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Abstract

We study the problem of estimating the ex-
pected reward of the optimal policy in the
stochastic disjoint linear bandit setting. We
prove that for certain settings it is possible
to obtain an accurate estimate of the optimal
policy value even with a number of samples
that is sublinear in the number that would
be required to find a policy that realizes a
value close to this optima. We establish nearly
matching information theoretic lower bounds,
showing that our algorithm achieves near opti-
mal estimation error. Finally, we demonstrate
the effectiveness of our algorithm on joke rec-
ommendation and cancer inhibition dosage
selection problems using real datasets.

1 Introduction

We consider how to efficiently estimate the best possible
performance of the optimal representable decision pol-
icy in a disjoint linear contextual multi-armed bandit
setting. Critically, we are interested in when it is possi-
ble to estimate this best possible performance using a
sublinear number of samples, whereas a linear number
of samples would typically be required to provide any
such policy that can realize optimal performance.

Contextual multi-armed bandits (see e.g. Chu et al.
(2011); Li et al. (2010); Agarwal et al. (2014)) are a
well studied setting that is having increasing influence
and potential impact in a wide range of applications,
including customer recommendations (Li et al., 2010;
Zhou and Brunskill, 2016), education (Lan and Bara-
niuk, 2016) and health (Greenewald et al., 2017). In
contrast to simulated domains like games and robotics
simulators, in many contextual bandit applications the
best potential performance of the algorithm is unknown
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in advance. Such situations will often involve a human-
in-the-loop approach to optimizing system performance,
where a human expert specifies a set of features de-
scribing the potential contexts and a set of possible
interventions/arms, and then runs a contextual bandit
algorithm to try to identify a high performing decision
policy for what intervention to automatically provide
in which context. A key issue facing the human expert
is assessing if the current set of context features and
set of interventions/arms can yield sufficient perfor-
mance. This can be challenging, because without prior
knowledge about what optimal performance might be
possible, the human may need to run the contextual
bandit algorithm until it returns an optimal policy
given the current set of arms and features, which may
involve wasted time and effort if the best policy has
mediocre performance. While there has been some
limited algorithmic work on such human-in-the-loop
settings for reinforcement learning (Mandel et al., 2017;
Keramati and Brunskill, 2019) to our knowledge no
formal analysis exists of how to efficiently estimate the
average reward of the optimal policy representable with
the current set of context features and arms.

The majority of prior work on multi-armed bandits has
focused on online algorithms that minimize cumulative
or per-step regret (see e.g. Auer et al. (2002); Agarwal
et al. (2014) or Lattimore and Szepesvári (2018)). In
simple multi-armed bandit settings (with no context)
there has also been work on maximizing the probability
of best arm identification given a fixed budget (Bubeck
et al., 2009; Audibert et al., 2010; Gabillon et al., 2012;
Karnin et al., 2013) or minimizing the number of sam-
ples needed to identify the best arm with high confi-
dence (Even-Dar et al., 2006; Maron and Moore, 1994;
Mnih et al., 2008; Jamieson et al., 2014). Note that in
the simple multi-arm bandit setting, sample complexity
bounds for ε-best arm identification will be equivalent
to the bounds achievable for estimating the expected
reward of the optimal policy as there is no sharing of
rewards or information across arms.

In the case of contextual multi-armed bandits, there
has been some limited work on single best arm iden-
tification when the arms are described by a high di-
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mensional feature vector (Hoffman et al., 2014; Soare
et al., 2014; Xu et al., 2018). However such work does
not immediately include input context features (such
as from a customer or patient), and would need to be
extended to handle best policy identification over (as
we consider here) a linear class of policies. A separate
literature seeks to identify a good policy for future use
given access to batch historical data in both bandit and
reinforcement learning settings (Thomas et al., 2015;
Athey and Wager, 2017; Gelada and Bellemare, 2019;
Liu et al., 2019). In contrast to such work, we consider
the setting where the algorithm may actively gather
data, and the objective is to accurately estimate the
performance of the optimal policy in the set, without
returning a policy that achieves such performance.

In particular, in this work we consider disjoint linear
contextual bandits (Li et al., 2010) (one parameter for
each of a finite set of arms, such as a set of treatments)
with a high dimensional, d, input context (such as a set
of features describing the patient). We are interested in
providing an accurate estimate of the expected perfor-
mance of the best realizable decision policy. Here the
decision policy class is implicitly defined by the input
context feature space and finite set of arms. Following
prior work on disjoint linear contextual bandits (see
e.g. Li et al. (2010)) we assume that the reward for
each arm can be expressed as a linear combination of
the input features and an arm-specific weight vector.

Quite surprisingly, we present an algorithm that can
estimate the potential expected reward of the best pol-
icy with a number of samples (pulls of the arms) that
is sublinear in the input context dimension d. This
is unintuitive because this is less than what is needed
to estimate any fit of the d-dimensional arm weight
vector, which would require at least d samples. Our ap-
proach builds on recent work Kong and Valiant (2018)
that shows a related result in the context of regres-
sion, showing that the best accuracy of a regression
algorithm can, in many situations, be estimated with
sublinear sample size. A critical insight in that paper,
which we leverage and build upon in our work, is the
construction of a sequence of unbiased estimators for
geometric properties of the data that can be used to
estimate the best accuracy, without attempting to find
the model achieving that accuracy. However, multiple
additional technical subtleties arise when we move from
the prediction setting to the control setting because
we need to take the interaction between different arms
into account while there is effectively only one “arm”
in the prediction setting. Even assuming that we have
learned the interaction between the arms, it is not im-
mediately clear how such knowledge helps determine
the potential expected reward of the best policy. We
leverage a quantitative version of the Sudakov-Fernique

inequality to answer the question. While in the classi-
cal (non-disjoint) stochastic linear bandit problem, it
is crucial to use the information we learn from one arm
to infer information for other arms, this does not hold
in the non-disjoint setting. Nevertheless, we utilize the
contexts across all the arms to reduce the estimation
error, which yields a near optimal sample complexity
dependency on the number of arms. Our approach
can also leverage unsupervised prior data about the
distribution of contexts, as may often be available (past
patients’ features or prior customers’ features), in order
to further improve the algorithm performance.

Our key contribution is an algorithm for accurately
estimating the expected performance of the optimal
policy in a disjoint contextual linear bandit setting
with an amount of samples that is sublinear in the in-
put context dimension. We provide theoretical bounds
when the input context distributions are drawn from
Gaussians with zero mean and known or unknown
covariances. We then examine the performance empir-
ically, first in a synthetic setting. We then evaluate
our method both in identifying the optimal reward for
a joke recommendation decision policy, based on the
Jester dataset (Goldberg et al., 2001), and on a new
task we introduce of predicting the performance of the
best linear threshold policy for selecting the dosage level
to optimize cancer cell growth inhibition in the NCI-60
Cancer Growth Inhibition dataset. Encouragingly, our
results suggest that our algorithm quickly obtains an
accurate estimate of the optimal linear policy.

2 Problem Setting

A contextual multi-armed bandit (CMAB) can be de-
scribed by a set of contexts X ∈ Rd, a set of K arms K
and a reward function. We consider the linear disjoint
CMAB setting (Li et al., 2010), where there are a finite
set of arms, and the reward y from pulling an arm a
in a context xj is

ya,j = βTa xj + ba + ηa,j . (1)

For each arm a, βa is an unknown d-dimensional real
vector with bounded `2 norm and ba is a real number,
E[ηa,j ] = 0 and E[η2

a,j ] is bounded by a constant.

For simplicity, we focus primarily on the passive set-
ting where for each arm a, we observe N iid samples
xa,1,xa,2, . . . ,xa,N drawn from N(0,Σ), and each sam-
ple xa,j is associated with a reward. Under this setting,
we denote σ2

a as the variance of ya,j , which is smaller
than β>a Σβa + E[η2

a,j ], and it is assumed that σa are
all bounded by a constant. We define the total number
of samples T = K · N to draw a connection to the
adaptive setting where the algorithm can adaptively
choose the action to play on each context. Interestingly,
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in the worst case our approach of uniformly gathering
samples across all actions is optimal up to a log3/2(dK)
factor (see Theorem 2).

Given a total of T = K · N samples (xa,j , yj), our
goal is to predict the expected reward of the optimal
policy realizable with the input definition of context
features and finite set of actions, which is OPT :=
Ex[maxa(βTa x + ba)].

3 Summary of Results

Our first result applies to the setting where each context
is drawn from a d-dimensional Gaussian distribution
N(0,Σ), with a known covariance matrix Σ, and the re-
ward for the ath arm on context xj equals βTa x+ba+ηa,j
where E[ηa,j ] = 0,E[η2

a,j ] is bounded by a constant.1

Given N = Θ(ε−2
√
d logK log(K/δ)) samples for each

arm, there is an efficient algorithm that with probabil-
ity 1− δ estimates the optimal expected reward with
additive error ε.
Corollary 1 (Main result, known covariance setting).
In the known covariance setting, for any ε ≥

√
logK
d1/4

,
with probability 1−δ, Algorithm 1 estimates the optimal
reward OPT with additive error ε using a total number
of samples

T = Θ(

√
dK logK

ε2
log(K/δ)).

We prove a near matching lower bound, showing that
in this passive setting, the estimation error can not be
improved by more than a logK factor. The proof of
Theorem 1 can be found in the supplementary material.
Theorem 1 (Lower bound for passive algorithms,
known covariance setting). There exists a constant
C such that for any ε > 0 given

T = C

√
dK logK

ε2

samples (equivalently N = C
√
d logK
ε2 samples for each

arm), no algorithm can estimate the optimal reward
with expected additive error less than ε with probability
greater than 2/3.

Comparing against the adaptive setting where the algo-
rithm can adaptively choose the action to play on each

1The setting where the covariance, Σ, is known is equiv-
alent to the setting where the covariance is assumed to
be the identity, as the data can be re-projected so as to
have identity covariance. While the assumption that the
covariance is known may seem stringent, it applies to the
many settings where there is a large amount of unlabeled
data. For example, in many medical or consumer data
settings, an accurate estimate of the covariance of x can be
obtained from large existing databases.

context, we prove a surprising lower bound, showing
that the estimation error can not be improved much.
Specifically, our passive algorithm is minimax optimal
even in the adaptive setting up to a polylog(dK) factor.
The proof is deferred to the supplementary material.

Theorem 2 (Lower bound for fully adaptive algo-
rithms, known covariance setting). There exists a con-
stant C such that no algorithm can estimate the optimal
reward with additive error ε and probability of success
at least 2/3 using a number of rounds that is less than

T = C

√
dK

ε2 log3/2(dK)
.

Our lower bound is novel, and we are not aware of sim-
ilar results in this setting. It is curious that the stan-
dard approach by simply bounding the KL-divergence
only yields a sub-optimal Õ(

√
dK) lower bound, since

the divergence contribution of each arm scales with
E[T 2

i ] instead of E[Ti] in the classical (non-contextual)
stochastic bandit setting. We apply a special condi-
tioning to get around this issue.

Our algorithmic techniques apply beyond the known
covariance setting, and we prove an analog of Corol-
lary 1 in the setting where the contexts x are drawn
from a Gaussian distribution with arbitrary unknown
covariance. Our general result, given in Corollary 7, is
quite complicated. Here we highlight the special case
where the desired accuracy ε and failure probability
δ are small positive constants, and the covariance is
well-conditioned:

Corollary 2 (Special case of main result, unknown
covariance setting). Assuming that the covariance of
the context xi satisfies σminId � Σ � σmaxI and
σmax/σmin is a constant, for constant ε, Algorithm
1 takes σmin, σmax, and a total number of

T = O(d1− C
log logK+log(1/ε)Kγ +

√
dK1+γ)

samples, where γ is any positive constant and C is a
universal constant.

In the unknown covariance setting, the dependency on
d of our algorithm is still sublinear, though is much
worse than the

√
d dependency in the known covariance

setting. However this can not be improved by much
as the lower bound result in Kong and Valiant (2018)
implies that the dependency on d is at least d1−Θ( 1

log 1/ε
)

It is worth noting that the techniques behind our re-
sult in the unknown covariance setting that achieves
sublinear sample complexity essentially utilizes a set of
unlabeled examples of size O(T ) to reduce the variance
of the estimator, where unlabeled examples are the con-
text vectors xi drawn from N(0,Σ). If one has an even
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larger set of unlabeled examples, the sample complexity
for the labeled examples can be significantly reduced.
For simplicity, we do not present a complete trade-off
result between the labeled and unlabeled examples in
this paper. Instead, we present one extreme case where
there is a sufficiently large set of unlabeled examples
(size Ω(d)), and the problem essentially reduces to the
known covariance problem.
Corollary 3 (Unknown covariance with a large set
of unlabeled examples). In the unknown covariance
setting, there is an algorithm that estimates the optimal
reward OPT with additive error ε with probability 1− δ
using a total number of labeled examples

T = Θ(

√
dK logK

ε2
log(K/δ)),

and a set of unlabeled examples of size Θ((d +
log 1/δ) log2K/ε4)

The algorithm that achieves the above result is straight
forward. We first estimate the covariance of the context
using the set of unlabeled examples up to ε spectral
norm error, and let us denote Σ̂ as the estimator. Given
the covariance estimator, we will execute Algorithm 1
for the known covariance setting, and scale each context
xi as Σ̂−1/2xi. The covariance of the scaled context is
not exactly the identity, hence our estimator is biased.
However, it is straight forward to show that the bias
is at most O(ε), which is on the same magnitude as
the standard deviation of our estimator. The proof is
deferred to the appendix.

Finally, we slightly generalize our results beyond the
Gaussian context setting and show that if each context
is drawn from a mixture of M Gaussian distributions
which is completely known to the algorithm, then our
algorithm can be applied to achieve ε estimation error
while the sample complexity only increases by a factor
of logM . The proof is deferred to the appendix.
Theorem 3 (Extension to Gaussian Mixtures). Sup-
pose each context x is drawn independently from a
mixture of Gaussian distributions

∑M
i=1 αiN(µi,Σi),

and the parameters µi,Σi, αi are all known to the algo-
rithm. In addition, let us assume that ‖µi‖, ‖Σi‖ are
all bounded by a constant. Then for any ε ≥

√
logK
d1/4

,
with probability 1− δ, there is an algorithm that esti-
mates the optimal reward OPT with additive error ε
using a total number of samples

T = Θ(

√
dK logK

ε2
log(KM/δ)).

4 The Estimators

The basic idea of our estimator for the optimal re-
ward of linear contextual bandits is as follows. For

illustration, we assume that each context x is drawn
from a standard Gaussian distribution N(0, Id). In
the realizable setting where the reward for pulling
arm a on context xj is βTa x + ba + ηa,j where βa, ba
are the parameters associated with arm a and ηa,j
is random noise with mean 0, the expected reward
of the optimal policy is simply Ex[maxa(β

T
a x + ba)].

Let us define the K dimensional random variable
r = (βT1 x + b1, β

T
2 x + b2, . . . , β

T
Kx + bK). Notice that

in the setting where x ∼ N(0, I), r is a K dimensional
Gaussian random variable with mean b = (b1, . . . , bK)
and covariance H where Ha,a′ = βTa βa′ . Hence in
this simplified setting, the optimal reward of the lin-
ear contextual bandit problem can be expressed as
Er∼N(b,H)[maxi ri] which is a function of b and H.
Naturally, one can hope to estimate the optimal re-
ward by first accurately estimating b and H. The bias
b can be accurately estimated up to entry-wise error
O(
√

1
N ) by computing the average of the reward of

each arm, simply because for any i, ya,i is an unbiased
estimator of ba.

Recently Kong and Valiant (2018) proposed an estima-
tor for βTβ in the context of learnability estimation,
or noise level estimation for linear regression. In the
setting where each covariate xi is drawn from a dis-
tribution with zero mean and identity covariance, and
response variable yi = βTxi + ηi with independent
noise ηi having zero mean, they observe that for any
i 6= j, yiyjxTi xj is an unbiased estimator of βTβ. In
addition, they showed that the error rate of estimating
βTβ using the proposed estimator 1

(N2 )

∑
i 6=j yiyjx

T
i xj

is O(d+N
N2 ) which implies that one can accurately es-

timate βTβ using N = O(
√
d) samples. Their esti-

mator can be directly applied to estimate βTa βa, and
we extend their techniques to the contextual bandit
setting for estimating βaβa′ for arbitrary a, a′. In or-
der to estimate βTa βa′ for a 6= a′, notice that for any
i, j, E[ya,iya′,jx

T
a,ixa′,j ] = βTa xa,ix

T
a,ixa′,jx

T
a′,jβa′ =

βTa βa′ , and we simply take the average of all these
unbiased estimators of βTa βa′ . We show that O(

√
d)

samples for each arm suffices for accurate estimation
of βTa βa′ for arbitrary pairs of arms a, a′.

Once we have estimates b̂, Ĥ for b and H, if Ĥ
is a PSD matrix, our algorithm simply outputs
Er∼N(b̂,Ĥ)(maxi ri), otherwise, let Ĥ(PSD) be the
projection of Ĥ on to the PSD cone and output
Er∼N(b̂,Ĥ(PSD))(maxi ri). Given an approximation of
b, H, it is not immediately clear how the errors in
estimating b, H translate to the error in estimating
Er∼N(b,H)[maxi ri]. Our Proposition 1 leverages a
quantitative version of the Sudakov-Fernique inequal-
ity due to Chatterjee (2005) and shows that if each
entry of H is perturbed by at most ε, the optimal re-
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ward Er∼N(b,H)[maxi ri] can only change by 2
√

logKε.
Because Ex∼N(b̂,Ĥ)(maxi xi + bi) has no closed-form
expression in general, we use Monte Carlo simulation
to approximate Ex∼N(b̂,Ĥ)(maxi xi + bi) in the imple-
mentation.

Our estimator for the general unknown covariance
setting is much more involved. Assuming each con-
text x is drawn from a Gaussian distribution with
zero mean and unknown covariance Σ, the opti-
mal reward Ex∼N(0,Σ)[maxa(β

T
a x + ba)] is equal to

Er∼N(b,H)[maxi ri] where r ∼ N(b, H) and Ha,a′ =
βaΣβa′ . Again, we extend the estimator proposed
in Kong and Valiant (2018) for βTΣβ in the linear
regression setting to the contextual linear bandit set-
ting for estimating βaΣβa′ for arbitrary a, a′. For
each a, a′, we design a series of unbiased estimators
for βTa Σ2βa′ , β

T
a Σ3βa′ , β

T
a Σ4βa′ , . . . and approximate

βTa Σβa′ with a linear combination of these high order
estimates. Our major contribution is a series of esti-
mators which incorporate unlabeled examples. In the
contextual bandit setting, especially when K is large,
it is essential to incorporate unlabeled data, simply
because when we estimate βaΣkβa′ , the large number
of examples which do not involve arm a or a′ are ef-
fectively unlabeled examples and can be leveraged to
significantly reduce the overall variance for estimating
βaΣkβa′ . We prove variance bounds in Corollary 6 for
these novel estimators whose accuracy depends on both
the number of labeled examples and unlabeled exam-
ples. As a side note, our estimator can also be applied
to the setting of estimating learnability to better utilize
the unlabeled examples. Proofs, where omitted, are in
the appendix.

4.1 Main Algorithm

Our main algorithm is described in Algorithm 1. In
line 1, we repeat the for loop body Θ(log(K/δ)) times,
and at each time, we collect n i.i.d. sample for each
arm. Hence the total number of samples for each arm
N = Θ(n(log(K/δ)). For ease of notations, we will use
n instead of N when we write down the error rate of
the algorithm.

In line 3, 4, 5, for each arm a we collect n i.i.d. samples
and estimate the bias of that arm ba. The estimation
error of the bias vector b is bounded by the following
corollary, and the claim holds by applying Chebyshev’s
inequality with the variance of ya,i.

Corollary 4. For each arm a, with probability 2/3,

| 1n
∑n
i=1 ya,i − ba| ≤ 3

√
1
nσa, where σ

2
a = Var[ya,i].

After estimating ba, we can subtract ba from all the
ya,i. For sufficiently large n, our estimate of ba is
accurate enough such that we can assume that ya,i =

βTa xa,i + ηa,i. After collecting n i.i.d. samples from
each arm, in the known covariance setting, we run
Algorithm 2 to estimate the covariance H in line 8. In
the unknown covariance setting, we need to split the n
examples for each arm into one labeled example set and
one unlabeled example set, and then run Algorithm 3
(see appendix) to estimate the covariance H. Bounds
on Algorithm 2 and Algorithm 3 are formulated in the
following two corollaries.
Corollary 5. Given n independent samples for each
arm, for a fixed pair a, a′, with probability at least 2/3,
the output of Algorithm 2 satisfies

|Ĥa,a′ −Ha,a′ | ≤ 3

√
9d+ 3n

n2
σaσa′ ,

where σ2
a = Var[ya,i].

The above corollary follows from applying Cheby-
shev’s inequality with the variance bound established
in Proposition 3 and Proposition 2.
Corollary 6. Given n independent samples for each
arm, and s unlabeled examples, for a fixed pair a, a′,
with probability at least 2/3, the output of Algorithm 3
satisfies

|Ĥa,a′ −Ha,a′ | ≤ min(
2

k2
, 2e
−(k−1)

√
σmin
σmax )

+f(k) max(
dk/2

sk/2
, 1)

√
d+ n

n2
,

where f(k) = kO(k).

The above corollary follows from applying Cheby-
shev’s inequality with the variance bound established
in Proposition 4. Notice that after sample splitting
in Algorithm 1, the size of the set of the unlabeled
examples s = Kn/2.

Since each entry of our estimate of b, the output of
Algorithm 2 and Algorithm 3, only satisfies the bound
in Corollary 4, Corollary 5 or Corollary 6 respectively
with probability 2/3, we boost the entry-wise success
probability to 1 − δ/(K2 + K) by repeating the esti-
mation procedure Θ(log(K/δ)) times and computing
the median of our estimates (line 19 to line 20), such
that the overall success probability is at least 1 − δ.
We formalize the effect of this standard procedure in
Fact 11.

Line 21 projects the matrix Ĥ onto the PSD cone and
obtains the PSD matrix ĤPSD. This step is a con-
vex optimization problem and can be solved efficiently.
By the triangle inequality and the upper bound of
maxi,j |Ĥi,j −Hi,j |, the discrepancy after this projec-
tion: maxi,j |Ĥ(PSD)

i,j −Hi,j | can be bounded with the
upper bound in Corollary 5 and Corollary 6 up to a
factor of 2.
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Now that we have established upper bounds on the
estimation error of b and H, we use these to bound
the estimation error of the optimal reward.
Proposition 1. Let H ∈ Rm×m and
H ′ ∈ Rm×m be two PSD matrices, b,b′

be two d-dimensional real vectors. We have
|Ex∼N(b,H)[maxi xi] − Ex∼N(b′,H′)[maxi xi]| ≤
2
√

maxi,j |Hi,j −H ′i,j | logK + maxi |bi − b′i|.

Algorithm 1 Main Algorithm for Estimating
OPT , the Optimal Reward [Corollary 1, Corol-
lary 2]
1: for i = 1 to d48(log(K2/δ) + 1)e do
2: for a = 1 to K do
3: Pull the a’th arm n times, and let matrix

Xa =
[
x>a,1 · · ·x>a,n

]> consists of the n con-
texts, ya =

[
ya,1 · · · ya,n

]> consists of the n
rewards.

4: b̂
(i)
a ← 1Tya/n. {Estimate ba.}

5: ya ← ya − b̂(i)a 1. {Subtract ba off to make it
zero mean.}

6: end for
7: if Known covariance then
8: Ĥ(i) ← Algorithm 2({Xa}Ka=1, {ya}Ka=1).

{Corollary 5}
9: else
10: for a = 1 to K do
11: X>a ←

[
x>a,1 · · ·x>a,n/2

]
.

12: y>a ←
[
y>a,1 · · · y>a,n/2

]
.

13: S>a ←
[
x>a,n/2+1 · · ·x

>
a,n

]
. {Split x into a

labeled and an unlabeled example set}
14: end for
15: S ←

[
S>1 · · ·S>K

]>.
16: Ĥ(i) ← Algorithm 3

({Xa}Ki=a, {ya}Ka=1, S, p(x)). {Corollary 6}
17: end if{Estimate H.}
18: end for
19: For all 1 ≤ i, j ≤ K,

Ĥi,j ←median(Ĥ
(1)
i,j , . . . , Ĥ

(d48(log(K2/δ)+1)e)
i,j ).

20: For all 1 ≤ i ≤ K,
b̂i ←median(b̂

(1)
i , . . . , b̂

(d48(log(K2/δ)+1)e)
i ).

21: Ĥ(PSD) ← argminM�0 maxi,j |Ĥi,j − Mi,j |
{Project onto the PSD cone under the max norm.}

22: Output:Er∼N(b̂,Ĥ(PSD))[maxi ri].

We are ready to state our main theorem for the known
covariance setting.
Theorem 4 (Main theorem on Algorithm 1, known
covariance setting). In the known covariance setting,
with probability at least 1 − δ, Algorithm 1 estimates
the expected reward of the optimal policy with error

bounded as follows:

|OPT − ÔPT | = O(
√

logK(
d+ n

n2
)1/4)

For the following main theorem on the general unknown
covariance setting, the proof is identical to the proof
of Theorem 4.

Theorem 5 (Main theorem on Algorithm 1, unknown
covariance setting). In the unknown covariance set-
ting, for any positive integer k, with probability 1− δ,
Algorithm 1 estimates the optimal reward OPT with
additive error:

|OPT − ÔPT | ≤ O
(√

logK
(

min(
1

k2
, e
−(k−1)

√
σmin
σmax )

+ f(k) max(
dk/2

sk/2
, 1)

√
d+ n

n2

)1/2
)
,

where f(k) = kO(k).

Choosing the optimal k in Theorem 5 yields the follow-
ing Corollary 7 on the overall sample complexity in the
unknown covariance setting.

Corollary 7. For any ε >
√

logK
d1/4

, with probability
1− δ, Algorithm 1 estimates the optimal reward OPT
with additive error ε using a total number of T =

Θ
(

log(K/δ) max(kO(1)d1−1/kK2/k, k
O(k)K logK

√
d

ε2 )
)

samples, where k = min(C1

√
logK/ε +

2,
√

σmax

σmin
(log(logK/ε2) + C2)) for universal con-

stants C1, C2.

In the next two sections, we describe our estimators
for H in the known covariance settings. The details of
Algorithm 3 for the unknown covariance setting can be
found in the appendix.

4.2 Estimating H in the Known Covariance
Setting

In this section, we show that the output of Algorithm 2
satisfies Proposition 2 and Proposition 3. As stated
earlier, we assume Σ = I and E[x] = 0 in this section.

To bound the estimation error of H, first observe that
Ĥa,a =

yTaAupya

(n2)
computed in Algorithm 2 is equal

to 1

(n2)

∑
i<j ya,iya,jx

T
a,ixa,j . The following proposition

on the estimation error of Ĥa,a is a restatement of
Proposition 4 in Kong and Valiant (2018).

Proposition 2 (Restatement of Proposition 4 in Kong
and Valiant (2018)). For each arm a, define Ĥa,a =

1

(n2)

∑
i<j ya,iya,jx

T
a,ixa,j and Ha,a = βTa βa. Then

E[Ĥa,a] = Ha,a and E[(Ĥa,a −Ha,a)2] ≤ 9d+3n
n2 σ4

a.
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Algorithm 2 Estimating βTa βa′ , Identity covari-
ance [Proposition 2, Proposition 3]
1: Input: X1 = [x>1,1, · · · ,x>1,n]>, . . . , XK =

[x>K,1, · · · ,x>K,n]>,y1 = [y>1,1, · · · , y>1,n]>, . . . ,yK
= [y>K,1, · · · , y>K,n]>

2: for a = 1 to K do
3: A← (XaX

T
a )up where (XaX

T
a )up is the matrix

XaX
T
a with the diagonal and lower triangular

entries set to zero.
4: Ĥa,a ← yTaAupya/

(
n
2

)
.

5: for a′ = a+ 1 to K do
6: Ĥa,a′ ← yTaXaX

T
a′ya′/

(
n
2

)
.

7: Ĥa′,a ← Ĥa,a′ .
8: end for
9: end for
10: Output: Ĥ.

The estimate Ĥa,a′ = yTaXaX
T
a′ya′/

(
n
2

)
computed in

Algorithm 2 is equivalent to 1
n2

∑
i,j ya,iya′,jx

T
a,ixa′,j ,

and the following proposition bounds the estimation
error of Ĥa,a′ for a 6= a′.

Proposition 3. For a pair of arms a, a′, define
Ĥa,a′ = 1

n2

∑
i,j ya,iya′,jx

T
a,ixa′,j and Ha,a′ = βTa βa′ .

Then E[Ĥa,a′ ] = Ha,a′ and E[(Ĥa,a′ − Ha,a′)
2] ≤

9d+3n
n2 σ2

aσ
2
a′ .

5 Experiments

We now provide some empirical indication of the benefit
of our approach. In these experiments, we consider
the known covariance setting. As long as prior data
about contexts is available, as is often the case for
consumer, health and many other applications, it would
be possible to estimate the covariance in advance.

We first present results in a synthetic contextual multi-
armed bandits setting. There are K = 5 arms, and
the input context vectors are drawn from a normal
distribution with 0 mean and an identity covariance
matrix. Our results are displayed in Figure 1 for con-
text vectors of dimension 500, 2,000 and 50,000. Here
our aim is to illustrate that we are able to estimate
the optimal reward accurately after seeing significant
fewer contexts than would be required by the stan-
dard alternative approach for contextual bandits which
would try to estimate the optimal policy, and then es-
timate the performance of that policy. More precisely,
in this setting we use the linear disjoint contextual
bandits algorithm Li et al. (2010) to estimate the β
and covariance for each arm (with an optimally chosen
regularization parameter in the settings where n < d).
We then define the optimal policy as the best policy
given those empirical estimates. We show the true

reward of this learned policy.

We also present results for a real-world setting that
mimics a standard recommendation platform trying to
choose which products to recommend to a user, given
a high-dimensional featurization for that user. Our ex-
periment is based on the Jester dataset (Goldberg et al.,
2001). This is a well studied dataset which includes
data for >70,000 individuals providing ratings for 100
jokes. We frame this as a multi-armed bandit setting
by holding out the 10 most-rated jokes, and attempt
to learn a policy to select which of these jokes to offer
to a particular input user, based on a feature set that
captures that user’s preferences based on the ratings
for the remaining 90 jokes. We keep a set of 48447
users who each rated all of the 10 most popular jokes.
For each person, we create a d = 2000 dimensional fea-
ture vector by multiplying their 90-dimensional vector
of joke ratings (with missing entries replaced by that
user’s average rating) by a random 90× 2000 matrix
(with i.i.d. N(0, 1) entries), and then applying a sig-
moid to each of the resulting values. The reward is the
user’s reported rating for the joke selected by the pol-
icy. We found that the optimal expected linear policy
value using this featurization was 2.98 (out of a range
of 0 to 5). For comparison, the same approach with
d = 100 has optimal policy with value 2.81, reflecting
the fact that linear functions of the lower dimensional
featurization cannot capture the preferences of the user
as accurately as the higher dimensional featurization.
Even for d = 2000, the full dataset of ≈ 50, 000 people
is sufficient to accurately estimate this “ground truth”
optimal policy. Based on this d = 2000 representation
of the user’s context, we find that even with n = 500
contexts, we can accurately estimate the optimal re-
ward of the best threshold policy, to within about 0.1
accuracy, which improves significant for n ≥ 1000 (Fig-
ure 2). Note that this is significantly lower than we
would need to compute any optimal policy.

We also evaluated our algorithm on NCI-60 Cancer
Growth Inhibition dataset, where the cell growth in-
hibition effect is recorded for different types of chemi-
cal compounds tested on 60 different cancer cell lines
with different concentration levels. We picked 26, 555
types of chemicals that are tested on the NCI-H23
(non-small cell lung cancer) cell line with concentra-
tion level: −4,−5,−6,−7,−8 log10(M). We obtain the
1000-dimensional Morgan Fingerprints representation
of each chemical from its SMILES representation using
the Morgan algorithm implemented in RDKit. This is
a standard method for featurizing chemical compounds.
The task is to choose the most effective concentration
level (among the five concentration levels) for the chem-
ical compound, given the high-dimensional feature rep-
resentation of the compound. We re-scaled the cancer
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Figure 1: The three synthetic data plots depict our algorithm for estimating the optimal reward in a synthetic
domain with dimension d = 500 (left), d=2,000 (center), and d =50,000 (right) in the setting with m = 5
arms corresponding to independently chosen vectors β1, . . . , β5 ∈ Rd with entries chosen independently from
N(0, 1). Our estimated value of the optimal reward is accurate when the sample size is significantly less than d, a
regime where the best learned policy does not accurately represent the optimal policy. In each plot the blue line
corresponds to the true reward of the optimal policy, and the red lines depicts the performance of the learned
policy at that sample size using LinUCB.
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Figure 2: The plot depicts optimal reward estimation
for a recommendation system that recommends 1 of 10
jokes (arms), where features are based on evaluations
of 90 other jokes, represented in a d = 2000 space.

inhibition effect as between 0 and 200, where 0 means
no growth inhibition, 100 means completion growth
inhibition, and 200 means the cancer cells are all dead.
Figure 3 depicts the result of running our algorithm
and LinUCB algorithm (Li et al., 2010). The blue line
depicts the true reward (65.29) of the optimal policy
estimated from all 26, 555 datapoints. The red line
depicts the average reward and confidence interval over
the last 100 rounds by executing the LinUCB algorithm
with α = 1 and different sample sizes. Notice that the
LinUCB algorithm is fully adaptive and a given sample
size n in Figure 3 actually corresponds to running the
LinUCB algorithm for 5n rounds. Unlike our algorithm
which achieves an accurate estimate with roughly 500
samples per arm, LinUCB is unable to learn a good
policy even with 5 × 4000 = 20000 adaptive rounds.
In this example, there is very little linear correlation
between the features of the chemical compound and
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Figure 3: Evaluation on NCI-60 growth inhibition data.
The blue line corresponds to the expected growth inhi-
bition of the optimal policy. The red line is the reward
and the confidence interval provided by LinUCB.

the inhibition effect, and simply always choosing the
highest concentration achieves near-optimal reward.
However, it takes thousands of rounds for the disjoint
LinUCB algorithm to start playing near optimally.

6 Conclusion

To conclude, we present a promising approach for esti-
mating the optimal reward in linear disjoint contextual
bandits using a number of samples that is sublinear
in the input contextual dimension. Without further
assumptions, a linear number of samples is required to
output a single potentially optimal policy. There exist
many interesting directions for future work, including
considering more generic contextual bandit settings
with an infinite set of arms.
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A Proof of Proposition 1

Proof of Proposition 1. The following lemma is a restatement of Theorem 1.2 of Chatterjee (2005) which bound
the change of the expected maximum by the entry-wise perturbation of the covariance matrix.

Lemma 1 (Theorem 1.2 of Chatterjee (2005)). Let H ∈ RK×K , H ′ ∈ RK×K be two PSD matrices, and b ∈ RK
be a K-dimensional real vector. Let γ = maxi,j |Hi,j −H ′i,j |, then

|Ex∼N(b,H)[max
i
xi]−Ex∼N(b,H′)[max

i
xi]| ≤ 2

√
γ logK.

Lemma 1 handles the perturbation of the covariance matrix. The following simple proposition handles the
perturbation of the mean, which, combined with Lemma 1, immediately implies the statement of our proposition.

Lemma 2. Let H ∈ RK×K be a PSD matrices, and b,b′ ∈ RK be two K-dimensional real vectors. Then

|Ex∼N(b,H)[max
i
xi]−Ex∼N(b′,H)[max

i
xi]| ≤ max

i
|bi − b′i|.

Proof of Lemma 2. Let x ∼ N(b, H) and x′ = x + b′ − b. Then the random vector x′ follows from N(b′, H).
We have

|E[max
i
xi]−E[max

i
x′i]| ≤ E[|max

i
xi −max

i
x′i|] ≤ max

i
|bi − b′i|,

which concludes the proof.

Combining the two lemma, we have that

|Ex∼N(b,H)[max
i
xi]−Ex∼N(b′,H′)[max

i
xi]| ≤ 2

√
max
i,j
|Hi,j −H ′i,j | logK + max

i
|bi − b′i|,

which concludes the proof.

B Proofs of the Upper Bounds in the Known Covariance Setting

Proof of Proposition 3. We need the following fact about the 4-th moment of Gaussian distribution in the proof
of this proposition.

Fact 1. Let x ∼ N(0, Id). E[(uTx)2(vTx)2] = ‖u‖2‖v‖2 + 2(uTv)2 ≤ 3‖u‖2‖v‖2

It’s easy to verify that E[Ĥa,a′ ] = Ha,a′ . E[(Ĥa,a′ −Ha,a′)
2] can be expressed as

1

n4

∑
i,j,i′,j′

(E[ya,iya′,jya,i′ya′,j′x
T
a,ixa′,jx

T
a,i′xa′,j′ ]

−E[ya,iya′,jx
T
a,ixa′,j ]E[ya,i′ya′,j′x

T
a,i′xa′,j′ ]).

For each term in the summation, we classify it into one of the 3 different cases according to i, j, i′, j′:

1. If i 6= i′ and j 6= j′, the term is 0, simply because ya,iya′,jxTa,ixa′,j is independent of ya,i′ya′,j′xTa,i′xa′,j′ .

2. If i = i′ and j 6= j′, the term can then be expressed as:

E[y2
a,iya′,jya′,j′x

T
a,ixa′,jx

T
a,ixa′,j′ ]− (βTa βa′)

2

= E[y2
a,i(β

T
a′xa,i)

2]− (βTa βa′)
2

≤ E[(βaxa,i)
2(βa′xa,i)

2] + E[η2
a,i]‖βa′‖2 − (βTa βa′)

2

= ‖βa‖2‖βa′‖2 + (βaβ
>
a′)

2 + E[η2
a,i]‖βa′‖2 (2)

≤ 3σ2
aσ

2
a′ , (3)

where Equation 2 follows from Fact 1 and Equation 3 follows from the fact that ‖βa‖2 + E[η2
a,i] ≤ σ2

a,
‖βa′‖2 + E[η2

a,i] ≤ σ2
a′ .
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3. If i 6= i′ and j = j′, this case is symmetric to the last case and 3σ2
aσ

2
a′ is an upper bound.

4. If i = i′ and j = j′, the term can then be expressed as:

E[y2
a,iy

2
a′,j(x

T
a,ixa′,j)

2]− (βTa βa′)
2.

First taking the expectation over xa′,j , ya′,j and applying Fact 1, we have the term upper bound by

≤ E[y2
a,iy

2
a′,j(x

T
a,ixa′,j)

2]

≤ 3E[y2
a,i(x

T
a,ixa,i)]σ

2
a′ .

Using the fact that xTa,ixa,i =
∑d
l=1(eTj xa,i)

2 we have

3σ2
a′

d∑
l=1

E[y2
a,i(e

T
j xa,i)

2

≤ 3σ2
a′

d∑
l=1

(3‖βa‖2 + E[η2
a,i]) (4)

≤ 9dσ2
aσ

2
a′ ,

where we have applied Fact 1 in Equation 4.

The final step is to sum the contributions of these 3 cases. Case 2 and 3 have 4
(
n
3

)
different quadru-

ples (i, j, i′, j′). Case 4 has
(
n
2

)
different quadruples (i, j, i′, j′). Combining the resulting bounds yields:

1
n4

∑
i,j,i′,j′(E[ya,iya′,jya,i′ya′,j′x

T
a,ixa′,jx

T
a,i′xa′,j′ ]−E[ya,iya′,jx

T
a,ixa′,j ]E[ya,i′ya′,j′x

T
a,i′xa′,j′ ]) ≤ 3n+9d

n2 σ2
aσ

2
a′ .

Proof of Theorem 4. Applying Fact 11 on top of Corollary 5, we have that for a fixed i, j, with probability at
least 1− exp(− log(K2/δ− 1) ≥ 1− δ/(K2 +K), the median estimates Ĥ of Algorithm 1 satisfies |Ĥi,j −Hi,j | ≤
3
√

9d+3n
n2 σiσj . We define σ̄ such that σi ≤ σ̄ for all i. Applying Fact 11 with Corollary 4, we get that for a fixed

i, with probability at least 1− exp(− log(K2/δ)− 1) ≥ 1− δ/(K2 +K), the median estimates b̂ of Algorithm 1

satisfies |b̂i− bi| ≤ 3
√

1
nσi. Hence by a union bound, we have that with probability at least 1− δ, Ĥ and b̂ satisfy

max
i,j
|Ĥi,j −Hi,j | ≤ 3

√
9d+ 3n

n2
σ̄2,

max
i
|b̂i − bi| ≤ 3

√
1

n
σ̄.

In order to bound the discrepancy between Ĥ(PSD) and H, notice that by the optimality of Ĥ(PSD), there is
max |Ĥ(PSD)

i,j − Ĥi,j | ≤ max |Hi,j − Ĥi,j |. Applying triangle inequality, we have

max |Ĥ(PSD)
i,j −Hi,j |

≤max |Ĥ(PSD)
i,j − Ĥi,j |+ max |Hi,j − Ĥi,j |

≤6

√
9d+ 3n

n2
σ̄2

Thus, by Proposition 1, with probability 1− δ the final estimation error is bounded by

|OPT − ÔPT | ≤ 7
√

logK(
3d+ n

n2
)1/4σ̄ + 3

1√
n
σ̄

≤ 10
√

logK(
3d+ n

n2
)1/4σ̄

= O(
√

logK(
d+ n

n2
)1/4),

where we have apply the fact that σ̄ is a constant.
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Corollary 1 follows immediately from Theorem 4.

Proof of Corollary 1. In order to achieve additive error ε, we set n = Θ( logK
ε2 max(

√
d, logK

ε2 )) = Θ(
√
d logK
ε2 )

where the last equality holds by Theorem 4 and the assumption on ε. Algorithm 1 in total requires T =

Θ(nK(logK + log(1/δ))) = Θ(
√
dK logK
ε2 (logK + log(1/δ))) samples.

C Algorithm for Estimating H in the Unknown Covariance Setting

In this section, we present the algorithm for estimating H in the unknown covariance setting and its main
proposition. We assume each context xa,i of the input of Algorithm 3 is drawn from N(0,Σ).

Algorithm 3 Estimating βTa Σβa′ , General covariance [Proposition 4]
1: Input: X1 = [x>1,1, · · · ,x>1,n]>, . . . , XK = [x>K,1, · · · ,x>K,n]>,y1 = [y>1,1, · · · , y>1,n]>, . . . ,yK

= [y>K,1, · · · , y>K,n]>, unlabeled examples X = [x>1 , · · · ,x>s ]> and degree k+ 2 polynomial p(x) =
∑k
i=0 aix

i+2

that approximates the function f(x) = x for all x ∈ [σmin, σmax], where σmin and σmax are the minimum and
maximum singular values of the covariance of the distribution from which the xi’s are drawn.

2: G← (XXT )up where (XXT )up is the matrix XXT with the diagonal and lower triangular entries set to zero.
3: P ← a0Id +

∑k
t=1

at
(st)
XTGt−1X.

4: for i = 1 to m do
5: Ĥa,a ← yTa (XaPX

T
a )upya/

(
n
2

)
.

6: for a′ = a+ 1 to m do
7: Ĥa,a′ ← yTaXaPX

T
a′ya′/n

2.
8: end for
9: end for
10: Output: Ĥ.

D Proofs of the Upper Bounds in the Unknown Covariance Setting

The following is the main proposition for Algorithm 3. Note 1

(n2)
yTa (XaX

T
a )upya is an unbiased estimator of

βTa Σ2βa, and 1
n2y

T
aXaX

T
a′ya′ is an unbiased estimator of βTa Σ2βa′ . As in Algorith 3, define G = (XXT )up

where (XXT )up is the matrix XXT with the diagonal and lower triangular entries set to zero. For any
t ≥ 1, 1

(n2)
yTa (Xa

XTGt−1X

(st)
XT
a )upya is an unbiased estimator of βTa Σ2+tβa, and 1

n2y
T
aXa

XTGt−1X

(st)
XT
a′ya′ is an

unbiased estimator of βTa Σ2+tβa′ . Proposition 3 of Kong and Valiant (2018) provides a degree k polynomial

with approximation error min( 2
k2 , 2e

−1(k−1)
√

σmin
σmax ) in the interval [σmin, σmin]. Given accurate estimation of

βTa Σ2βa′ , β
T
a Σ3βa′ , β

T
a Σ4βa′ , . . ., one can linearly combine these estimates to approximate βaΣβ where the

coefficients correspond to the coefficients of x2, x3, x4, . . . in the polynomial provided by Proposition 3 of Kong
and Valiant (2018). We plug in such a polynomial to Algorithm 3 and obtain the following proposition on the
approximation of diagonal entry Ha,a = βaΣβa and off-diagonal entry Ha,a′ = βaΣβa′ .

Proposition 4. Let p(x) be a degree k + 2 polynomial p(x) =
∑k
i=0 aix

i+2 that approximates the function
f(x) = x for all x ∈ [σmin, σmax], where σminId � Σ � Idσmax. Let G = (XXT )up where (XXT )up is the matrix
XXT with the diagonal and lower triangular entries set to zero, and P = a0Id+

∑k
t=1

at
(st)
XTGt−1X be the matrix

P defined in Algorithm 3. We have that for any a 6= a′,

E[(
yTa (XaPX

T
a )upya(

n
2

) − βaΣβa)2]

≤ min(
4

k4
, 4e
−2(k−1)

√
σmin
σmax ) + f(k) max(

dk

sk
, 1)

d+ n

n2
,
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and

E[(
yTaXaPX

T
a′ya′

n2
− βaΣβa′)

2]

≤ min(
4

k4
, 4e
−2(k−1)

√
σmin
σmax ) + f(k) max(

dk

sk
, 1)

d+ n

n2
,

for f(k) = kO(k).

D.1 Proof of Proposition 4, Estimating H in the Unknown Covariance Setting.

In order to prove Proposition 4, we first prove Proposition 5 and Proposition 6, where Proposition 5 gives a
variance bound for our estimator of βaΣk+2βa for k ≥ 0, and Proposition 6 gives a variance bound for our
estimator of βaΣk+2βa′ for k ≥ 0. Then Proposition 4 holds by combining the two propositions.

Proposition 5. For arm a, We denote {xi} as a set of unlabeled examples, where |xi| = s.

E[
1(

s
k

)(
n
2

) ∑
i<j

ya,iya,jx
T
a,i

( ∑
i1<i2<...<ik

xi1x
T
i1xi2x

T
i2 . . .xikx

T
ik

)
xa,j)] = βTa Σk+2βa

Var[
1(

s
k

)(
n
2

) ∑
i<j

ya,iya,jx
T
a,i

( ∑
i1<i2<...<ik

xi1x
T
i1xi2x

T
i2 . . .xikx

T
ik

)
xa,j)] = f(k) max(

dk

sk
, 1)

d+ n

n2
),

where f(k) = kO(k)

Proof. Notice that for i < j, ya,iya,jxTa,i
(∑

i1<i2<...<ik
xi1x

T
i1
xi2x

T
i2
. . .xikx

T
ik

)
xa,j is an unbiased estimator for

βTa Σk+2βa. Since the average of unbiased estimators is still an unbiased estimator, the proposition statement
about the expectation holds. We write the variance of the estimator as follows,

1(
n
2

)2 ∑
i<j,i′<j′

(E[ya,iya,jx
T
a,i

(
1(
s
k

) ∑
i1<i2<...<ik

xi1x
T
i1xi2x

T
i2 . . .xikx

T
ik

)
xa,jya,i′ya,j′x

T
a,i′ (5)

(
1(
s
k

) ∑
i1<i2<...<ik

xi1x
T
i1xi2x

T
i2 . . .xikx

T
ik

)
xa,j′ ]− (βTa Σk+2βa)2) (6)

=
1(
n
2

)2 ∑
i<j,i′<j′

(E[ya,iya,jx
T
a,i

(
1(
s
k

) ∑
i1<i2<...<ik

xi1x
T
i1xi2x

T
i2 . . .xikx

T
ik

)
xa,jya,i′ya,j′x

T
a,i′ (7)

(
1(
s
k

) ∑
i1<i2<...<ik

xi1x
T
i1xi2x

T
i2 . . .xikx

T
ik

)
xa,j′ − ya,iya,jxTa,iΣkxa,jya,i′ya,j′xTa,i′Σkxa,j′ ] (8)

+E[ya,iya,jx
T
a,iΣ

kxa,jya,i′ya,j′x
T
a,i′Σ

kxa,j′ ]− (βTa Σk+2βa)2). (9)

For each term in the summation, we classify it into one of the 3 different cases according to i, j, i′, j′:

1. If i 6= i′ and j 6= j′, the term is 0.

2. If i = i′ and j 6= j′, the term can be written as E[y2
a,ix

T
a,i

(∑
i1<i2<...<ik

xi1x
T
i1
xi2x

T
i2
. . .xikx

T
ik

)
Σβ

xTa,i
(∑

i1<i2<...<ik
xi1x

T
i1
xi2x

T
i2
. . .xikx

T
ik

)
Σβ − y2

a,ix
T
a,iΣ

k+1βxTa,iΣ
k+1β] + E[y2

a,ix
T
a,iΣ

k+1βxTa,iΣ
k+1β] −

(βTa Σk+2βa)
2). By Lemma 2 of Kong and Valiant (2018), the first expectation is bounded by

f(k) max(d
k−1

sk
, 1
s )E[y2

a,ix
T
a,ixa,i] = O(f(k) max(d

k

sk
, ds )), and the second difference is bounded by constant by

the four moment condition of Gaussian.

3. If i 6= i′ and j = j′, this case is symmetric to case 2.
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4. If i = i′ and j = j′, the term can be written as E[y2
a,iy

2
a,jx

T
a,i

(∑
i1<i2<...<ik

xi1x
T
i1
xi2x

T
i2
. . .xikx

T
ik

)
xa,j

xTa,i
(∑

i1<i2<...<ik
xi1x

T
i1
xi2x

T
i2
. . .xikx

T
ik

)
xa,j − (ya,iya,jx

T
a,iΣ

kxa,j)
2] + E[(ya,iya,jx

T
a,iΣ

kxa,j)
2] −

(βTa Σk+2βa)2). By Lemma 2 of Kong and Valiant (2018), the first expectation is bounded by

f(k) max(
dk−1

sk
,

1

s
)E[y2

a,ix
T
a,ixa,i]E[y2

a,jx
T
a,jxa,j ] = O(f(k)dmax(

dk

sk
,
d

s
))

, and the second difference is bounded by O(d) by the four moment condition of Gaussian.

The final step is to sum the contributions of these 3 cases. Case 2 has O(n3) different quadruples (i, j, i′, j′).
Case 4 has n2 different quadruples (i, j, i′, j′). Combining the resulting bounds yields the following bound on the
variance: 1

(n2)
2 (n3 max(d

k

sk
, ds , 1) + n2dmax(d

k

sk
, ds , 1)) = f(k) max(d

k

sk
, 1)d+n

n2 .

Proposition 6. For arm a 6= a′, let µa =
∑
j ya,jxa,j

n , µa′ =
∑
j ya′,jxa′,j

n . We denote {xi} as a set of unlabeled
examples, where |xi| = s.

E[
1(
s
k

)µTa
( ∑
i1<i2<...<ik

xi1x
T
i1xi2x

T
i2 . . .xikx

T
ik

)
µa′ ] = βTa Σk+2βa′

Var[
1(
s
k

)µTa
( ∑
i1<i2<...<ik

xi1x
T
i1xi2x

T
i2 . . .xikx

T
ik

)
µa′ ] = f(k) max(

dk

sk
, 1)

d+ n

n2
,

where f(k) = kO(k).

Proof. Notice that E[µa] = Σβa. It’s easy to see that

E[µaxi1x
T
i1 . . .xikx

T
ik
µa′ ] = βaΣk+2βa′ .

For the variance bound, we can express the variance as the summation of the following two terms,

Eµa,µa′ [Ex[(
1(
s
k

)µTa
( ∑
i1<i2<...<ik

xi1x
T
i1xi2x

T
i2 . . .xikx

T
ik

)
µa′)

2]− (µaΣk+2µa′)
2]

+Eµa,µa′ [(µaΣkµa′)
2 − (βaΣk+2βa′)

2].

The first term, by Lemma 2 of Kong and Valiant (2018) and Fact 3, is bounded by

f(k) min(
dk−1

sk
,

1

s
)Eµa,µa′ [‖µa‖

2‖µa′‖2] ≤ f(k) max(
dk−1

sk
,

1

s
) max(

d2

n2
, 1).

The second term, by Proposition 7, is bounded by O(d+n
n2 ), and summing up the two bounds yields the desired

variance bound.

Before proving Proposition 4, we first briefly show that the quantity computed in Algorithm 3 is equivalent to the
estimators appear in Proposition 5 and Proposition 6.

Fact 2. For any t ≥ 1, 1

(n2)
yTa (Xa

XTGt−1X

(st)
XT
a )upya = βTa Σ2+tβa and 1

n2y
T
aXa

XTGt−1X

(st)
XT
a′ya′ = βTa Σ2+tβa′

Proof. Denote A = (Xa
XTGt−1X

(st)
XT
a )up. Ai,j can be expanded as

1(
s
t

) ∑
i1,i2,...,it

xTa,ixi1x
T
i1xi2x

T
i2xi3 . . .xitxa,j .

Since G is an upper triangular matrix, the summation is equivalent to

1(
s
t

) ∑
i1<i2<...<it

xTa,ixi1x
T
i1xi2x

T
i2xi3 . . .xitxa,j .
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We can further expand 1

(n2)(
s
t)
yTaAya as 1

(n2)(
s
t)

∑
i,j ya,iAi,jya,j = 1

(n2)(
s
t)

∑
i<j ya,iAi,jya,j since A is an upper

triangular matrix. Plugging in the expansion of Ai,j , we get the expansion

1(
s
k

)(
n
2

) ∑
i<j

ya,iya,jx
T
a,i

( ∑
i1<i2<...<it

xi1x
T
i1xi2x

T
i2 . . .xitx

T
it

)
xa,j),

which by Proposition 5 is an unbiased estimator of βaΣt+2βa. The case for βaΣt+2βa′ can be proved analogously.

We restate Proposition 4 as follows:

Proposition 4. Let p(x) be a degree k + 2 polynomial p(x) =
∑k
i=0 aix

i+2 that approximates the function
f(x) = x for all x ∈ [σmin, σmax], where σmin and σmax are the minimum and maximum singular values of Σ. Let
P = a0Id +

∑k
t=1

at
(st)
XTGt−1X be the matrix P defined in Algorithm 3. We have that for any a 6= a′,

E[(
yTa (XaPX

T
a )upya(

n
2

) − βaΣβa)2] ≤ min(
4

k4
, 4e
−2(k−1)

√
σmin
σmax ) + f(k) max(

dk

sk
, 1)

d+ n

n2
,

E[(
yTaXaPX

T
a′ya′(

n
2

) − βaΣβa′)
2] ≤ min(

4

k4
, 4e
−2(k−1)

√
σmin
σmax ) + f(k) max(

dk

sk
, 1)

d+ n

n2
,

for f(k) = kO(k).

Proof of Proposition 4. Notice that P = a0Id +
∑k
t=1

at
(st)
XTGt−1X. By definition, we have

E[(
yTa (XaPX

T
a )upya(

n
2

) − βaΣβa)2]

= E[

(
a0

yTa (XaX
T
a )upya(

n
2

) − βTa Σ2βa +

k∑
t=1

(
at
aty

T
a (XaX

TGt−1XXT
a )upya(

n
2

) − atβTa Σ2+tβa

)

+

k∑
t=0

βTa Σ2+tβa − βaΣβa

)2

]

= E[

(
a0

yTa (XaX
T
a )upya(

n
2

) − βTa Σ2βa +

k∑
t=1

(
at
aty

T
a (XaX

TGt−1XXT
a )upya(

n
2

) − atβTa Σ2+tβa

))2

]

+

( k∑
t=0

βTa Σ2+tβa − βaΣβa

)2

,

where in the last inequality we use the unbiasedness of these estimators. By Proposition 5, Proposition 6 and
due to the fact that for any random variable X1, X2, . . . , Xk, E[(X1 + X2 + . . . + Xk)2] =

∑
i,j E[XiXj ] ≤∑

i,j

√
E[X2

i ]E[X2
j ] = (

∑
i

√
E[X2

i ])2. The above equation is bounded by

≤ k2f ′(k) max(
dk

sk
,
d

s
)
d+ n

n2
+

( k∑
t=0

βTa Σ2+tβa − βaΣβa

)2

≤ f(k) max(
dk

sk
, 1)

d+ n

n2
+ min(

4

k4
, 4e
−2(k−1)

√
σmin
σmax )

where we have applied Proposition 3 of Kong and Valiant (2018) in the last inequality. The case for βaΣβa′ can
be handled analogously, and this concludes the proof.

The following are the auxiliary propositions that facilitate the proof in this sections.
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Fact 3. For each arm a, let µa =
∑
j ya,jxa,j

n . Then E[‖µa‖2] = O(d+n
n )

Proof. E[‖µa‖2] = 1
n2 (
∑
i 6=j ya,iya,jx

T
a,ixa,j +

∑
i y

2
a,ix

T
a,ixa,i) = O(‖βa‖2)+ 1

n2

∑
i y

2
a,ix

T
a,ixa,i ≤ O((1+ nd

n2 )σ2
a) =

O(n+d
n ).

The following proposition is a slightly more stronger version of Proposition 3. We omit the proof since it is almost
identical to the proof of Proposition 3.

Proposition 7. For arm a 6= a′, let µa =
∑
j ya,jxa,j

n , µa′ =
∑
j ya′,jxa′,j

n . Let A be a real d× d matrix such that
‖A‖ = O(1). We have Var[µaAµb] = O(d+n

n2 )

D.2 Proof of Theorem 5 and Corollary 7, Main Result in the Unknown Covariance Setting

We are ready to prove the main theorem of the unknown covariance, and we restate Theorem 5 as follows,

Theorem 5. In the unknown covariance setting, for any positive integer k, with probability 1− δ, Algorithm 1
estimates the optimal reward OPT with additive error:

|OPT − ÔPT | ≤ O

√logK

(
min(

1

k2
, e
−(k−1)

√
σmin
σmax ) + f(k) max(

dk/2

sk/2
, 1)

√
d+ n

n2

)1/2
 ,

where f(k) = kO(k).

Proof of Theorem 5. Applying Fact 11 on top of Corollary 6, we have that for a fixed i, j, with probability at
least 1− δ/(K2 +K), the median estimates Ĥ of Algorithm 1 satisfies

|Ĥi,j −Hi,j | ≤ min(
2

k2
, 2e
−(k−1)

√
σmin
σmax ) + f(k) max(

dk/2

sk/2
, 1)

√
d+ n

n2
.

Applying Fact 11 with Corollary 4, we get that for a fixed i, with probability at least 1− δ/(K2 +K), the median

estimates b̂ of Algorithm 1 satisfies |b̂i − bi| = O(
√

1
n ). Hence by a union bound, we have that with probability

at least 1− δ, Ĥ and b̂ satisfy

|Ĥi,j −Hi,j | ≤ min(
2

k2
, 2e
−(k−1)

√
σmin
σmax ) + f(k) max(

dk/2

sk/2
, 1)

√
d+ n

n2
.

max
i
|b̂i − bi| ≤ O(

√
1

n
).

In order to bound the discrepancy between Ĥ(PSD) and H, notice that by the optimality of Ĥ(PSD), there is
max |Ĥ(PSD)

i,j − Ĥi,j | ≤ max |Hi,j − Ĥi,j |. Applying triangle inequality, we have

max |Ĥ(PSD)
i,j −Hi,j |

≤max |Ĥ(PSD)
i,j − Ĥi,j |+ max |Hi,j − Ĥi,j |

≤2|Hi,j − Ĥi,j |

Thus, by Proposition 1, with probability 1− δ the final estimation error is bounded by

|OPT − ÔPT | ≤ O

√logK

(
min(

1

k2
, e
−(k−1)

√
σmin
σmax ) + f(k) max(

dk/2

sk/2
, 1)

√
d+ n

n2

)1/2
 .
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Proof of Corollary 7. Let C be the constant in Theorem 5. We can find constants C1, C2 such that setting
k = min(C1

√
logK/ε,

√
σmax

σmin
(log(logK/ε2) + C2)) implies that

C2 logK min(
1

k2
, e
−(k−1)

√
σmin
σmax ) ≤ ε2

2
.

Then we set

n = Θ
(

max(
(logK)2/(k+2)kO(1)d1−1/(k+2)

ε4/(k+2)K1−2/(k+2)
,
kO(k) logK

√
d

ε2
)
)
,

and it can be verified that

C logKf(k) max(
dk/2

(Kn/2)k/2
, 1)

√
d+ n

n2
≤ ε2

2
,

where we have applied the assumption that ε ≥
√

logK
d1/4

. Given our assumption on k, it is straightforward to verify
that (logK)2/(k+2)/ε4/(k+2) = O(1). Hence the condition on n can be simplified to

n = Θ(max(
kO(1)d1−1/(k+2)

K1−2/(k+2)
,
kO(k) logK

√
d

ε2
)).

Given these n and k, it is not hard to verify that

C
√

logK(min(
1

k2
, e
−(k−1)

√
σmin
σmax )

+ f(k) max(
dk/2

(Kn/2)k/2
, 1)

√
d+ n

n2
)1/2 ≤ ε,

and this concludes the proof.

D.3 Proof of Corollary 3, Estimating OPT with a Large Set of Unlabeled Examples

Proof of Corollary 3. Denote multiset S = {x1, . . . ,xs} as the set of unlabeled examples where s = Θ((d +
log 1/δ) log2K/ε4), and Σ̂ = 1

s

∑s
i=1 xix

T
i as the covariance estimator. By standard matrix concentration results

(e.g. Corollary 5.50 in Vershynin (2010)), we have that with probability 1−δ/2, (1−ε2/ logK)I � Σ̂−1/2ΣΣ̂−1/2 �
(1 + ε2/ logK)I.

Then, we execute the known covariance version of Algorithm 1 but scale each context xi,j as Σ̂−1/2xi,j . Notice
that the scaled contexts has variance Σ̃ := Σ̂−1/2ΣΣ̂−1/2, and we define β̃i := Σ̂1/2βi as the scaled coefficient
vectors. As in the proof of Corollary 1, we set n = Θ(

√
d logK
ε2 ) which implies with probability 1− δ/2, the error

due to the variance is maxi,j |Ĥi,j − β̃i
T

Σ̃2β̃j | = O(ε2/ logK). The bias term is bounded as

|Hi,j − β̃i
T

Σ̃2β̃j | = |β̃i
T

Σ̃β̃j − β̃i
T

Σ̃2β̃j |
= O(‖β̃i‖‖β̃j‖ε2/ logK),

where the last equality holds since maxx∈[1−ε2/ logK,1+ε2/ logK][|x2 − x|] = O(ε2/ logK). Since we assume that
βTi Σβi is bounded by a constant, ‖β̃i‖2 = βTi Σ̂βi is also bounded by a constant. Hence we have

max
i,j
|Ĥi,j −Hi,j | = O(ε2/ logK).

The remaining proof follows from the same argument in the proof of Theorem 4.

E Extension to the Mixture of Gaussians Setting

Problem setting: In this section, we extend our result to the mixture of Gaussians setting, where we assume
each context x is drawn from a known mixture of Gaussians distribution

∑M
i=1 αiN(µi,Σi), meaning that the
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means µi’, covariances Σi’s and mixing weights αi’s are all known to the algorithm. WLOG, we may assume
that the mean of the mixture of Gaussians is 0 and the covariance is identity, namely

∑M
i=1 αiµi = 0 and∑M

i=1 αi(µiµ
>
i + Σi) = Id, since we can always re-project the data to make the condition holds. As usual, we still

assume that all ‖βi‖ and the variance of the noise σi are bounded.

The following simple proposition shows that the optimal expected reward in the mixture of Gaussian model is
simply the linear combination of the optimal expected reward for each component.

Proposition 8. In the setting where each context is drawn from a known mixture of Gaussians distribution∑M
m=1 αmN(µm,Σm), the optimal reward has the following form:

M∑
m=1

αmEx∼N(b(m),H(m))[ max
k∈[K]

xk],

where b(m) = (β>1 µm + b1, β
>
2 µm + b2, . . . , β

>
Kµm + bK) ∈ RK , and H(m)

k,k′ = βkΣmβk′ .

Proof. We know from the single Gaussian case that the expected optimal reward for the contexts from the mth
Gaussian component is

Ex∼N(b(m),H(m))[ max
k∈[K]

xk],

where b(m) = (β>1 µm + b1, β
>
2 µm + b2, . . . , β

>
Kµm + bK) ∈ RK , and H

(m)
k,k′ = βkΣmβk′ . The overall optimal

expected reward is the weight average of all these rewards with weights αk’s.

In the following two propositions, we give the estimators for the parameters corresponding to each Gaussian
compoennt, b(m), H(m) and prove the corresponding variance bounds. Our estimators can be applied to the
mixture of Gaussian setting since it only requires the fourth moment of the distribution of x to be bounded.
Before stating our two propositions, we state the following simple fourth moment property of mixture of Gaussian
distribution without proofs.

Fact 4. Suppose x ∼
∑M
i=1 αiN(µi,Σi) and E[x] = 0, E[xx>] = Id, it holds for all unit d-dimensional vectors

u,v that
(u>x)2(v>x)2 = O(1)

Proposition 9. For each arm k ∈ [K], and Gaussian component m ∈ [M ],

b̂
(m)
k =

1

n

n∑
i=1

yk,ix
>
k,iµm.

Then, for all k ∈ [K],m ∈ [M ]

E[b̂
(m)
k ] = β>k µm (10)

Var[b̂
(m)
k ] = O(‖µm‖2/n) (11)

Proof. The proof of the expectation part is trivial. We show the variance bound as follows:

Var[b̂
(m)
k ] =E[(

1

n

n∑
i=1

yk,ix
>
k,iµm)2]−E[(

1

n

n∑
i=1

yk,ix
>
k,iµm)]2

=
1

n2

n∑
i=1

(
(yk,ix

>
k,iµm)2 − (βkµm)2

)
≤O(‖µm‖2/n)
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Proposition 10. For each arm k ∈ [K], and Gaussian component m ∈ [M ], define

Ĥ
(m)
k,k =

1(
n
2

) ∑
i<j

yk,iyk,jx
>
k,iΣmxk,j ,

and for each pair of arms k 6= k′, define

Ĥ
(m)
k,k′ =

1

n2

n∑
i=1

n∑
j=1

yk,iyk′,jx
>
k,iΣmxk′,j .

Then, for all k, k′ ∈ [K],m ∈ [M ]

E[Ĥ
(m)
k,k′ ] = βkΣmβk′

Var[Ĥ
(m)
k,k′ ] = O(

‖Σm‖2

n
+

tr[Σ2
m]

n2
)

Proof. The expectation part of the statement is trivial. We prove the variance bound as follows. Var[Ĥ
(m)
k,k ] can

be expressed as

1

n4

∑
i 6=j,i′ 6=j′

(E[yk,iyk,jyk,i′yk,j′x
T
k,iΣmxk,jx

T
k,i′Σmxk,j′ ]

−E[yk,iyk,jx
T
k,iΣmxk,j ]E[yk,i′yk,j′x

T
k,i′Σmxk,j′ ]).

For each term in the summation, we classify it into one of the 3 different cases according to i, j, i′, j′:

1. If i 6= i′ and j 6= j′, the term is 0.

2. If i = i′ and j 6= j′, the term can then be expressed as: E[y2
k,iyk,jyk,j′x

T
k,iΣmxk,jx

T
k,iΣmxk,j′ ]− (βTk Σmβk)2 =

E[y2
k,i(β

T
k Σmxk,i)

2] − (βTk Σmβk)2 ≤ β>k Σ2
mβk ≤ ‖Σm‖2, where the last inequality follows from the 4-th

moment condition of mixture of Gaussian distribution.

3. If i 6= i′ and j = j′, this case is symmetric to the last case.

4. If i = i′ and j = j′, the term can then be expressed as: E[y2
k,iy

2
k,j(x

T
k,iΣmxk,j)

2]− (βTk Σmβk)2. First taking
the expectation over xa′,j , ya′,j , we get the following upper bound

O(E[y2
k,i(x

T
k,iΣ

2
mxk,i)]).

Notice that xTk,iΣ
2
mxk,i =

∑d
l=1 d

2
j (v
>
j xa,i)

2, where dj ,vj are the eigenvalues and eigenvectors of the matrix
Σm. Taking the expectation over the ith sample and applying the fourth moment condition of x, we get the
following bound: O(tr[Σ2

m]).

The final step is to sum the contributions of these 3 cases. Case 2 and 3 have O(n3) different quadruples (i, j, i′, j′).
Case 4 has O(n2) different quadruples (i, j, i′, j′). Combining the resulting bounds yields a O(‖Σm‖22/n+tr[Σ2

m]/n2)
upper bound.

The k 6= k′ case can be proved analogously.

We restate the main theorem of the mixture of Gaussians setting as follows,

Theorem 3. Suppose each context x is drawn independently from a mixture of Gaussian distribution∑M
i=1 αiN(µi,Σi), and the parameters µi,Σi, αi are all known to the algorithm. In addition, let us assume

that ‖µi‖, ‖Σi‖ are all bounded by a constant. Then, for any ε ≥
√

logK
d1/4

, with probability 1 − δ, there is an
algorithm that estimate the optimal reward OPT with additive error ε using a total number of samples

T = Θ(

√
dK logK

ε2
log(KM/δ)).
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Proof. Since ‖µm‖, ‖Σm‖ are all bounded for all m ∈ [M ], we have that for each k, k′ ∈ [K] and m ∈ [M ], it
holds that with probability 2/3

|b̂(m)
k − b(m)

k | = O(1/
√
n),

|Ĥ(m)
k,k′ −H

(m)
k,k′ | = O(

√
n+ d/n).

Using the median of means trick as in Algorithm 1, we have that given
√
d logK
ε2 log(MK/δ) iid samples for each

arm k, it holds for all m ∈ [M ] that with probability 1− δ

|b̂(m)
k − b(m)

k | = O(ε/
√
logK),

|Ĥ(m)
k,k′ −H

(m)
k,k′ | = O(ε2/ logK),

where we need ε ≥
√

logK/d1/4 for this to holds. The optimal reward for each component m is

OPT (m) = Ex∼N(b(m),H(m))[ max
k∈[K]

xk],

and by Proposition 1, we can derive estimator ÔPT
(m)

such that |ÔPT
(m)
−OPT (m)| ≤ ε. Our final estimator

satisfies

|ÔPT −OPT | ≤
M∑
i=1

αi|ÔPT
(m)
−OPT (m)| ≤ ε,

and uses a total of

T = Θ(

√
dK logK

ε2
log(KM/δ))

samples.

F Minimax Lowerbound for Passive Algorithms

In this section, we prove the following proposition about the information theoretical lower bound for estimating
the optimal reward, which is equivalent to Theorem 1.

Proposition 11 (Restatement of Theorem 1). Given
√
d
ε samples of each arm, there is no algorithm that can

estimate the optimal reward with additive error O(
√
ε logK) with probability better than 2/3.

Proof. We show our lower bound by upper bounding the total variational distance between the following two
cases:

1. Draw n independent samples (x1, y1), . . . , (xn, yn) where xi ∼ N(0, I), yi ∼ N(0, 1). Repeat this procedure
K times.

2. First pick a uniformly random unit vector v and set b =
√
ε with probability 1/

√
K and b = 0 with probability

1−1/
√
K, then draw n independent samples (x1, y1), . . . , (xn, yn) where xi ∼ N(0, I), yi = bvTxi+ηi, where

ηi ∼ N(0, 1− b2). Repeat this procedure K times.

The optimal reward of case 1 is always 0, while with the help of Fact 10, it is easy to verify that the expected
optimal reward of case 2 is Ω(

√
ε logK). We are going to prove that no algorithm can distinguish the two cases

with probability more than 2/3. Let Qn denote the joint distribution of (x1, y1), . . . , (xn, yn) in case 2. Our goal

is to bound the total variantion distance DTV (Q⊗Kn , N(0, I)⊗nK) which is smaller than
√
χ2(Q⊗Kn ,N(0,I)⊗nK)

2 by
the properties of chi-square divergence.
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In case 2, for a fixed v and b, the conditional distribution x|y ∼ N(ybv, I − b2vvT ). Let Py,v denote such a
conditional distribution. The chi-square divergence can be expressed as:

1 + χ2(Q⊗Kn , N(0, I)⊗nK)

= (

∫
x1,y1

. . .

∫
xn,yn

(
1√
K

∫
v∈Sd

∏n
i=1 Pyi,v(xi)G(yi)dv + (1− 1√

K
)
∏n
i=1G(xi)G(yi)

)2

∏n
i=1G(xi)G(yi)

dx1dy1 . . . dxndyn)K

= (
1

K

∫
x1,y1

. . .

∫
xn,yn

∫
v∈Sd

∫
v′∈Sd

n∏
i=1

Pyi,v(xi)Pyi,v′(xi)G(yi)

G(xi)
dvdv′dx1dy1 . . . dxndyn

+ (1− 1

K
))K

=
( 1

K

∫
v∈Sd

∫
v′∈Sd

(∫
y

∫
x

Py,v(x)Py,v′(x)G(y)

G(x)
dxdy

)n
dvdv′ + (1− 1

K
)
)K

By the proof of Proposition 2 in Kong and Valiant (2018), we have∫
v∈Sd

∫
v′∈Sd

( ∫
y

∫
x

Py,v(x)Py,v′ (x)G(y)

G(x) dxdy
)n
dvdv′ ≤ 2. Hence the above equation is bounded by (1 + 1

K )K ≤ e,
and the total variation distance satisfies DTV (Q⊗Kn , N(0, I)⊗nK) ≤ 0.65.

G Minimax Lowerbound for Adaptive Algorithms

This section is dedicated for the proof of Theorem 2. We restate Theorem 2 as follows:

Theorem 2. In the known covariance setting, there exists a constant C such that no algorithm can estimate the
optimal reward with additive error ε with probability 2/3 within

T = C

√
dK

ε2 log(dK)3/2

rounds.

We begin with some definitions of the notations to facilitate the proof.

G.1 Notation

Assuming we are in the contextual mult-armed bandit setting where each context xi is drawn from N(0, Id), and
a bandit is defined by the set of K coefficient vectors (β1, . . . , βK). Given a policy π, and a bandit problem ν, let
(x1, a1, r1, . . . ,xT , aT , rT ) denote the context, action, reward trajectory induced by the policy π and bandit ν
with arms’ coefficients (β1, . . . , βK), whose distribution is Pν , and let Pν′ be the distribution of the trajectory of
problem ν′ with arms’ coefficients (β′1, . . . , β

′
K).

For a fixed trajectory (x1, a1, r1, . . . ,xT , aT , rT ), let Ta =
∑T
t=1 1{at = a}, Xa ∈ RTa×d consists of the xt’s where

at = a, and ra ∈ RTa consists of the ri’s where at = a. Further, let xa,i, i ∈ [Ta] be the columns of X>a and
ra,i, i ∈ [Ta] be the elements of ra. Given x1, . . . ,xT , Let Si, i ∈ [

∑s
j=1

(
T
s

)
] be all the subset of size at most s of

x1, . . . ,xn, and Wi be the matrix whose rows are the elements of Si.

Finally, we define a∗ = argminaE[Ta].

G.2 Proof

Intuition: One classical approach to prove regret lower bound in the stochastic bandit (non-contextural setting)
is, for a given algorithm, to construct two bandit problem there is different in a single arm and bound the KL-
divergence between the trajectories generated by the algorithm (see, e.g. Chapter 15 of Lattimore and Szepesvári
(2018)). Let Pa, P ′a be the distribution of the reward of arm a in the two problems. There is beautiful divergence
decomposition result (Lemma 15.1 in Lattimore and Szepesvári (2018)) which decompose the KL divergence
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between the trajectories as
∑K
a=1 E[Ta]DKL(Pa, P

′
a). In our contextual bandit setting, roughly speaking, there is

a similar decomposition, but instead of E[Ta], the KL divergence is roughly
∑K
a=1 E[T 2

a /d]. Since it is possible
to make E[T 2

a ] = T 2/K for all a, which means that T =
√
Kd suffices to make the KL-divergence greater than

constant. Basically, the algorithm that randomly picks an arm and keeps pulling it for T rounds is going to break
the KL-divergence with bandit instances constructed this way.

However, it is clear that this algorithm is not going to succeed with probability more than 1/K, and the total
variation distance between the trajectories must be small. In order to get around with this issue with bounding
KL-divergence, instead of focusing E[Ta] or E[T 2

a ], we look at the probability that Ta is greater than
√
d. Roughly

speaking, there must be an arm a such that Pr(Ta ≥
√
d) is small (Fact 7), and for these cases, we will bound

the total variation just by its probability. While for the part where Ta ≤
√
d, we will bound the KL divergence

(Lemma 5) on the part and Pinsker inequality to obtain a total variation bound.

Our proof proceeds as follows. Given any adaptive algorithm that play the bandit game for T rounds and output
an estimate of OPT , we are going to find two bandit problem where the trajectory generated by the algorithm is
indistinguishable in the two cases, while the OPT in the two cases are very different. The following classical
fact shows that as long as the trajectories is similar in the two cases, the output of the algorithm is going to be
similar as well.

Fact 5. Given any algorithm A that interact with bandit and output a quantity ÔPT , let Pν , Pν′ be the distribution
of the trajectory of A interacting with ν, ν′, and Qν ,Qν′ be the distribution of the output ÔPT under ν and ν′. If
DTV(Pν ,Pν′) ≤ δ, then DTV(Qν ,Qν′) ≤ δ.

Given this fact, what we need is to find the two bandit problems, such that |OPT ν −OPT ν′ | = Θ(ε), and the
DTV(Pν ,Pν′) ≤ 1/3. With a coupling argument, it is easy to see that the algorithm much incur Θ(ε) error with
probability 2/3 in one of the two cases. The following lemma asserts the existence of such two bandit problems.

Lemma 3 (Main lemma for the lower bound in the adaptive setting). For any policy π, there exists two K-arm
bandit ν and ν′ such that |Ex∼N(0,Id)[maxi βix] − Ex∼N(0,Id)[maxi β

′
ix]| ≥ ε, and with T = C

√
dK

ε2(log dK)3/2
rounds

for a constant C, the total variance distance between the trajectories satisfies DTV(Pν ,Pν′) ≤ 1/3.

Our main theorem of this section, Theorem 2, is immediately implied by Lemma 3 and Fact 5. We prove Lemma 3
in the remainder of this section.

Fact 6 (Matrix concentration). Given x1, . . . ,xT independently drawn from N(0, Id), let Si, i ∈ [
∑s
j=1

(
T
s

)
] be

all the subset of size at most s of x1, . . . ,xn, and Wi be the matrix whose rows are the elements of Si.

Pr(max
i
‖I −WiW

>
i /d‖ ≥ C

√
s√
d

+ max(
t√
d
,
t2

d
)) ≤ exp(s(1 + log(T/s))− ct2)

Proof. The proof follows from Remark 5.59 of Vershynin (2010) and a union bound.

The following fact shows that there exists an arm, such that with good probability, it does not get pulled by more
than O(T/K) times .

Fact 7. Recall that a∗ = argminaE[Ta]. Then

Pr(Ta∗ ≤
1

δ

T

K
) ≥ 1− δ.

Proof. Since E[
∑K
a=1 Ta] = T , we have E[Ta∗ ] ≤ T/K, and the claim then follows from Markov’s inequality.

We define the two instance ν, ν′ as follows,

Definition 1. We define ν to be the bandit problem with coefficient vectors βi = 0 for all i ∈ [m] and the noise
for each arm follows from N(0, 1), and ν′ to be the same as ν except that with βa∗ ∼ N(0, ε2Id/d) and the noise
of the arm a∗ is drawn from N(0, 1− ε2).

The following lemma shows that Ta∗ is small, and the context xi’s are “typical” with good probability.
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Lemma 4 (Good set). Define the set E to be a set of the trajectories such that, for a constant c, for all i ∈ [T ],
ri ≤ c

√
log T and |x>i xi/d− 1| ≤ c

√
log T√
d

, and for all i ∈ [
∑s
j=1

(
T
s

)
], ‖I −WiW

>
i /d‖ ≤ c

√
s log T√
d

, Ta∗ ≤ s, where
s = c TK . Then there exists a constant c, such that Pν(E) ≥ 99/100.

Proof. By Fact 7, we can find a constant c1 such that Pν(Ta∗ ≤ s = c1T/K) ≤ 1− 1/1000. Notice that under ν,
each reward ri ∼ N(0, 1), and by Fact 9 we can find a constant c2 such that ri ≤ c2

√
T for all i ∈ T with probability

1− 1/1000. By Fact 6, we can find a constant c3 such that for all i ∈ [
∑s
j=1

(
T
s

)
], ‖I −WiW

>
i /d‖ ≤ c

√
s log T√
d

with

probability 1− 1/1000. Finally, by Fact 6 again, we can find a constant c4 such that |x>i xi/d− 1| ≤ c4
√

log T√
d

.
Taking a union of the three events and c = max(c1, c2, c3, c4) completes the proof.

Finally, the following lemma bound the KL-divergence on the good set, which will be used to bound the total
variation with Pinsker inequality.

Lemma 5.

−
∫
E

dPν log
dPν′
dPν

≤ 1/50.

We leave the proof of this lemma to the end of this section, and prove the main lemma of this section.

Proof of Lemma 3. The total variation distance between Pν and Pν′ ,

DTV(Pν ,Pν′) ≤
1

2
(

∫
Ec
dPν′ +

∫
Ec
dPν +

∫
E

|dPν′ − dPν |)

≤
∫
Ec
dPν +

∫
E

|dPν′ − dPν |

≤
∫
Ec
dPν +

√
2

√
−
∫
E

dPν log
dPν′
dPν

+

∫
E

dPν′ −
∫
E

dPν

≤1/100 +
√

2

√∫
E

dPν log
dPν′
dPν

+ 1/100

≤1/3,

where we applied Pinsker’s inequality (Fact 8) in the third last inequality, applied Lemma 4 in the second
inequality, and applied Lemma 5 in the last inequality.

Proof. The density of Pν can be expressed as

pν(x1, a1, r1, . . . ,xT , aT , rT ) =

T∏
t=1

πt(at|x1, a1, y1, . . . , xt−1, at−1, yt−1,xt)p(yt|xt, at),

where p(rt|xt, at) is the density of reward ri on context xi and arm at in model ν. The density of Pν′ is identical
except that p(rt|xt, at) is replaced by p′(rt|xt, at). Then

log(
dPν′
dPν

(x1, a1, r1, . . . ,xT , aT , rT ) =

T∑
t=1

log
p′(rt|xt, at)
p(rt|xt, at)

,

and

−
∫
E

dPν log(
dPν′
dPν

) =

T∑
t=1

∫
E

log
p′(rt|xt, at)
p(rt|xt, at)

dPν .
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Under this setting, we have

−
∫
E

dPν log(
dPν′
dPν

) = −
∫
E

dPν logEβa∗

T∏
t=1

p′(rt|xt, at)
p(rt|xt, at)

= −
∫
E

dPν logEβa∗ [

T∏
t=1

1{at = a∗} 1√
1− ε2

exp(− (rt − xTt βa∗)
2

2(1− ε2)
+
r2
t

2
)]. (12)

We compute the closed form expression of the expectation term as follows,

Eβa∗ [

T∏
t=1

1{at = a∗} 1√
1− ε2

exp(− (rt − xTt βa∗)
2

2(1− ε2)
+
r2
t

2
)]

=(2π)−d/2(d/ε2)d/2
∫
Rd

(1− ε2)−Ta∗/2 exp(−
(
β>a∗

X>a∗Xa∗

2(1− ε2)
βa∗ −

(X>a∗ra∗)
>

1− ε2
βa∗ +

ε2

2(1− ε2)
r>a∗ra∗

)
− β>a∗

dId
2ε2

βa∗)dβa∗

=(2π)−d/2(d/ε2)d/2(1− ε2)−Ta∗/2 exp(− ε2

2(1− ε2)
r>a∗ra∗)

∫
Rd

exp(−1

2
β>a∗Aβa∗ +Bβa∗)dβa∗

where A = (dIdε2 +
X>a∗Xa∗

(1−ε2) ), B =
X>a∗ra∗

(1−ε2) . We can now apply the Gauss integral property and get that the last
line equals

=(2π)−d/2(d/ε2)d/2(1− ε2)−Ta∗/2 exp(− ε2

2(1− ε2)
r>a∗ra∗)

√
(2π)d

det(A)
exp(

1

2
B>A−1B)

=(d/ε2)d/2(1− ε2)−Ta∗/2 det(A)−1/2 exp(− ε2

2(1− ε2)
r>a∗ra∗) exp(

1

2
B>A−1B).

Plugging in the above formula to Equation 12, we have that Equation 12 equals

=
1

2

(∫
E

dPν log det(A)− d log(d/ε2) +

∫
E

dPνTa∗ log(1− ε2)

)
+

1

2

(
ε2

(1− ε2)

∫
E

dPνr>a∗ra∗ −
∫
E

dPνB>A−1B

)
. (13)

Let λ1 ≥ λ2 ≥ . . . λTa∗ be the eigenvalues of matrix X>a∗Xa∗ . Then first term can be written as

1

2

(∫
E

dPν log det(A)− d log(d/ε2) +

∫
E

dPνTa∗ log(1− ε2)

)
=

1

2

∫
E

dPν
Ta∗∑
i=1

log(1 + ε2(λi/d− 1)) ≤ ε2

2

∫
E

dPν
Ta∗∑
i=1

(λi/d− 1)

=
ε2

2

∫
E

dPν
Ta∗∑
i=1

(x>a,ixa,i/d− 1) ≤ cε
2T
√

log T

K
√
d

(14)

for a constant c, where in the third last inequality we used the fact that log(1 + x) < x, in the second last
inequality we used the fact that

∑Ta∗
i=1 λi =

∑Ta∗
i=1 x

>
a,ixa,i and in the last inequality used Lemma 4 that under set

E, Ta ≤ O( TK ), x>a,ixa,i/d− 1 ≤ O(
√
T√
d

).

For the second termin Equation 13, notice that the eigenvalues of ε2

1−ε2 I −
Xa∗

(1−ε2)A
−1 X>a∗

(1−ε2) are

ε2

1− ε2
− λi/(1− ε2)2

d/ε2 + λi/(1− ε2)
=

ε2(1− λi/d)

1− ε2(1− λi/d)
=

∞∑
k=1

(ε2(1− λi/d))k
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and hence
ε2

1− ε2
I − Xa∗

(1− ε2)
A−1 X>a∗

(1− ε2)
=

∞∑
k=1

(
ε2(Id −Xa∗X

>
a∗/d)

)k
.

Plugging in the expression into the second term of Equation 13, the term becomes

1

2

∞∑
k=1

ε2k
∫
E

dPνr>a∗
(
Id −Xa∗X

>
a∗/d

)k
ra∗

For k = 1, we have

2−1ε2
∫
E

dPνr>a∗(Id −Xa∗X
>
a∗/d)ra∗

=2−1ε2
(∫

E

dPν
Ta∗∑
i=1

r2
a∗,i(1− x>a∗,ixa∗,i/d) + 2

∫
E

dPν
∑
i<j

ra∗,ira∗,jx
>
a∗,ixa∗,j/d

)
≤cε2(

T (log T )3/2

K
√
d

+
T 2 log T

K2d
) + ε2/100, (15)

for a constant c, where the last equality holds by simply expanding the maxtrix multiplication, and the last
inequality holds due to Lemma 4 and Lemma 6.

For the remaining terms with k ≥ 2,

1

2

∫
E

Pνr>a

( ∞∑
k=2

ε2k(Id −XaX
>
a /d)k

)
ra ≤

∫
E

Pνr>a ra‖
∞∑
k=2

ε2k(Id −XaX
>
a /d)k‖

≤cε4T
2(log T )2

K2d
, (16)

for some constant c, where the last inequality holds due to the fact that r>a ra ≤ O(T log T
K ), ‖ε4(Id−XaX

>
a /d)2‖ ≤

O(T log T
Kd ) by Lemma 4. Combing Equation 14, 15, 16, we have

−
∫
E

Pν log
dPν′
dPν

≤ O(ε4
T 2(log T )2

K2d
+ ε2

T (log T )3/2

K
√
d

) + ε2/100.

Since ε ≤ 1, we can find a constant C such that setting T = CK
√
d

ε2 log(Kd)3/2
gives

−
∫
E

Pν log
dPν′
dPν

≤ 1/50.

This conclude the proof.

Lemma 6. ∫
E

dPν
∑
i<j

ra∗,ira∗,jx
>
a∗,ixa∗,j/d ≥ −C

T 2 log T

K2d
− 1/100.

for a positive constant C.

Notice that by martingale stopping theorem,∫
Ec
dPν

∑
1≤i<j≤s

ra∗,ira∗,jx
>
a∗,ixa∗,j/d+

∫
E

dPν
∑

1≤i<j≤s

ra∗,ira∗,jx
>
a∗,ixa∗,j/d

= EPν [
∑

1≤i<j≤s

ra∗,ira∗,jx
>
a∗,ixa∗,j/d] = 0.

Hence we are going to upper bound ∫
Ec
dPν

∑
1≤i<j≤s

ra∗,ira∗,jx
>
a∗,ixa∗,j/d, (17)
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where Ec is the complement of set E, and this is going to imply the lower bound in the lemma. Equation 17 is
bounded by,∫

Ec
dPν

∑
1≤i<j≤s

ra∗,ira∗,jx
>
a∗,ixa∗,j/d ≤

∫
Ec
dPν(

∑
1≤i<j≤s

ra∗,ira∗,jx
>
a∗,ixa∗,j/d)2 +

∫
Ec
dPν

≤ EPν [(
∑

1≤i<j≤s

ra∗,ira∗,jx
>
a∗,ixa∗,j/d)2] + 1/100,

and we have

EPν [(
∑

1≤i<j≤s

ra∗,ira∗,jx
>
a∗,ixa∗,j/d)2]

=EPν [

s∑
i=1

(
(

i−1∑
j=1

ra∗,jx
>
a∗,j)ra∗,ixa∗,i/d

)2

] (18)

≤EPν [

s∑
i=1

(
(

i−1∑
j=1

ra∗,jx
>
a∗,j)xa∗,i/d

)2

], (19)

where Equation 18 holds due to the fact that for i < j, i′ < j′, EPν [ra∗,ira∗,jra∗,i′ra∗,j′x
>
a∗,ixa∗,jx

>
a∗,i′x

>
a∗,j′ ] = 0

unless j = j′., Formula 19 holds due to Eν [r2
a∗,i] = 1 and ra∗,i is independent of ra∗,j ,xa∗,j where j < i.

Notice that for a single term
(

(
∑i−1
j=1 ra∗,jx

>
a∗,j)xa∗,i/d

)2

in Formula 19, if we fixed ra∗,j ,xa∗,j for all j < i,

the algorithm must pick xa∗,i from the remaining contexts which is generated independent of (
∑i−1
j=1 ra∗,jx

>
a∗,j).

Hence

Eν [
(

(

i−1∑
j=1

ra∗,jx
>
a∗,j)xa∗,i/d

)2

|{ra∗,j ,xa∗,j}j<i] ≤ Ez[max zi] = O(log T‖
i−1∑
j=1

ra∗,jx
>
a∗,j‖2/d2),

where zi ∼ N(0, ‖
∑i−1
j=1 ra∗,jx

>
a∗,j‖2/d2) and we have that Formula 19 is bounded by:

=O(log TEPν [

s∑
i=1

‖
i−1∑
j=1

ra∗,jx
>
a∗,j‖2/d2])

=O(log TEPν [

s∑
i=1

i−1∑
j=1

r2
a∗,jx

>
a∗,jxa∗,j/d

2]) (20)

=O(log Ts2/d) = O(
T 2 log T

K2d
), (21)

where Equation 20 holds since for i ≤ j, Eν [ra∗,ira∗,jx
>
a∗,ixa∗,j ] = 0, and Equation 21 holds due to Corollary 8.

Hence we have that Equation 17 is bounded by O(T
2 log T
K2d ) + 1/100, and hence the lemma holds.

The following statement is a standard statement of the concentration of the norm.

Corollary 8 (Concentration of the norm). Let x1, . . . ,xT be independently drawn from N(0, Id). Then

E[maxi x
>
i xi/d] ≤ 1 +O(

√
log(Td)√
d

).

Proof. By Fact 6, we have

Pr(max
i
|x>i xi/d− 1| ≥ C√

d
+ max(

t√
d
,
t2

d
)) ≤ exp((1 + log T )− ct2)

=⇒ Pr(max
i
|x>i xi/d− 1| ≥ C√

d
+ t)) ≤ exp((1 + log T )− cdmin(t2, t))
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By the fact that for any random variable X, E[X] ≤ t+
∫∞
x=t

Pr(X > x)dx, we have

E[max
i
|x>i xi/d− 1|] ≤

C +
√

log(Td)/c√
d

+

∫ ∞
t=
√

log T/
√
cd

exp((1 + log(Td))− cdmin(t2, t))

≤ O(

√
log(Td)√

d
).

H Auxiliary Lemmas

Fact 8 (Pinsker’s inequality for arbitrary measure). Let P,Q be two positive measure such that
∫
dP ≤ 1,

∫
dQ ≤ 1.

Then
1

2

∫
|dP − dQ| ≤ 2−1/2

√
−
∫
dP log

dQ

dP
+

∫
dQ−

∫
dP .

Proof. The proof is classic, and we follows the proof of Lemma 2.5 of the book Tsybakov (2008). Notice that the
difference between this version of Pinsker’s inequality and the classic one is that

∫
Pdµ and

∫
Qdµ do not need

to be 1, and the proof follows until the last part (first paragraph of page 89 on Tsybakov (2008)) where we have

1

2

∫
|dP − dQ| ≤ 1

2

√∫
(
4

3
dQ+

2

3
dP )

√∫
(dP log

dP

dQ
+ dQ− dP )

≤ 2−1/2

√
−
∫
dP log

dQ

dP
+

∫
dQ−

∫
dP .

Fact 9 (Upper bound of the expectation of the maximum of Gaussians, see e.g. Kamath (2015)). Given that
x ∼ N(0,Σ) where Σ ∈ RK×K and Σi,i ≤ σ2 for all i = 1, . . . ,K, E[max |xi|] ≤

√
2σ
√

logK

Fact 10 (Lower bound of the expectation of the maximum of Gaussians, see e.g. Kamath (2015)). Given that
x ∼ N(0, IK), E[max |xi|] ≥ 0.23

√
logK

Fact 11 (Median of means trick). Given a randomized algorithm that, with probability 2/3, output an estimate x̂
such that |x̂ − x| ≤ ε. If we independently execute the algorithm t times, the median of the estimates satisfies
|median(x̂1, . . . , x̂t)− x| ≤ ε with probability at least 1− exp(−t/48).

Proof. Notice that if there is more than t/2 estimates that fall into the interval [x− ε, x+ ε], the median of the
estimates must have error less than ε. Hence, we only need to upper bound the probability that the there are less
than t/2 estimates that fall into the interval [x− ε, x+ ε]. Let zi be the indicator random variable of whether x̂i
fall into the interval [x− ε, x+ ε]. By Chernoff bound (Fact 12), we have

Pr(

t∑
i=1

zi ≤ t/2) = Pr(

t∑
i=1

zi ≤ (1− 1

4
)
2

3
t)) ≤ exp(− t

48
)

Fact 12 (Chernoff Bound). Suppose X1, . . . , Xn are independent random variables taking values in {0, 1} with
µ = E[

∑n
i=1Xi]. Then for any δ > 0,

Pr(

n∑
i=1

Xi ≤ (1− δ)µ) ≤ exp(−δ
2µ

2
)


