write the log probability as
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= −
1

2
ỹTΛỹ − xTΘỹ − logZ(x).

Supplementary Information B: Details of the Optimization Method for Multi-level

Conditional Gaussian Graphical Models

Alternating Newton coordinate descent

We provide the details of the learning algorithm for our multi-level model, using the representation of the model
in Theorem 1. The L1-regularized negative log-likelihood is given as

argmin
Ω≻0,∆,Ξ,Π

− log |Ω+
1

m
∆|+ tr

(

Sys
(Ω+

1

m
∆) + 2Syxs

1

m
Π+ 2SyzΞ

+ (Ω+
1

m
∆)−1

( 1

m2
ΠTSxs

Π+
1

m
ΠTSxzΞ+

1

m
ΞTST

xzΠ+ΞTSzΞ
)

)

− (m− 1) log |∆|+ tr
(

Syd

1

m
∆+ 2Syxd

1

m
Π+

1

m
∆−1ΠTSxd

Π
)

+ λΩ‖Ω‖1 + λ∆‖∆‖1 + λΠ‖Π‖1 + λΞ‖Ξ‖1 ,

(12)

using components of covariances Syws
= [Syxs

Syz] and Sw =

[

Sxs
Sxzs

ST
xzs

Sz

]

.

In each iteration, we alternately optimize for each of the parameters Ω, ∆, Ξ, and Π by solving the optimization
problem above for each of the parameter given the previous estimates of all the other parameters. We maintain
and update V = Ω+ 1

m
∆ after each update of Ω and ∆ in order to avoid repeatedly computing Ω+ 1

m
∆. In

the rest of this section, we write V = Ω+ 1
m
∆ whenever this term occurs.
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Algorithm 1: Alternating Newton Coordinate Descent for Multi-level Conditional Gaussian Graphical
Models
Input: Syd

,Syxd
,Sxd

,Ys,Xs,Xd,Z, regularization parameters λΩ, λΠ, λΞ, and α

Initialize: Π,Ξ← 0,Ω,∆← Iq×q

for t = 0, 1, . . . do
Determine active sets SΩ,S∆,SΠ,SΞ
Find Newton directions via coordinate descent

DΩ = argmin
δΩ

ḡ(Ω+ δΩ,∆,Π,Ξ) + h(Ω+ δΩ,∆,Π,Ξ)

Update Ω+ = Ω+ αDΩ, where α is found via line search
D∆ = argmin

δ∆

ḡ(Ω,∆+ δ∆,Π,Ξ) + h(Ω,∆+ δ∆,Π,Ξ)

Update ∆+ = ∆+ αD∆, where α is found via line search
Solve via coordinate descent:

Π+ = argmin
Π

g(Π) + h(Π)

Ξ+ = argmin
Ξ

g(Ξ) + h(Ξ)

Update for Ξ: Optimizing for Ξ given all the other parameters corresponds to solving the following optimization
problem:

argmin
Ξ

gΩ,∆,Π(Ξ) + λΞ‖Ξ‖1 ,

where

gΩ,∆,Π(Ξ) = tr
(

2SyzΞ+V−1
( 1

m
ΠTSxzΞ+

1

m
ΞTST

xzΠ+ΞTSzΞ
)

)

.

Update for Π: Optimizing for Π given all the other parameters corresponds to solving the following optimiza-
tion problem:

argmin
Π

gΩ,∆,Ξ(Π) + λΠ‖Π‖1 ,

where

gΩ,∆,Ξ(Π) = tr
(

2Syxs

1

m
Π+ 2Syxd

1

m
Π+V−1

( 1

m2
ΠTSxs

Π+
1

m
ΠTSxzΞ+

1

m
ΞTST

xzΠ
)

+
1

m
∆−1ΠTSxd

Π
)

.

The two problems above for Ξ and Π are Lasso, which can be solved efficiently using a coordiante descent
algorithm.

Update for Ω: To optimize Eq. (12) for Ω given all the other parameters, we use the Newton’s method. We
first find the Newton descent direction by minimizing the second-order approximation of the objective in Eq.
(12) with respect to Ω and then update Ω using this Newton direction and step size found by line search. The
Newton direction DΩ is found by solving the following optimization problem:

DΩ = argmin
δΩ

ḡ∆,Ξ,Π(δΩ) + λΩ‖Ω+ δΩ‖1 ,

where ḡ∆,Ξ,Π(δΩ) is the second-order Taylor expansion of the data log-likelihood in Eq. (12) with respect to Ω

and is given as

ḡ∆,Ξ,Π(δΩ) = vec(∇Ωg∆,Ξ,Π(Ω))T vec(δΩ) +
1

2
vec(δΩ)

T∇2
Ωg∆,Ξ,Π(Ω)vec(δΩ),

with the gradient and Hessian

∇Ωg∆,Ξ,Π(Ω) = Sys
−V−1 −V−1

( 1

m2
ΠTSxs

Π+
1

m
ΠTSxzΞ+

1

m
ΞTST

xzΠ+ΞTSzΞ
)

V−1

∇2
Ωg∆,Ξ,Π(Ω) = V−1 ⊗

(

V−1 + 2V−1
( 1

m2
ΠTSxs

Π+
1

m
ΠTSxzΞ+

1

m
ΞTST

xzΠ+ΞTSzΞ
)

V−1

)

.
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The above optimization problem is a Lasso problem and can be solved using a coordinate descent method.

Update for ∆: To optimize Eq. (12) for ∆ given all the other parameters, we again use the Newton’s method.
We find the Newton descent direction D∆ by minimizing a second-order approximation of the objective in Eq.
(12) with respect to ∆ and update ∆ with this Newton direction and a step size found by line search. The
Newton descent direction D∆ can be found by solving the following:

D∆ = argmin
δ∆

ḡΩ,Ξ,Π(δ∆),

where

ḡΩ,Ξ,Π(δ∆) = vec(∇∆gΩ,Ξ,Π(∆))T vec(δ∆) +
1

2
vec(δ∆)T∇2

∆gΩ,Ξ,Π(∆)vec(δ∆),

with the gradient and Hessian

∇∆gΩ,Ξ,Π(∆) =
1

m

(

Sys
+ Syd

−V−1 − (m− 1)Γ−1

−V−1
( 1

m2
ΠTSxs

Π+
1

m
ΠTSxzΞ+

1

m
ΞTST

xzΠ+ΞTSzΞ
)

V−1

−
1

m2
∆−1ΠTSxd

Π∆−1
)

∇2
∆gΩ,Ξ,Π(∆) =

1

m2

[

V−1 ⊗
(

V−1 + 2V−1
( 1

m2
ΠTSxs

Π+
1

m
ΠTSxzΞ+

1

m
ΞTST

xzΠ+ΞTSzΞ
)

V−1
)

+ Γ−1 ⊗

(

(m− 1)Γ−1 +
2

m2
∆−1ΠTSxd

Π∆−1

)

]

.

This optimization problem for finding a Newton direction is again a Lasso problem, which can be solved using
a coordinate descent algorithm.

In order to improve the efficiency of the coordinate descent algorithm, we extend the strategies used in McCarter
and Kim (2016). First, we restrict the coordinate descent updates to the active set of variables given as

SΩ = {(δΩ)ij : |
(

∇Ωg(Ω)
)

ij
| > λΩ ∨Ωij 6= 0}

SΠ = {Πij : |
(

∇Πg(Π)
)

ij
| > λΠ ∨Πij 6= 0}

SΞ = {Ξij : |
(

∇Ξg(Ξ)
)

ij
| > λΞ ∨Ξij 6= 0}

S∆ = {(δ∆)ij : |
(

∇∆g(∆)
)

ij
| > λ∆ ∨∆ij 6= 0}.

Second, we compute and store the intermediate results at the beginning of the coordinate descent updates for
Ξ and Π and for δΩ and δ∆ in each Newton iteration. We store the intermediate results UΞ := ΞV−1 for Ξ,
UΠ1

:= ΠV−1 and UΠ2
:= Π∆−1 for Π, UΩ := δΩV

−1 for δΩ, and Uδ1
:= δ∆V−1 and Uδ2

:= δ∆∆−1 for δ∆.
When Ξij and Πij are updated, the ith row of the corresponding intermediate results is updated. After (δΩ)ij
update, the ith and jth rows of UΩ are updated and after (δ∆)ij update, the ith and jth rows of U∆ is updated.

Alternating Newton block coordinate descent

We further adopt the block-wise optimization method in McCarter and Kim (2016) to remove the memory
requirement for storing large dense matrices during coordinate descent optimization. The coordinate descent
updates require precomputing and storing the large dense matrices, such as Sxs

, Sxd
, and V−1. Instead, we

perform a block-wise update of Ξ, Π, δΩ, and δ∆, precomputing and reusing the portions of the large matrices
that are required for updating the current block of the parameters.

Blockwise optimization for Ω: A coordinate-descent optimization for (δΩ)ij requires computing the ith and
jth columns of large dense q×q matrices V−1 and V−1

(

1
m2Π

TSxs
Π+ 1

m
ΠTSxzΞ+ 1

m
ΞTST

xzΠ+ΞTSzΞ
)

V−1

found in the gradient and Hessian of the objective with respect to Ω. We represent
V−1

(

1
m2Π

TSxs
Π+ 1

m
ΠTSxzΞ+ 1

m
ΞTST

xzΠ+ΞTSzΞ
)

V−1 as (R1 + R2 + R3)
T (R1 + R2 + R3), where
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R1 = Q1V
−1, R2 = Q2V

−1, and R3 = Q3V
−1. We precompute and store n × q matrices, Q1 = 1

m
XsΠ,

Q2 = XsΞ, and Q3 = ZΞ, which are used to update R1, R2, and R3 after each update of V. Instead of storing
V−1 and (R1 + R2 + R3)

T (R1 + R2 + R3) persistently, we perform blockwise coordinate descent, whereby the
active set SΩ of δΩ is clustered into smaller blocks, and we perform coordinate-descent updates for elements
in the active set in each block. We cluster the rows and columns of δΩ by partitioning {1, . . . , q} into kΩ sets,
C1, . . . , CkΩ

. For each (Cr, Cz) block of δΩ, we do blockwise computation for (V−1)(:,Cr) and (V−1)(:,Cz),
and compute the ith column in each block as V(V−1)(:,i) = ei using conjugate gradient method, where ei is
a vector of q 0’s except for 1 in the ith element. Similarly for [(R1 + R2 + R3)

T (R1 + R2 + R3)](:,Cr), and
[(R1 +R2)

T (R1 +R2)](:,Cz), we obtain the ith column in each block using (R1 +R2 +R3)
T (R1 +R2 +R3)(:,i).

After updating each (δΩ)ij , we update the corresponding ith and jth rows of the intermediate results (UΩ)(:,Cz)

and (UΩ)(:,Cr).

Blockwise optimization for ∆: A coordinate descent optimization for (δ∆)ij requires computing the ith and
jth columns of large dense q × q matrices V−1, (R1 +R2 +R3)

T (R1 +R2 +R3), ∆
−1, and ∆−1ΠTSxd

Π∆−1

found in the gradient and Hessian of the objective with respect to ∆. The optimization method for ∆ is similar
to the one for Ω. We represent 1

m2∆
−1ΠTSxd

Π∆−1 as RT
4 R4, where R4 = Q4∆

−1. We precompute and store
a n× q matrix, Q4 = 1

m
XdΠ, which is used to update R4 after each update of ∆.

Blockwise optimization for Ξ: The coordinate descent update for (Ξ)ij requires the ith column of Sxs
and

Sz and the jth column of V−1. Instead of storing Sxs
, Sz, and V persistently, we perform blockwise coordinate

descent. We cluster the columns of Ξ by partitioning {1, . . . , q} into kΞ sets, C1, . . . , CkΞ
. For each block (i, Cr),

where i ∈ {1, . . . , p+ r}, we compute (Sxs
)(:,i), (Sz)(:,i), and (V−1)(:,Cr). After updating each (Ξ)ij , we update

the corresponding ith row of the intermediate result (UΞ)(:,Cr).

Blockwise optimization for Π: The coordinate descent update for (Π)ij requires the ith column of Sxs
and

Sxd
and the jth column of V−1 and ∆−1. Instead of storing Sxs

, Sxd
, V, and ∆ persistently, we perform

blockwise coordinate descent. We cluster the columns of Π by partitioning {1, . . . , q} into kΠ sets, C1, . . . , CkΠ
.

For each block (i, Cr), where i ∈ {1, . . . , p}, we compute (Sxs
)(:,i), (Sxd

)(:,i), (V
−1)(:,Cr), and (∆−1)(:,Cr). After

updating each (Π)ij , we update the corresponding ith row of the intermediate results (UΠ1
)(:,Cr) and (UΠ2

)(:,Cr).
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Figure 4: Comparison of methods on simulated data. Precision-recall curves for the recovery of (a) Ω+∆, (b) Ω, and
(c) ∆, (d) Π, and (e) Ξ. Top row for Case 1, middle row for Case 2, and bottom row for Case 3 with group size m = 6.
Ω is set as a clustered network.
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Figure 5: Comparison of methods on simulated data. Precision-recall curves for the recovery of (a) Ω+∆, (b) Ω, and
(c) ∆, (d) Π, and (e) Ξ. The results from Case 4 (top) and Case 5 (bottom) are shown for group size m = 6 and for
scale-free networks for Ω and ∆.
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Figure 6: Comparison of methods on simulated data. Precision-recall curves for the recovery of (a) Ω+∆, (b) Ω, and
(c) ∆, (d) Π, and (e) Ξ. Results from Case 4 (top) and Case 5 (bottom) are shown for group size m = 6 and for Ω with
a clustered network.
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(a) (b)
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Figure 7: Single-level and multi-level conditional Gaussian graphical models estimated from GTEx data. The estimated
single-level model is shown for (a) the largest connected component and (b) the rest of the gene networks, where gene
network edges are shown as gray and the effects of variants on gene expressions are shown as blue. The estimated multi-
level model is shown for (c) the largest connected component and (d) the rest of the gene networks. In the multi-level
model, the influence of cis-acting variants is shown as brown if they have been previously annotated as having impact on
gene expression, red if they have not been annotated, and pink if the distance to the gene it is influencing is greater than
1 megabase. The influence of trans-acting edges is shown as green. Known transcription factors are colored as big orange
dots.


