
Appendix: Two-sample Testing Using Deep Learning

A PROOF OF THEOREMS

A.1 Control of type-1 error rate

Proof of Theorem 3.1. (i) Under p = q, it holds
that E[φ(X1)] = E[φ(Y1)] and Σ = Cov(φ(X1)) =
Cov(φ(Y1)). Then we have√
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Then the first term in the last expression converges
in distribution against N (0, rΣ) and the second term
converges in distribution against N (0, (1− r)Σ) by a
multivariate Central Limit Theorem (note that φ(X1)
lies within [−1, 1]H and hence all moments are finite).
Since allXi and Yj are jointly independent, the limiting
distributions are also independent, hence the whole
term converges against N (0, rΣ) − N (0, (1 − r)Σ) =
N (0,Σ).

(ii) By (i) and the continuous mapping theorem,
Sn,m(φ,Xn,Ym)

d→ ||ζ||2, where ζ ∼ N (0,Σ). Since
Σ is positive semi-definite, there exist an orthogonal
matrix Q and a diagonal matrix L = diag(λ1, . . . , λd)
such that Σ = QLQ>. Then we have

||Qζ||2 = ζ>Q>Qζ = ζ>ζ = ||ζ||2,

and Qζ ∼ N (0, L), hence the claim.

(iii) By the weak law of large numbers, Σ̂n,m
p→ Σ, and

hence by (i) and Slutsky’s Theorem√
nm

n+m
Σ̂
− 1

2
n,mDn,m(φ)

d→ N (0, I).

The rest follows again by the continuous mapping the-
orem.

A.2 Proof of Consistency

Before we begin the proof we start with some auxiliary
definitions and preliminary results.

As in Section 3.1 we can use the regression framework
with (Zi, ti)i ⊂ Rd × {−1, 1}. Then Zi|ti = 1 ∼ p,
Zi|ti = −1 ∼ q and similarly for (Z ′i, t

′
i) and all jointly

independent. As we assume Pr(t = 1) = Pr(t = −1) =
1
2 , the distribution of (Z, t) is fully determined by spec-
ifying p and q and hence we write for the expected
value e.g. Ep,q[f(Z, t)] for some function f .

We define the loss function

L(t, t̂) := 1− tt̂ ∈ [0, 2]

with corresponding empirical and expected risks

R′N (ψ) =
1

N

N∑
i=1

1− t′iψ(Z ′i),

R′(ψ) = 1− Ep′,q′ [tψ(Z)].

The Bayes risk under the transfer task will be denoted
as R′∗ = inff∈MR′(f) = 1− ε′ whereM is class of all
Borel-measurable functions from Rd → [−1, 1]

Selecting φN is equivalent to (inexact) empirical risk
minimization over GN := {w>φ|φ ∈ T FN , ||w|| ≤ 1},
i.e.

R′N (ψN ) ≤ min
ψ∈GN

R′N (ψ) + η

where ψN = w>φN ∈ GN for some ||wN || ≤ 1.

The following Lemma is based on Theorem 1 in
(Golowich et al., 2017) and we will need it to bound the
complexity of the neural network function class GN .

Lemma A.1. Let the data be a.s. be bounded by some
B > 0 and

G :=
{
w> tanh ◦WD′−1 ◦ σ ◦ . . . ◦ σ ◦W1 : Rd → R

∣∣
W1 ∈ RH×d,Wj ∈ RH×H for j = 2, . . . , D′ − 1,

w ∈ RH with ||w|| ≤ 1,

D′−1∏
j=1

||Wj ||Fro ≤ β,D′ ≤ D


Then, the empirical Rademacher complexity of G can
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be bounded as:

R̂N (G) ≤
B(d+ 1)(

√
2 log(2)(D − 1) + 1)β√

N
.

Proof of Lemma A.1. We define auxiliary function
classes

GsD−1 :=
{
WD′−1 ◦ σ ◦ . . . . . . σ ◦W1 : Rd → Rs

∣∣
W1 ∈ RH×d,Wj ∈ RH×H for j = 2, . . . , D′ − 2,

WD′−1 ∈ Rs×H ,

D′−1∏
j=1

||Wj ||Fro ≤ β,D′ ≤ D


for s ∈ {1, H}.

Then we can rewrite G as

G = {
H∑
j=1

wj tanh ◦φj |||w|| ≤ 1, φ ∈ GHD−1}

⊂ {
H∑
j=1

wj tanh ◦φj |||w|| ≤ 1, φj ∈ G1D−1}

⊂
H∑
j=1

{w tanh ◦φ||w| ≤ 1, φ ∈ G1D−1}.

Therefore we can bound the Rademacher complexity
as

R̂N (G) ≤ HR̂n({w tanh ◦φ||w| ≤ 1, φ ∈ G1D−1})
≤ HR̂n({tanh ◦φ|φ ∈ G1D−1})
≤ HR̂n(G1D−1)

by standard learning theory arguments. For G1D−1, we
use the Rademacher bound found in (Golowich et al.,
2017) Theorem 1 (we cannot use the Theorem directly
on G since tanh is not positive homogeneous):

R̂N (G1D−1) ≤
B(
√

2 log(2)(D − 1) + 1)β√
N

.

The original Theorem 1 in (Golowich et al., 2017) holds
for depth D − 1 networks, but we allowed networks of
lower depth. However, one can fill up the networks to
depth D− 1 with identity weight matrices and identity
activation functions; inspection of the proof of the
Theorem then shows that the claim still holds.

Since H = d+ 1, the claim follows.

With these preliminary notions set up, we can proceed
with the actual proof of consistency.

Proof of Theorem 3.2. We intend to show that
Rn,m(ψN ) is asymptotically strictly smaller than 1; the
divergence of the test statistic then follows easily. We
will proceed in 5 steps. First, we split R(ψN )−R′∗ into
transfer error, estimation error (of the transfer task)
and approximation error (of the transfer task). Sec-
ond, we show that the approximation error converges
to zero (due to a Universal Approximation Theorem
for deep networks); third we show that the estimation
error is asymptotically bounded by η, using a learning
theory bound on the Rademacher complexity of the
neural network function class. This together implies
that R(ψN ) and R′∗ are (δ + η)-close asymptotically.
Fourth, we show that the Rn,m(ψN ) − R(ψN )

p→ 0
and from this we finally deduce that the test statistics
diverge to +∞.

1. Splitting the terms We have

R(ψN )−R′∗ = [R(ψN )−R′(ψN )] + [R′(ψN )−R′∗] .

The first term is bounded as follows:

|R(ψN )−R′(ψN )|
= |Ep,q[tψN (Z)]− Ep′,q′ [tψN (Z)]|

≤ ||ψN ||∞
2

(||p− p′||L1(µ) + ||q − q′||L1(µ))

≤ δ,

due to boundedness of ψN and requirement (ii).

The second term can again be split:

R′(ψN )−R′∗

=

[
R′(ψN )− min

ψ∈GN
R′(ψ)

]
+

[
min
ψ∈GN

R′(ψ)−R′∗
]
.

2. Convergence of minGN R
′(ψ) − R′∗: Let µ̂ be

the Borel measure of Z (not conditioned on t), i.e.
Pr(Z ∈ A) = µ̂(A) for any A ⊂ Rd Borel. Following
a similar argument as Lemma 30.2 in (Devroye et al.,
2013) then yields the following. For any fixed ε > 0,
select a measurable function h : Rd → [−1, 1] such
that |R(h)−R∗| ≤ ε

4 , and a compact set K ⊂ Rd with
µ̂(K) ≥ 1− ε

8 . Then, since compact-support continuous
functions are dense in L1(µ), there exists a continuous
function f : Rd → [−1, 1] with

E[|f(Z)− h(Z)|1Z∈K ] ≤ ε

4
.

From the universal approximation theorem for deep
ReLU networks in (Hanin, 2017), there exists N0 ≥ 1
such that for all N ≥ N0 we can find a ψ ∈ GN with

sup
z∈K
|f(z)− ψ(z)| ≤ ε

4
.
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Note that the Theorem in (Hanin, 2017) holds for ReLU-
networks, but since tanh is invertible one can apply
the universal approximation theorem on the first node
in the last hidden layer, select the wN = [1, 0, . . . , 0]>

and still get the universal approximation property.

Combining these yields, for N large enough,

min
ψ∈GN

R′(ψ)−R′∗ ≤ R′(ψ)−R′∗

=Ep′,q′ [−tψ(Z) + th(Z)] +R′(m)−R′∗

≤E[|ψ(Z)− h(Z)|1Z∈K ] + 2µ̂(Kc) +
ε

4
≤E[|ψ(Z)− f(Z)|1Z∈K ]

+ E[|f(Z)− h(Z)|1Z∈K ] +
ε

2
≤ε.

Then, since ε > 0 was arbitrary, and minψ∈GN R
′(ψ) ≥

R′∗ we get minGN R
′(ψ)→ R′∗ as N →∞.

3. Asymptotic closeness of R′(ψN ) and
minGN R

′(ψ): We can first bound by standard argu-
ments:

R′(ψN )− min
ψ∈GN

R′(ψ)

= [R′(ψN )−R′N (ψN )] +

[
R′N (ψN )− min

ψ∈GN
R(ψ)

]
≤ max
ψ∈GN

[|R′(ψ)−R′N (ψ)|]

+

[
min
ψ∈GN

R′N (ψ) + η − min
ψ∈GN

R(ψ)

]
≤ 2 max

ψ∈GN
|R′(ψ)−R′N (ψ)|+ η

= 2 sup
h∈HN

∣∣∣∣∣E[h(Z ′, t′)]− 1

N

N∑
i=1

g(Z ′i, t
′
i)

∣∣∣∣∣+ η

as R′N (ψN ) ≤ minR′N (ψ) + η, where we define HN :=
{(z, t) 7→ L(ψ(Z), t)|ψ ∈ GN} as the conjunction of neu-
ral networks with the loss function. The first term
can be bound with high probability by two-sided
Rademacher inequalities:

Pr

(
sup
h∈HN

∣∣∣∣∣E[h(Z ′, t′)]− 1

N

N∑
i=1

g(Z ′i, t
′
i)

∣∣∣∣∣
≤ 2R̂N (GN ) + 6

√
log(4/ζ)

2N

)
≥ 1− ζ

for any ζ > 0. This complexity bound follows from
Theorem 11.3 in (Mohri et al., 2018) if we insert the
function class Ĥ := HN ∪ 2−HN by noting that the
loss function is 1-Lipschitz in both its arguments non-
negative and bounded from above by 2.

Setting ε := 2R̂N (GN ) + 6
√

log(4/ζ)
2N then yields

Pr

(
sup
h∈HN

∣∣∣∣∣E[h(Z ′, t′)]− 1

N

N∑
i=1

g(Z ′i, t
′
i)

∣∣∣∣∣ > ε

)

≤ 4 exp

(
−N(ε− 2R̂N (GN ))2

18

)
. (2)

But Lemma A.1 bounds the Rademacher complexity
as

R̂N (GN ) ≤
B(d+ 1)

(√
2 log(2)(DN − 1) + 1

)
βN

√
N

≤ C
√
DNβN√
N

(3)

for some C > 0 and DN large enough. Then

N(ε− 2R̂N (GN ))2 ≥ Nε2 − 4NR̂N (GN )

≥ Nε2 − 4C
√
N
√
DNβN ,

and the last term diverges to ∞ if β
2
NDN

N → 0. Hence,
the right-hand side in equation (2) converges to 0.

This shows that

Pr(R′(ψN )− min
ψ∈GN

R′(ψ) ≤ ε+ η)→ 1

for any ε > 0, i.e. R′(ψN ) is asymptotically η-close to
minGN R

′(ψ) (in probability).

4. Rn,m(ψN)−R(ψN)
p→ 0 Next we need to show

that the empirical risk (over (Z, t), not (Z ′, t′)) also is
asymptotically smaller than 1.

We look at ξN,i := tiψN (Zi), which is a triangular array
of random variables on [−1, 1]. We will use a weak law
of large numbers for triangular arrays, see Theorem
2.2.11 in (Durrett, 2019). Both requirements in the
Theorem are satisfied since ξN,i is bounded, and hence
we get

1

N

N∑
i=1

tiψN (Zi)− E[tψN (Z)]

=

∑N
i=1 ξN,i −NE[ξN,i]

N

p→ 0,

or equivalently Rn,m(ψN )−R(ψN )
p→ 0.

But as shown above, R(ψN ) is δ-close to R′(ψN ) and
R′(ψN ) is asymptotically η-close to R′∗; hence we get

Pr(R(ψN )−R′∗ ≤ ε+ δ + η)→ 1

for any ε > 0, and therefore

Pr(Rn,m(ψN )−R′∗ ≤ ε+ δ + η)→ 1
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5. Divergence of test statistics Define MN =
1−Rn,m(ψN ), then

Pr(MN ≥ ε∗ − δ − η − ε)→ 1

for any ε > 0. Since δ + η < ε∗, we then have for any
r > 0 :

Pr

(√
nN

m
MN > r

)
= Pr

(
MN >

√
m

nN
r

)
→ 1,

i.e. MN
p→ +∞, since

√
m
nN → 0.

Next, define

Ŝn,m =
nm

n+m

(
1

n

n∑
i=1

ψN (Xi)−
1

m

m∑
i=1

ψN (Yi)

)
,

i.e. the version of Sn,m where the last layer is still
selected on the training data instead of the test data.
Then it holds that∣∣∣∣√ m

n(m+ n)
Ŝn,m −MN

∣∣∣∣
=

∣∣∣∣∣ 1

m+ n

(
m

n

n∑
i=1

ψN (Xi)−
m∑
i=1

ψN (Yi)

)

− 1

m+ n

m+n∑
i=1

tiψN (Zi)

∣∣∣∣∣
=

∣∣∣∣∣ 1

m+ n

n∑
i=1

ψN (Xi)

∣∣∣∣∣ ∣∣∣mn − 1
∣∣∣

≤
∣∣∣m
n
− 1
∣∣∣→ 0,

since all |ψN (Xi)| ≤ 1 and m
n → 1.

Hence, we also get

Pr(Ŝn,m > r)→ 1

for any r > 0. But

Sn,m =
nm

n+m

∣∣∣∣∣∣φN (Xn)− φN (Ym)
∣∣∣∣∣∣2

=
nm

n+m
sup
||w||≤1

w>
(
φN (Xn)− φN (Ym)

)
≥ Ŝn,m

For the DFDA test statistic, we have

Tn,m =
nm

n+m
D>n,mΣ̂−1n,mDn,m

≥ nm

n+m
||Dn,m||2λmin(Σ̂−1n,m)

= Sn,mλmax(Σ̂n,m)−1.

λmax(Σ̂n,m) is always positive (due to the ρn,m > 0
summand), and also bounded from above by some
C > 0 (due to the boundedness of all individual entries),
therefore Tn,m ≥ C−1Sn,m.

Hence we also have Sn,m, Tn,m
p→ +∞.

B DISTRIBUTIONS WITH
UNBOUNDED SUPPORT

Considering the case where p′ and q′ have unbounded
support, but requirements (ii), (iii) and a variant of
(i) in Theorem 3.2 are still satisfied, we can still prove
a similar consistency result.

In particular, we can make p′ and q′ vary with N by re-
placing them with truncated, bounded-support versions
that converge towards the true densities slowly enough.
First, select p′N and q′N with support on [−BN , BN ]d

for some sequence Bn ↑ +∞, and ||p′N − p′||L1(µ) → 0
and ||q′N − q′||L1(µ) → 0. Then there exists a N0 > 0
such that for all N ≥ N0, requirements (i), (ii) and
(iii) are satisfied for p′N and q′N . In practice these
truncated variables can be achieved for example by
rejection sampling from p′ and q′.

The only part in the proof of Theorem 3.2 where we
need the boundedness assumption on p′ and q′ is when
bounding the Rademacher complexity of the class GN
in equation 3. The modified Rademacher bound now is

R̂N (GN ) ≤
BN (d+ 1)

(√
2 log(2)(DN − 1) + 1

)
βN

√
N

≤ C
√
DNBNβN√

N
.

The requirement for the exponent in equation (2) to
diverge then is

B2
Nβ

2
NDN

N
→ 0 instead of

β2
NDN

N
→ 0.

The rest of the proof is as before. We can summarize
this as follows:

Theorem B.1. Let p 6= q, n = n′,m = m′ with n
m →

1, N = n + m, R′∗ = 1 − ε′ the Bayes error for the
transfer task with ε′ > 0. Furthermore, let ||p′N −
p′||L1(µ) → 0 and ||q′N − q′||L1(µ) → 0 for sequences of
µ-densities (p′N )N and (q′N )N ,

Assume that the following holds:

(i) B2
Nβ

2
NDN

N → 0, BN →∞, βN →∞ and DN →∞
for N →∞,

(ii) ||p− p′||L1(µ) + ||q − q′||L1(µ) < 2δ,

(iii) 0 ≤ δ + η < ε′, where η ≥ 0 is the leniency
parameter in training the network, and

(iv) for each N , p′N and q′N have support on
[−BN , BN ]d.
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Then, as N →∞ both test test statistics S(φN ,Xn,Ym)
and T (φN ,Xn,Ym) diverge in probability towards infin-
ity, i.e. for any r > 0

Pr (S(φN ,Xn,Ym) > r)→ 1 and
Pr (T (φN ,Xn,Ym) > r)→ 1.

C DIMENSIONALITY
REDUCTION

In practice, we oftentimes first apply a PCA transfor-
mation on the data before computing the DFDA test
statistic. Since we fit the PCA on the test data itself,
however, the observations are not independent anymore
and Theorem 3.1 is not directly applicable anymore.
As an unsupervised linear transformation, however, we
can show via a Slutsky-type argument that the normal
approximation is still valid.
Theorem C.1. Let (ξi)i and (ξ′i)i be all jointly inde-
pendent and identically distributed on Rd with bounded
support and assume that n

n+m → r ∈ (0, 1) as n,m→
∞.

Let AN ∈ Rs×d be a PCA transform, fitted on
ξ1, . . . , ξn, ξ

′
1, . . . , ξ

′
m (N = m + n), for some s ∈

{1, . . . , d}. Let Σ = Cov(ξ1) with eigenvalues
λ1, . . . , λd sorted in descending order, and assume that
λs 6= λs+1 (if s < d).

Then√
nm

n+m

(
1

n

n∑
i=1

ANξi −
1

m

m∑
i=1

ANξ
′
i

)
d→ N (0,Σ′)

as n,m→∞, where Σ′ = diag(λ1, . . . , λs).

Note that the λs 6= λs+1 assumption is only necessary
for uniqueness of the limiting distribution – in practice
one can ignore this requirement.

Proof of Theorem C.1. Since AN is a PCA transforma-
tion, AN is the matrix with the normalized eigenvectors
corresponding to the s largest eigenvalues of the empir-
ical covariance matrix Σ̃n,m. But, due to a weak law
of large numbers, Σ̃n,m

p→ Σ and accordingly AN
p→ A

with the population PCA A being the normalized eigen-
vectors corresponding to the s largest eigenvalues of Σ
(without loss of generality we can assume the row-wise
signs to be determined by some deterministic proce-
dure, and hence for large enough N , AN and A unique
e.g. by requiring that the first non-zero entry in the
vector be positive).

Due to the same argument as in the proof of Theo-
rem 3.1 (i),√

nm

n+m

(
1

n

n∑
i=1

ξi −
1

m

m∑
i=1

ξ′i

)
d→ N (0,Σ).

Due to a multivariate Slutsky theorem, then√
nm

n+m

(
1

n

n∑
i=1

ANξi −
1

m

m∑
i=1

ANξ
′
i

)

= AN

√
nm

n+m

(
1

n

n∑
i=1

ξi −
1

m

m∑
i=1

ξ′i

)
d→ N (0, AΣA>).

But as A consists of the orthogonal eigenvectors of Σ
in descending order of eigenvalues, AΣA> = Σ′.

D ADDITIONAL EMPIRICAL
ANALYSIS

D.1 Parameters for SCF and ME tests

For the SCF and ME test, hyperparameters have to be
chosen, namely the number of locations/frequencies at
which to test, the kernel-selection strategy and whether
to optimize over the frequencies/locations or to use
a simple heuristic. We found that if the number of
locations/frequencies J is chosen too large, the tests
oftentimes strongly violate the significance level. Hence,
we grow J with the number of samples according to
what still gives reasonable type-1 error rates.

AM Audio Data Here we use the ‘full‘ version of
the parameter selection from (Jitkrittum et al., 2016)
for both tests. Number of frequencies/locations were
set to J = 1 when m ∈ [10, 50], J = 3 for m ∈ [75, 150]
and J = 10 for m ∈ [200, 1000].

Aircraft, Dogs and Birds Data For SCF we found
the random location initialization without kernel opti-
mization (and hence without data split) to work best.
For ME, due to the high dimensionality, we selected the
‘grid‘ version of the parameter optimization; the ‘full‘
version did not seem to give considerable improvements
above this. For the Aircraft and Dogs data, we selected
J = 1 frequencies/locations for m ∈ [10, 50] and J = 3
for m ∈ [50, 200]. For the Birds data we always use
J = 1 (m ∈ [10, 60]).

Facial Expression Data Again we use random lo-
cations for SCF and grid-search kernel width for ME.
For SCF, we fix J = 1 for all m ∈ [10, 200]. For ME, we
choose J = 1 for m ∈ [10, 50], J = 3 for m ∈ [75, 100]
and J = 10 for m ∈ [150, 200].

D.2 Image Preprocessing

For the deep learning-based methods (DFDA, DMMD
& C2ST), before evaluation, all image data is rescaled
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to (224, 224) and normalized according to the require-
ments of the neural network.

For kernel-based tests we found different strategies
to work differently well on each data set. Hence, for
the Aircraft, Stanford Dogs and Birds data set, data
is rescaled to (48, 48) dimensions and converted to
grayscale. For the facial expression data, images were
first cropped to the center (resulting in (462, 462)
dimensions) and then rescaled to (96, 96) dimensions;
no conversion to grayscale was performed. We found
no increase in power for higher resolution (e.g. (224,
224)).

D.3 Sensitivity to Significance Level

Special care has to be taken if several hypotheses are
tested at the same time, leading to a multiple testing
problem. One simple approach to control the so-called
familywise error rate (FWER, (Lehmann and Romano,
2006)), i.e., the probability of at least one wrong rejec-
tion of a null hypothesis, is the Bonferroni correction
(Lehmann and Romano, 2006). The Bonferroni cor-
rection divides the original significance level α by the
number of tests to be performed. Therefore, in many
practical settings the significance level for each test
will be considerably lower than the “standard“ values
of 0.05 or 0.01. This represents a problem in practice,
since approximating the distribution in the tails usu-
ally is more challenging. Here we only give results for
the asymptotic DFDA distribution, since permutation-
based methods do not scale well to very low significance
levels. Figure 3a shows that our method controls type-1
error rate at significance levels 5 ·10−u for u = 2, 3, 4, 5;
Figure 3b shows that even at small significance levels,
the DFDA can still maintain relatively high power.

D.4 Control of Type-1 Error Rate

Figure 4 shows that both DMMD and DFDA properly
control the type-1 error rate even at low sample sizes.

D.5 Birds Experiments

Here we report results on another fine-grained classi-
fication data set, the Caltech-UCSD Birds-200-2011,
Caltech-UCSD Birds-200-2011 (Wah et al., 2011). We
selected two visually very similar species of birds,
namely the “Blue-winged Warbler“ and the “Hooded
Warbler“ for differentiation. Results are shown in Fig-
ure 5.

D.6 AM Audio Experiments

Data preprocessing consists of sampling the original
audio signal at 8kHz, the resulting AM signal is sampled

at 120kHz, and snippets of length 1000 are used for
identification. Gaussian noise with standard deviation
1 is added to the samples after processing.

The model has four one-dimensional convolutional lay-
ers, each followed by Batch normalization, a ReLU
activation and max-pooling. The last layer is fully con-
nected, but only used for training the network, i.e., the
feature extraction is fully convolutional. In contrast to
the M5 network, we use an input layer with kernel size
of 20 instead of 80 and the final global average pooling
layer can be removed, to accommodate the significantly
smaller input dimension of the audio snippets. We
train the network to classify noisy AM snippets from
the remaining songs on the album, with a multi-class
cross-entropy loss and a L2-regularization of 10−4 on
all weights; we use the Adam optimizer for this task
Kingma and Ba (2014).

D.7 Stanford Dogs Experiments

Table 2 shows the convolutional autoencoder architec-
ture used in the experiments on the Stanford Dogs data
set. The autoencoder was trained to optimize multi-
scale structural similarity between input and output
images.

The supervised training was performed with a network
with the same encoder as in Table 2 and a fully con-
nected layer on top, to classify the remaining 118 dog
breeds. Again, we use the multi-class cross-entropy
loss.

For both the supervised and the unsupervised task we
use the Adam optimizer and L2 regularization of size
10−4.

D.8 KDEF Experiments

Note that Jitkrittum et al. (2016) and Lopez-Paz and
Oquab (2016) only compared tests that use train/test
splits. Hence, results therein are reported for nte, which
is the size of the test set of each sample, i.e. nte = 1

2m
in our case (nte = 201 corresponds to m = 402).

D.9 Imagenet Training

For the aircraft, facial expression, and birds data set we
use a ResNet-152, trained on the whole ILSVRC 2012
data set. Instead of training this network ourselves, we
use the parameters and implementation provided in
the PyTorch deep learning library Paszke et al. (2017).
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(a) Type-1 error rate at low significance levels, m = 50.
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(b) Type-2 error rate at low significance levels, m = 50.

Figure 3: Results on the AM audio data for m = 50 with small significance levels α. We show average values over
106 tests, where we fixed the sample size m per population to be equal to 50. (a) Empirical type-1 error rates for
small α values consistently lie below the expected type-1 error rate (dotted line). (b) Empirical type-2 error rates.

D.10 MRI Scan Preprocessing and
Experiments

The T1 MRI scans acquired through the MP-RAGE
protocol were selected from GSP and ADNI. The scans
were standardized to (256, 256, 256) and cropped to
(96, 96, 96) dimensions with isotropic voxels of 1mm.
Model architecture is shown in table 3. The model was
trained for 400 epochs on 1413 MRI scans from GSP.
The loss function was set to the mean squared error
and the batch size was set to one. No MRI scans from
ADNI was used for training.

In our experiments, the APOE gene was used since it
is known to be a risk factor for Alzheimer’s disease;
in practice, when one does not know which locus to
test, a multistep-approach such as the one developed
by Mieth et al. (2016) can be used to create a selection
of candidate loci.

E CODE AND DATA

We provide an implementation of our meth-
ods at https://github.com/mkirchler/
deep-2-sample-test.

All 2D imaging and audio data can be downloaded
from the following sources:

• Audio data: http://dl.lowtempmusic.com/
Gramatik-TAOR.zip

• Aircraft data: http://www.robots.ox.ac.
uk/~vgg/data/fgvc-aircraft/archives/
fgvc-aircraft-2013b.tar.gz

• Facial Expression data: http://kdef.se/index.
html

• Stanford Dogs data: http://vision.stanford.
edu/aditya86/ImageNetDogs/images.tar

• Birds data: http://www.vision.caltech.edu/
visipedia-data/CUB-200-2011/CUB_200_2011.
tgz

For MRI imaging data access to data has to be granted
by the releasing institutions, see

• GSP: https://www.neuroinfo.org/gsp

• ADNI: http://adni.loni.usc.edu/
data-samples/access-data/

https://github.com/mkirchler/deep-2-sample-test
https://github.com/mkirchler/deep-2-sample-test
http://dl.lowtempmusic.com/Gramatik-TAOR.zip
http://dl.lowtempmusic.com/Gramatik-TAOR.zip
http://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/archives/fgvc-aircraft-2013b.tar.gz
http://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/archives/fgvc-aircraft-2013b.tar.gz
http://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/archives/fgvc-aircraft-2013b.tar.gz
http://kdef.se/index.html
http://kdef.se/index.html
http://vision.stanford.edu/aditya86/ImageNetDogs/images.tar
http://vision.stanford.edu/aditya86/ImageNetDogs/images.tar
http://www.vision.caltech.edu/visipedia-data/CUB-200-2011/CUB_200_2011.tgz
http://www.vision.caltech.edu/visipedia-data/CUB-200-2011/CUB_200_2011.tgz
http://www.vision.caltech.edu/visipedia-data/CUB-200-2011/CUB_200_2011.tgz
https://www.neuroinfo.org/gsp
http://adni.loni.usc.edu/data-samples/access-data/
http://adni.loni.usc.edu/data-samples/access-data/
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(a) Type-1 error rate on Aircraft data set.
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(b) Type-1 error rate on facial expression data set.

10 15 20 25
m (per population)

0.00

0.05

0.10

Ty
pe

-1
 E

rr
or

 R
at

e

DFDA
DMMD

(c) Type-1 error rate on Birds data set.
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(d) Type-1 error rate on Stanford Dogs data set.

Figure 4: Empirical control of type-1 error rate on vision data sets.
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Figure 5: Type-2 error rate on Birds data set.
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Table 2: Architecture of the convolutional autoencoder
used for the Stanford Dogs experiments. For Conv and
ConvTranspose layers, [3× 3, f ] denotes f 3× 3 filters.
Activation functions are always ReLUs except for the
last convolutional layer (tanh) and the last ConvTrans-
pose layer (sigmoid). After each Conv and ConvTrans-
pose operation, a BatchNorm (Ioffe and Szegedy, 2015)
operation was used. The output of the encoder part
was used as feature map in our tests.

Input: (3, 224, 224) image

Encoder

Conv [3× 3, 40]
MaxPool [2× 2]
Conv [3× 3, 80]
MaxPool [2× 2]
Conv [3× 3, 160]
MaxPool [2× 2]
Conv [3× 3, 240]
MaxPool [2× 2]
Conv [3× 3, 360]
MaxPool [2× 2]
Conv [3× 3, 2048]
MaxPool [2× 2]

Decoder

ConvTranspose [3× 3, 360]
Upsample [2× 2]
ConvTranspose [3× 3, 240]
Upsample [2× 2]
ConvTranspose [3× 3, 160]
Upsample [2× 2]
ConvTranspose [3× 3, 80]
Upsample [2× 2]
ConvTranspose [3× 3, 40]
Upsample [2× 2]
ConvTranspose [3× 3, 3]

Table 3: Architecture of the 3D convolutional autoen-
coder for the MRI data. For Conv and ConvTranspose
layers, [3× 3× 3, s, f ] denotes f 3× 3× 3 filters with
strides of s. Activation functions are always ReLUs
except for the last convolutional layer (linear). All con-
volutional operations are done without padding. The
output of the encoder (1024 dimensions) is used as
feature map in our tests.

Input: (96, 96, 96) MRI scan

Encoder

Conv [3× 3× 3, 1, 8]
Conv [2× 2× 2, 2, 16]
Conv [3× 3× 3, 1, 32]
Conv [2× 2× 2, 2, 64]
Conv [2× 2× 2, 2, 128]
Conv [2× 2× 2, 2, 256]
Conv [2× 2× 2, 2, 256]
Dense

Decoder

Dense
Conv [3× 3× 3, 1, 256]
ConvTranspose [2× 2× 2, 2, 256]
ConvTranspose [2× 2× 2, 2, 128]
ConvTranspose [2× 2× 2, 2, 64]
ConvTranspose [2× 2× 2, 2, 32]
Conv [3× 3× 3, 1, 16]
ConvTranspose [2× 2× 2, 2, 8]
Conv [3× 3× 3, 1, 1]


