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Appendix

A Some Additional Details on the
Dissimilarity Measure

A.1 Solving (1)

In this section, we describe how the linear program
for computing the dissimilarity measure (1), can be
solved using an optimal transport (OT) program Villani
(2008). This reformulation is similar to that of Kan-
dasamy et al. (2018), who use OT to describe a distance
between neural network architectures.

Say we are given two molecules My = (Ay, By), My =
(A2, Bo) with ny, ny atoms respectively, let U € R}**"2
denote the matching matrix, i.e. U(4,7) is the weight
matched between i € M7 and j € My. We now define
a sequence of variables which form the parameters of
our OT program. First, let wm(M;) = > ,c 4 wa(a)
is the total weight of a molecule M; = (A4, B;) for
i =1,2. Denote y; = [{wa(a)}aca,, wm(M)] € RM1HL
and yo = [{wa(a)}laca,, wm(Mp)] € R Next, let
C = Cat + Cst c R™1%"2 and Cl = [C ]_nl;].;Lr2 0] S
Rm+Dx(n241). § o O has Cyy + Cy in its first ny X
ng block, representing the atom type and bond type
penalties in (1), while the 1’s in the last row and column
capture the non-matching penalty. We finally let U’ €
R+ x(n2+41) he our optimization variable where the
first n1 X mo block will correspond to the optimization
variable U in the original program. It is easy to see
that (1) is equivalent to the following linear program,
which is an optimal transport program:

(u',c’)
Ulpyi1 =91, UMl 11 =19

minimise
subject to

We refer the reader to Theorem 2 in Kandasamy et al.
(2018), who formally prove this result in a similar set-
ting.

A.2 T-SNE visualizations for the OT
distance

We perform another experiment to verify the validity
of the proposed optimal transport dissimilarity mea-
sure. We use the four different base combinations of
settings for the OT distance to compute distances be-
tween 200 randomly sampled molecules, and use these
distances to compute 2-dimensional t-SNE embeddings
(Maaten and Hinton, 2008). These embeddings aim to
preserve distances, so that visual closeness translates
into OT-distance closeness. We also color the points
by values of QED (drug-likeliness) and synthetic acces-
sibility scores. The results are shown in Figure 10. We
see that despite the fact that the chemical space has
complicated dependencies between molecule structure
and properties, dependencies in the induced embedding

space are relatively continuous. We can also observe
clusters of molecules with similar values. In Figure
11, we compare the planar embeddings produced by
other possible distances: ¢ distance between pairs of
fingerprints and inverted Tanimoto similarity measure
between molecules (referred to as fingerprint kernel in
the main part of the paper), one may say OT-dist looks
slightly better (e.g. low versus high values are more
separated in the plots).

A.3 Some Known Limitations

Stereoisomers: Since our dissimilarity measure is
based on the graph representation, it will not be able to
distinguish between stereoisomers, i.e. molecules which
have the same formula and bonded atoms, but different
3D orientation. For example, pictured below are D-
Glucose and L-Glucose. Since, they have the same
graph representation, our dissimilarity measure will be
0 between both molecules. However, they have different
3D structures (being mirror images of each other),
which can give rise to different physical properties. For
instance, D-Glucose can be digested by the human
body while L-Glucose cannot.
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It is worth noting that many graph convolution based
approaches for modeling molecules face this challenge.
One way to circumvent this issue is to combine our ker-
nel with other features which account for 3D structure
in a sum or product kernel.

B Some Implementation Details

For the BO methods, we fit GP hyperparameters by
maximizing the marginal likelihood. As the acquisi-
tion, we adopt the ensemble method described in (Kan-
dasamy et al., 2019a) using the EI, UCB, and TTEI
acquisitions instead of sticking to a single acquisition.
To optimize the acquisition, we ran the explorer for
20 iterations on each BO iteration, but added the new
molecules to our initial pool S for the next iterations,
so that we can search across a large pool during the en-
tire optimization routine. This corresponds to “reusing”
explored and synthesized compounds in a real experi-
ment.

C Additional Experimental Results

Experiments with low starting value To verify
that ChemBO successfully optimizes the objective re-
gardless of the quality of initial pool, we conduct an
experiment on pools of 20 molecules randomly selected
from subset of ChEMBL dataset that has value of
the objective function capped by 0.7 for QED and 3
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for penalized LogP function (approximately 60% per-
centiles in ChEMBL). The results on Figure 4 show
that ChemBO performs well in such cases, too, and
does so better than baseline with the same regularities
as before (the fingerprint kernel performs worse than
ot-dist kernel on QED and better on penalized LogP
task).

Synthesis Paths

We visualize the synthesis paths for some of the optimal
molecules in Figures 6-9. The boxed molecules are from
the initial pool of 20 reagents. In this figure, when
arrows from two or more parent molecules point to a
child molecule, it means that the child molecule was
obtained by reacting the parent molecules.

It is worth mentioning some caveats here. First, we
see a few cases of complex molecules being combined
to produce a simpler molecule — the most striking
example being the one in Figure 7 where two complex
molecules are combined to produce Methane (CH,)°. It
is more likely that simpler molecules will be available
as reagents in a realistic setting. This is an artefact
of our initial pool, and we believe that such cases
can be avoided by carefully selecting an initial pool.
Second, note that in all synthesis paths shown, there
are molecules with large rings. Large rings are not
necessarily stable, and hence such molecules are hard
to synthesize. We believe this could be due Rexgen,
and, as mentioned in the main text, when such synthesis
predictors become more accurate and reliable, so will
the efficacy of our proposed framework.

The red boxes in the molecules are because RDkit’s 2D
layout algorithm overlays two atoms — which is likely
to happen with large molecules.

Some statistics on the ChEMBL Dataset: In Fig-
ure 5, we plot the distribution of QED and Pen-logP
on the ChEMBL dataset. These values help us under-
stand the success of optimization procedures relative
to the average over the dataset from which the start-
ing pool was drawn: the histograms show that the
optimized values lie in the highest percentiles of the
original dataset.

5In reality, Methane was probably just meant to be
a by-product of a reaction meant to produce some other
molecule.
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Figure 4: Results comparing the three methods described in the beginning of Section 4. We plot the number of iterations
(after initialization) against the highest found QED (left) and Pen-LogP (right) values by each method. Higher is better in

both cases. All curves were produced by averaging over 5 independent runs. The shaded regions indicate one standard
error.
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Figure 5: ChEMBL dataset statistics: normalized histograms of QED score and penalized logP score.
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Figure 6: Synthesis path for molecule with penalized logP 11.988. The boxed molecules are from the initial pool of 20
reagents.
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Figure 7: Synthesis path for molecule with QED 0.92. The boxed molecules are from the initial pool of 20 reagents.
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Figure 8: Synthesis path for molecule with penalized logP 8.306. The boxed molecules are from the initial pool of 20
reagents.
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Figure 9: Synthesis path for molecule with QED 0.93. The boxed molecules are from the initial pool of 20 reagents.
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Figure 10: t-SNE visualization of OT distance ot-dist for different parameter configurations, first four color-coded by
QED value, last four by SA score.
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Figure 11: Comparison of t-SNE embeddings produced based on three molecular distances: ot-dist, ¢2 distance between
fingerprint vectors, and inverted similarity kernel between fingerprints.



