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In this supplement, we present further results on simu-
lated data. Figure 1 shows how the algorithms behave
as a function of the number of observations. We see
that our two methods, pav and conf-nn, control aver-
age coverage for all n (left panel). Also both methods
approximate the oracle as n grows (middle and right
panel). We observed that the intervals of pav are more
conservative and slightly longer than the intervals of
conf-nn. The prediction intervals of neg-ll are very
wide for smaller sample sizes but perform similarly
in larger samples. The bayes method performs simi-
larly well as our two methods. The conf-fw and high-q
methods also control average coverage, however the
intervals are slightly longer (middle panel) compared
to the intervals of our two methods. The reason is that
both methods do not adapt to the heteroskedasticity
of the data. Only qreg-un does not control average
coverage (left panel). This demonstrates that adjust-
ment of the intervals is necessary to control average
coverage. While our methods, pav and conf-nn, do not
assume normality, we achieve results that are close to
the optimal prediction intervals of the oracle.

In Figure 1 of the main paper, we show more detailed
results for sample size equal to 100,000. In Figure 2 we
show the same simulation results for sample size equal
to 5,000 (top) and 47,222 (bottom). In the left panel,
we see that even in small samples the methods pav
and conf-nn provide coverage close to the the nominal
level for a wide range of β′X. In the middle panel,
we see that the relative length approaches 1 (i.e. it
approaches the length of the oracle) as the sample sizes
grows from 5,000 to 47,222. In the right panel, we
see that the combined prediction error approaches 0
as the sample size increases, demonstrating that it is
accurately estimating the oracle. On the other hand,
the methods conf-fw and high-q undercover when β′X
is large and overcover when β′X is small. The reason
for this is that these two methods do not adapt to the
heteroskedasticity of the data as seen in the middle and
right panel. We see that the method neg-ll performs
considerably worse when the sample size is small, but
is comparable to pav and conf-nn when the sample

size is larger. This suggests that this method needs
more data to accurately estimate the distribution of
the data. This is surprising, since neg-ll assumes that
the data is Gaussian, which is the case in our artificial
data example. We again see that qreg-un is consistently
below the nominal level due to overfitting. The bayes
method performs similary to pav and conf-nn, but we
again note that bayes implicitly assumes that the data
is Gaussian.

Figure 3 explores the effect of architectures and loss
function on the performance of our procedure. We
use the same simulated data with sample size fixed to
50,000. For simplicity we only consider the conformal
intervals given elsewhere as conf-nn. We considered
two architectures: a network with one hidden layer
(dep1) and a network with two hidden layers (dep2).
We also considered two different loss functions: the
quantile loss function of the main paper (loss_l1) and
the modified version of it where we square each term
in the loss function (loss_l2). The squared version
is supposed to estimate the conditional mean instead
of the conditional median. However, note that in our
Gaussian setting the conditional mean is equal to the
conditional median. Therefore it is not surprising that
there is little difference in performance as a result
of switching to the l2-loss. On the other hand, we
observed that the networks with two hidden layers
perform worse than the networks with one hidden layer.
In the left panel, we see that these prediction intervals
adapt much worse to heteroskedasticity of the data
(they overcover considerably when β′X is small and
undercover when β′X is large). Therefore, the intervals
are either much longer or much shorter (middle panel).
This can be explained by the fairly simple structure of
the data which does not require more complex neural
networks.



Supplemental Material: Adaptive, Distribution-Free Prediction Intervals for Deep Neural Networks

Figure 1: Asymptotic performance of procedures. Both relative length and combined MSE are computed relative
to the oracle predictions and prediction intervals.
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Figure 2: Simulation summaries for n = 5, 000 (top) and n = 47, 222 (bottom).
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Figure 3: Results for different architectures and loss functions. The networks with one and two hidden layers
are denoted by dep1 and dep2, respectively. The loss functions with the l1-type and l2-type loss are denoted by
loss_l1 and loss_l2, respectively. Each measure is plotted as a function of the true linear component, β′X. Both
length and combined mean absolute error (MAE) are computed relative to the oracle predictions and prediction
intervals.


