
Supplementary Material:
Computing Tight Differential Privacy Guarantees Using FFT

A Proofs for the results of Section 3

A.1 Integral representation for exact DP-guarantees

Throughout this section we denote for neighbouring datasets X and Y the density function of
M(X) with fX(t) and the density function ofM(Y ) with fY (t).

Definition A.1. A randomised algorithm M with an output of continuous one dimensional
distributions satisfies (ε, δ)-DP if for every set S ⊂ R and every neighbouring datasets X and Y∫

S
fX(t) dt ≤ eε

∫
S
fY (t) dt+ δ and

∫
S
fY (t) dt ≤ eε

∫
S
fX(t) dt+ δ.

We callM tightly (ε, δ)-DP, if there does not exist δ′ < δ such thatM is (ε, δ′)-DP.

The following auxiliary lemma is needed to obtain the representation given by Lemma A.4
(see [3, Lemma 1] for the discrete valued version of the result).

Lemma A.2. M is tightly (ε, δ)-DP with

δ(ε) = max
X∼Y

{∫
R

max{fX(t)− eεfY (t), 0} dt,

∫
R

max{fY (t)− eεfX(t), 0} dt

}
. (A.1)

Proof. AssumeM is tightly (ε, δ)-DP. Then, for every set S ⊂ R and every neighbouring datasets
X and Y , ∫

S

fX(t)− eεfY (t) dt ≤
∫
S

max{fX(t)− eεfY (t), 0} dt

≤
∫
R

max{fX(t)− eεfY (t), 0} dt.

1



We get an analogous bound for
∫
S fY (t)− eεfX(t) dt. By Definition A.1,

δ ≤ max

{∫
R

max{fX(t)− eεfY (t), 0} dt,

∫
R

max{fY (t)− eεfX(t), 0} dt

}
.

To show that the above inequality is tight, consider the set

S = {t ∈ R : fX(t) ≥ eεfY (t)}.

Then, ∫
S

fX(t)− eεfY (t) dt =

∫
S

max{fX(t)− eεfY (t), 0} dt

=

∫
R

max{fX(t)− eεfY (t), 0} dt.

(A.2)

Next, consider the set
S = {t ∈ R : fY (t) ≥ eεfX(t)}.

Similarly, ∫
S

fY (t)− eεfX(t) dt =

∫
R

max{fY (t)− eεfX(t), 0} dt. (A.3)

From (A.2) and (A.3) it follows that there exists a set S ⊂ R such that either∫
S
fX(t) dt = eε

∫
S
fY (t) dt+ δ or

∫
S
fY (t) dt = eε

∫
S
fX(t) dt+ δ

for δ given by (A.1). This shows that δ given by (A.1) is tight.

The next lemma gives an integral representation for the right hand side of (A.1) involving
the distribution function of the PLD (see also Lemma 5 of [5]). First we need the following
definition.

Definition A.3. Let M : XN → R be a randomised mechanism and let X ∼ Y . Let fX(t)
denote the density function ofM(X) and fY (t) the density function ofM(Y ). Assume fX(t) > 0
and fY (t) > 0 for all t ∈ R. We define the privacy loss function of fX over fY as

LX/Y (t) = log
fX(t)

fY (t)
.
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Lemma A.4. LetM be defined as above. M is tightly (ε, δ)-DP for

δ(ε) = max
X∼Y

max{δX/Y (ε), δY/X(ε)},

where

δX/Y (ε) =

∫
LX/Y (R)∩ [ε,∞)

(1− eε−s)fX

(
L−1
X/Y (s)

) dL−1
X/Y (s)

ds
ds,

δY/X(ε) =

∫
LY/X(R)∩ [ε,∞)

(1− eε−s)fY

(
L−1
Y/X(s)

) dL−1
Y/X(s)

ds
ds.

Proof. Consider the privacy loss function LX/Y (t) = log fX(t)
fY (t) . Denote s = LX/Y (t). Then, it

clearly holds fY (t) = e−sfX(t) and

max{fX(t)− eεfY (t), 0} = max{0, (1− eε−s)fX(t)}

=

{
(1− eε−s)fX(t), if s > ε,

0, otherwise.

(A.4)

Consider next the integral
∫
R max{0, fX(t) − eεfY (t)} dt. By making the change of variables

t = L−1
X/Y (s) and using (A.4), we see that∫

R

max{0, fX(t)− eεfY (t)} dt =

∫
R

max{0, (1− eε−s)fX(t)} dt

=

∫
LX/Y (R)

max

{
0,
(
1− eε−s

)
fX
(
L−1
X/Y (s)

) dL−1
X/Y (s)

ds

}
ds

=

∫
LX/Y (R)∩ [ε,∞)

(1− eε−s)fX
(
L−1
X/Y (s)

) dL−1
X/Y (s)

ds
ds,

since
dL−1

X/Y
(s)

ds ≥ 0 for all s ∈ LX/Y (R). Analogously, we see that

∫
R

max{0, fY (t)− eεfX(t)} dt =

∫
LY/X(R)∩ [ε,∞)

(1− eε−s)fY
(
L−1
Y/X(s)

) dL−1
Y/X(s)

ds
ds.

The claim follows then from Lemma A.2.
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Definition A.5. Let the assumptions of Definition A.3 of the main text hold and suppose LX/Y :
R → D, D ⊂ R is a continuously differentiable bijective function. The privacy loss distribution
(PLD) ofM(X) overM(Y ) is defined to be a random variable which has the density function

ωX/Y (s) =

fX
(
L−1
X/Y (s)

) dL−1
X/Y

(s)

ds , s ∈ LX/Y (R),

0, else.

We directly get from Lemma A.4 the following representation.

Corollary A.6. A randomised algorithm M with an output of continuous one dimensional
distributions is tightly (ε, δ)-DP for

δ(ε) = max
X∼Y

max{δX/Y (ε), δY/X(ε)}, (A.5)

where

δX/Y (ε) =

∞∫
ε

(1− eε−s)ωX/Y (s) ds, δY/X(ε) =

∞∫
ε

(1− eε−s)ωY/X(s) ds.

A.2 Privacy loss distribution of compositions

In order to use the representation given by Corollary A.6 for a composition of several mechanisms,
we need to be able to evaluate the privacy loss distribution for compositions. This is given in
the following theorem which is a continuous version of [5, Thm. 1].

Theorem A.7. Let X,Y be adjacent datasets and let fX(t) denote the density function ofM(X),
fY (t) that ofM(Y ), fX′(t) that ofM′(X) and fY ′(t) that ofM′(Y ). Consider the PLD ωcX/Y of
the composition ofM andM′ (eitherM◦M′ orM′ ◦M). Denote by ωX/Y the PLD ofM(X)
over M(Y ) and by ωX′/Y ′ the PLD of M′(X) over M′(Y ). The density function of ωcX/Y is
given by

ωcX/Y (s) =

∞∫
−∞

ωX/Y (t)ωX′/Y ′(s− t) dt.

Proof. We first show that the privacy loss function of a composition is a sum of privacy loss
functions. Let LcX/Y denote the privacy loss function of the composition mechanism. Then,

LcX/Y (t1, t2) = log

(
fX,X′(t1, t2)

fY,Y ′(t1, t2)

)
= log

(
fX(t1)fX′(t2)

fY (t1)fY ′(t2)

)
= log

(
fX(t1))

fY (t1))

)
+ log

(
fX′(t2)

fY ′(t2)

)
=LX/Y (t1) + LX′/Y ′(t2).

(A.6)
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Let S ∈ R be a measurable set. By using the property (A.6) and by change of variables we see
that

ωCX/Y (S) =

∫∫
{(t1,t2)∈R2 :Lc(t1,t2)∈S}

fX,X′(t1, t2) dt1 dt2

=

∫∫
{(t1,t2)∈R2 :LX/Y (t1)+LX′/Y ′ (t2)∈S}

fX(t1)fX′(t2) dt1 dt2

=

∫∫
{s1+s2 ∈S}∩ {LX/Y (R)+LX′/Y ′ (R)}

fX
(
L−1
X/Y (s1)

) dL−1
X/Y (s1)

ds
·

fX′
(
L−1
X′/Y ′(s2)

) dL−1
X′/Y ′(s2)

ds
ds1 ds2

=

∫∫
{s1+s2 ∈S}

ωX/Y (s1)ωX′/Y ′(s2) ds1 ds2

=

∫
S

 ∞∫
−∞

ωX/Y (s1)ωX′/Y ′(t− y1) ds1

 dt.

From Corollary A.6 and Theorem A.7 we get the following integral formula for δ(ε).

Corollary A.8. Consider k consecutive applications of a mechanism M. Let ε > 0. The
composition is tightly (ε, δ)-DP for δ given by

δ(ε) = max
X∼Y

max{δX/Y (ε), δY/X(ε)},

where

δX/Y (ε) =

∞∫
ε

(1− eε−s)
(
ωX/Y ∗k ωX/Y

)
(s) ds,

where (ωX/Y ∗k ωX/Y )(s) denotes the density function obtained by convolving ωX/Y by itself k
times (an analogous formula holds for δY/X(ε)).

We also give the following result for the relation between ωX/Y and ωY/X . This result can
be used to determine which the value max{δX/Y , δY/X}. This result can be seen as a continuous
version of Lemma 2 in [5].

Lemma A.9. Let the privacy loss functions LX/Y and LY/X and the privacy loss distributions
ωX/Y and ωY/X . Then, it holds LY/X(R) = { t ∈ R : −t ∈ LX/Y (R)} and for all y ∈ LX/Y (R):

ωX/Y (s) = esωY/X(−s).
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Proof. From the definition it follows that

LX/Y (t) = −LY/X(t),

and therefore also
L−1
Y/X(s) = L−1

X/Y (−s) (A.7)

for all y ∈ LX/Y (R). Let y ∈ LX/Y (R). Then,

ωX/Y (s) = fX
(
L−1
X/Y (s)

) dL−1
X/Y (s)

ds

= fX
(
L−1
X/Y (s)

) 1

L′X/Y (L−1
X/Y (s))

.
(A.8)

We notice that
fX(t)

L′X/Y (t)
=

fX(t)
f ′X(t)

fX(t) −
f ′Y (t)

fY (t)

=
fX(t)2fY (t)

f ′X(t)fY (t)− f ′Y (t)fX(t)

=
fX(t)

fY (t)

fX(t)fY (t)2

f ′X(t)fY (t)− f ′Y (t)fX(t)

= eLX/Y (t) fY (t)

L′Y/X(t)

and the claim follows using (A.8) and (A.7).

One easily verifies the following corollary of Lemma A.9.

Corollary A.10. For the convolutions it holds(
ωX/Y ∗k ωX/Y

)
(s) = es

(
ωY/X ∗k ωY/X

)
(−s).
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B Tight privacy bounds for the Gaussian mechanism via one di-
mensional distributions

In this Section we show that the tight bounds of DP-SGD can be carried out by analysis of one
dimensional mixture distributions. This equivalence has also been used in [1, Proof of Lemma
3]. We consider three different subsampling methods: sampling without replacement, sampling
with replacement and Poisson subsampling (see [2] for further details).

In the next subsection we also rigorously show that tight privacy bounds for DP-SGD can be
obtained from the analysis of one dimensional distributions.

B.1 Equivalence of the privacy bounds between the multidimensional and
one dimensional mechanisms

As an example, we consider the Poisson subsampling. In this case each member of the dataset
is included in the stochastic gradient minibatch with probability q. This means that each data
element can appear at most once in the sample. The basic mechanismM is then of the form

M(X) =
∑
x∈B

f(x) +N (0, σ2Id),

where B is a randomly drawn subset of {x1, . . . , xN} and ‖f(x)‖2 ≤ 1 for all x ∈ B.
Consider the case of remove/add relation ∼R and let X and Y be neighbouring datasets.

Consider first the case q = 1, i.e., |B| = N . The condition of (ε, δ)-differential privacy states
that for every measurable set S ⊂ Rd and every neighbouring X and Y :

P(M(X) ∈ S) ≤ eεP(M(Y ) ∈ S) + δ. (B.1)

Suppose X = Y ∪ {x′} and assume ‖f(x′)‖2 = 1. and we easily see that this is then equivalent
to the condition that for every measurable set S ⊂ Rd:

P
(
N (f(x)′, σ2Id) ∈ S

)
≤ eεP

(
N (0, σ2Id) ∈ S

)
+ δ. (B.2)

Let U ∈ Rd×d be a unitary matrix such that

Uf(x′) =


1
0
...
0

 =: e1.

This means that U is of the form U =
[
f(x′) Ũ

]
, where Ũ can be taken as any d × (d − 1)

matrix with orthonormal columns such that ŨT f(x′) = 0.
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Due to the unitarity of U , the condition (B.2) is equivalent to the condition that for every
measurable set S ⊂ Rd:

P
(
UN (f(x′), σ2Id) ∈ US

)
≤ eεP

(
UN (0, σ2Id) ∈ US

)
+ δ. (B.3)

Furthermore, due to the unitarity of U , UN (0, σ2Id) ∼ N (0, σ2Id) and we see that (B.3) is
equivalent to the condition that for every measurable set S ⊂ Rd:

P
(
N (e1, σ

2Id) ∈ US
)
≤ eεP

(
N (0, σ2Id) ∈ US

)
+ δ, (B.4)

where US = {Ux : x ∈ S}. Then, we see that the condition (B.3) is equivalent to the condition
that for every measurable set S ⊂ R:

P
(
N (1, σ2) ∈ S

)
≤ eεP

(
N (0, σ2) ∈ S

)
+ δ. (B.5)

Thus, if X and Y are given as above, finding the parameters ε and δ that satisfy (B.1) amounts
to finding values of ε and δ that satisfy (B.5).

When q < 1, we see that f(x′) is in B with a probability q. Reasoning as above, we arrive
at the the condition that for every measurable set S ⊂ Rd:

P
(
qN (f(x′), σ2Id) + (1− q)N (0, σ2Id) ∈ S

)
≤ eεP

(
N (0, σ2Id) ∈ S

)
+ δ,

where qN (f(x′), σ2Id) + (1 − q)N (0, σ2Id) denotes a mixture distribution. Similarly, this leads
to considering the one dimensional neighbouring distributions

fX := qN (1, σ2) + (1− q)N (0, σ2) and fY := N (0, σ2).

In order the condition (B.1) holds for all X ∼R Y , then it has to hold that for every measurable
set S ⊂ R both

P
(
fX ∈ S

)
≤ eεP

(
fY ∈ S

)
+ δ and P

(
fY ∈ S

)
≤ eεP

(
fX ∈ S

)
+ δ.

With an analogous reasoning, we see that in the case of substitution relation ∼S the worst
case is obtained by considering the neighbouring distributions

qN (1, σ2) + (1− q)N (0, σ2)

and
qN (−1, σ2) + (1− q)N (0, σ2).

Finally, we note that the case ‖f(x′)‖2 < 1 would lead to neighbouring distributions fX
and fY that are closer to each other than in the case ‖f(x′)‖2 = 1. This would give tighter
(ε, δ)-values, i.e., ‖f(x′)‖2 = 1 gives the worst case. This could be shown rigorously by scaling
the parameter σ and considering the analysis below.
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B.2 Poisson subsampling

B.2.1 Neighbouring relation with remove/add

As shown above, for the analysis in case of Poisson subsampling it is sufficient to consider the
density functions (see also [8] and [3])

fX(t) = q 1√
2πσ2

e
−(t−1)2

2σ2 + (1− q) 1√
2πσ2

e
−t2
2σ2 ,

fY (t) = 1√
2πσ2

e
−t2
2σ2 .

(B.6)

The privacy loss function LX/Y (t) is then given by

LX/Y (t) = log
q 1√

2πσ2
e
−(t−1)2

2σ2 + (1− q) 1√
2πσ2

e
−t2
2σ2

1√
2πσ2

e
−t2
2σ2

= log
(
q e

2t−1

2σ2 + (1− q)
)
.

We see that LX/Y (R) = (log(1 − q),∞) and that LX/Y is a strictly increasing continuously
differentiable function in the whole R. Straightforward calculation shows that

L−1
X/Y (s) = σ2 log

es − (1− q)
q

+
1

2

and
d

d s
L−1
X/Y (s) =

σ2es

es − (1− q)
.

The privacy loss distribution ωX/Y is then given by the density function

d ωX/Y

d s
(s) =

{
fX(L−1

X/Y (s)) d
d sL

−1
X/Y (s), if s > log(1− q),

0, else.

The privacy loss distribution dωX/Y
ds has its mass mostly on the positive real axis (equals zero

for y ≤ log(1 − q)) and so do the the convolutions dωX/Y
ds ∗k dωX/Y

ds . Therefore, by Lemma A.9
and its corollary, we see that dωY/X

ds has its mass mostly on the negative real axis (equals zero
for y ≥ |log(1− q)|). Thus the representation (A.5) supports the numerical observation that
generally δ = δX/Y .

B.3 Sampling without replacement and ∼S-neighouring relation

Denote by m the batch size (fixed) and q = m/N . In case of sampling without replacement and
(ε, δ,∼S)-DP, the differing element is in the minibatch with a probability q, and without loss of

9



generality, we may again consider the density functions

fX(t) = q 1√
2πσ2

e
−(t−1)2

2σ2 + (1− q) 1√
2πσ2

e
−t2
2σ2 ,

fY (t) = q 1√
2πσ2

e
−(t+1)2

2σ2 + (1− q) 1√
2πσ2

e
−t2
2σ2 .

(B.7)

The privacy loss function is then given by

LX/Y (t) = log

q 1√
2πσ2

e
−(t−1)2

2σ2 + (1− q) 1√
2πσ2

e
−t2
2σ2

q 1√
2πσ2

e
−(t+1)2

2σ2 + (1− q) 1√
2πσ2

e
−t2
2σ2

 = log

(
q e

2t−1

2σ2 + (1− q)

q e
−2t−1

2σ2 + (1− q)

)
.

Now LX/Y (R) = R and LX/Y is again a strictly increasing continuously differentiable function
in the whole R. Denote

x = e
t
σ2 and c = qe−

1
2σ2 .

Then, solving LX/Y (t) = s leads to the equation

cx+ (1− q)
cx−1 + (1− q)

= es

⇐⇒ cx2 + (1− q)(1− es)x− ces = 0

x>0⇐⇒ x =
−(1− q)(1− es) +

√
(1− q)2(1− es)2 + 4c2es

2c
.

We find that

L−1
X/Y (s) = σ2 log

(
−(1− q)(1− es) +

√
(1− q)2(1− es)2 + 4c2es

2c

)
and

d

d s
L−1
X/Y (s) = σ2

4c2es−2(1−q)2es(1−es)

2
√

4c2es+(1−q)2(1−es)2
+ (1− q)es√

4c2es + (1− q)2(1− es)2 − (1− q)(1− es)
.

In case of odd loss functions (fY (−t) = fX(t) and LX/Y (−t) = −LX/Y (t)) we have the following:

dωX/Y

ds
(s) =

dωY/X

ds
(s).

This follows from using the oddity of LX/Y and Lemma A.9. Therefore, if fY (−t) = fX(t) and
LX/Y (−t) = −LX/Y (t), it holds δ = δY/X = δX/Y by the representation (A.5).

We remark that in (ε, δ,∼S)-DP, the Poisson subsampling with the sampling parameter γ
(i.e., each sample is in the batch with a probability γ) is equivalent to the case of the sampling
with replacement with q = γ, as in both cases the differing element is included in the minibatch
with probability γ.
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B.4 Sampling with replacement and ∼S-neighouring relation

Consider next the sampling with replacement and the ∼S-neighbouring relation. Then the num-
ber of times the differing sample x′ is in the batch is binomially distributed, i.e., the probability

for being in the batch ` times is
(

1
n

)`(
1
n

)m−`(
m
`

)
, where m denotes the batch size and n the

total number of data samples.
Then, without loss of generality, we may consider the density functions (m denotes the batch

size)

fX(t) = 1√
2πσ2

m∑
`=0

q`(1− q)m−`
(
m

`

)
e
−(t−`)2

2σ2 ,

fY (t) = 1√
2πσ2

m∑
`=0

q`(1− q)m−`
(
m

`

)
e
−(t+`)2

2σ2 ,

(B.8)

where q = 1/n. The privacy loss function is then given by

LX/Y (t) = log


m∑̀
=0

q`(1− q)m−`
(
m
`

)
e
−(t−`)2

2σ2

m∑̀
=0

q`(1− q)m−`
(
m
`

)
e
−(t+`)2

2σ2

 = log


m∑̀
=0

c`x
`

m∑̀
=0

c`x−`

 ,

where
c` = q`(1− q)m−`

(
m

`

)
e
−`2
2σ2 and x = e

t
σ2 . (B.9)

Since c` > 0 for all ` = 1, . . . ,m, clearly
∑m

`=0 c`x
` is strictly increasing as a function of t and∑m

`=0 c`x
−` is strictly decreasing. Moreover, we see that

∑m
`=0 c`x

`∑m
`=0 c`x

−` → 0 as t→ −∞ and
∑m
`=0 c`x

`∑m
`=0 c`x

−` →∞ as t→∞.

Thus, LX/Y (R) = R and LX/Y (t) is a strictly increasing continuously differentiable function in
the whole R. To find L−1

X/Y (s) one needs to solve LX/Y (t) = s, i.e., one needs to find the single
real root of a polynomial of order 2m.

To find L−1
X/Y (s), i.e. to solve LX/Y (t) = s for a given y, one may use e.g. Newton’s method.
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C Error estimates

For the error analysis we consider the Poisson subsampling with (ε, δ,∼R)-DP, i.e., we consider
the PLD density function (Sec. B.2.1)

ω(s) =

{
f(g(s))g′(s), if s > log(1− q),
0, otherwise,

(C.1)

where
f(t) =

1√
2πσ2

[qe
−(t−1)2

2σ2 + (1− q)e−
t2

2σ2 ],

g(s) = σ2 log

(
es − (1− q)

q

)
+

1

2
.

Theorem C.1. Let the vector Ck be defined as in Sec. 5.3. Total error of the approximation
(determined by the truncation parameter L and the discretisation parameter n) can be bounded
by three terms as follows:∣∣∣∣∣∣

∞∫
ε

(1− eε−s)(ω ∗k ω)(s) ds−∆x
n−1∑
`=0

(
1− eε−(`∆x)

)
Ck`

∣∣∣∣∣∣ ≤ I1(L) + I2(L) + I3(L, n),

where

I1(L) =

∣∣∣∣∣∣
∞∫
L

(ω ∗k ω)(s) ds

∣∣∣∣∣∣ ,
I2(L) =

∣∣∣∣∣∣
L∫
ε

(ω ∗k ω)(s)− (ω̃ ~k ω̃)(s) ds

∣∣∣∣∣∣ ,
I3(L, n) =

∣∣∣∣∣∣
L∫
ε

(1− eε−s)(ω̃ ~k ω̃)(s) ds−∆x
n−1∑
`=0

(
1− eε−(`∆x)

)
Ck`

∣∣∣∣∣∣ .
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Proof. By adding and subtracting terms and using the triangle inequality, we get∣∣∣∣∣∣
∞∫
ε

(1− eε−s)(ω ∗k ω)(s) ds−∆x
n−1∑
`=0

(
1− eε−(`∆x)

)
Ck`

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∞∫
ε

(1− eε−s)(ω ∗k ω)(s) ds−
L∫
ε

(1− eε−s)(ω ∗k ω)(s) ds

∣∣∣∣∣∣
+

∣∣∣∣∣∣
L∫
ε

(1− eε−s)(ω ∗k ω)(s) ds−
L∫
ε

(1− eε−s)(ω̃ ~k ω̃)(s) ds

∣∣∣∣∣∣
+

∣∣∣∣∣∣
L∫
ε

(1− eε−s)(ω̃ ~k ω̃)(s) ds−∆x
n−1∑
`=0

(
1− eε−(`∆x)

)
Ck`

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∞∫
L

(ω ∗k ω)(s) ds

∣∣∣∣∣∣+

∣∣∣∣∣∣
L∫
ε

(ω ∗k ω)(s)− (ω̃ ~k ω̃)(s) ds

∣∣∣∣∣∣
+

∣∣∣∣∣∣
L∫
ε

(1− eε−s)(ω̃ ~k ω̃)(s) ds−∆x
n−1∑
`=0

(
1− eε−(`∆x)

)
Ck`

∣∣∣∣∣∣ .

(C.2)

We consider next separately each of the three terms on the right hand side of (C.2).

C.1 Tail bounds for the convolved PLDs

The first term on the right hand side of (C.2) is bounded by the tail of the convolved PLDs:∣∣∣∣∣∣
∞∫
ε

(1− eε−s)(ω ∗k ω)(s) ds−
L∫
ε

(1− eε−s)(ω ∗k ω)(s) ds

∣∣∣∣∣∣ ≤
∞∫
L

(ω ∗k ω)(s) ds. (C.3)

In this Section we show how to use existing Rényi differential privacy (RDP) results to bound
the tail (C.3).

The Chernoff bound (see e.g. [7]) states that for any random variable X and for all λ > 0 it
holds

P[X ≥ t] = P[eλX ≥ eλt] ≤ E[eλX ]

eλt
. (C.4)

From the RDP bounds given in [4] we obtain the following bound for the moment generating
function E[eλω].

13



Lemma C.2. Suppose q ≤ 1
5 and σ ≥ 4. Suppose λ satisfies

1 <λ ≤ 1

2
σ2c− 2 log σ,

λ ≤
1
2σ

2c− log 5− 2 log σ

c+ log(qλ) + 1/(2σ2)
,

where c = log
(

1 + 1
q(λ−1)

)
. Then,

E[eλω] ≤ 1 +
2q2(λ+ 1)λ

σ2
.

Proof. Making change of variables y = L(t) (recall: L(R) = (log(1− q),∞) and L(t) is a strictly
increasing differentiable function), we see a connection to the Rényi differential privacy:

E[eλω] =

∞∫
log(1−q)

eλsω(s) ds

=

∞∫
−∞

eλL(t)fX(t) dt

=

∞∫
−∞

(
fX(t)

fY (t)

)λ
fX(t) dt

=

∞∫
−∞

(
fX(t)

fY (t)

)λ+1

fY (t) dt.

Here fX(t) = qµ1(t) + (1 − q)µ0(t), where µ0(t) = 1√
2πσ2

e
−t2
2σ2 and µ1(t) = 1√

2πσ2
e
−(t−1)2

2σ2 , and
fY (t) = µ0(t). Therefore

E[eλω] =

∞∫
−∞

(
fX(t)

fY (t)

)λ+1

fY (t) dt =

∞∫
−∞

(
(1− q) + q

µ1(t)

µ0(t)

)λ+1

µ0(t) dt. (C.5)

From the proof of [4, Thm. 11] we get a bound for (C.5) which shows the claim.

Theorem C.3. Let the assumptions on σ and q of Lemma C.2 hold. Assume ωi, i = 1, . . . , k
are independent PLDs of the form (C.1) determined by σ and q. Denote Sk :=

∑k
i=1 ωi. Then,

it holds

P(Sk ≥ L) ≤
(

1 +
2q2(λ+ 1)λ

σ2

)k
e−Lλ

for all λ that satisfy the assumptions of Lemma C.2.
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Proof. Since ωi’s are independent, we have by Lemma C.2,

E[eλSk ] =
k∏
i=1

E[eλωi ] ≤
(

1 +
2q2(λ+ 1)λ

σ2

)k
.

Using the Chernoff bound, we find that

P(Sk ≥ L) ≤
(

1 +
2q2(λ+ 1)λ

σ2

)k
e−Lλ

For all λ that satisfy the assumptions of Lemma C.2.

The parameter λ in Theorem C.3 can be chosen freely as long as it satisfies the conditions of
Lemma C.2. The λ that minimises the function λ2e−Lλ is given by λ = L

2 . This choice leads to
the following bound.

Corollary C.4. Let L be chosen such that λ = L/2 satisfies the assumptions of Lemma C.2.
Then, we have the following bound:

P(Sk ≥ L) ≤

(
1 +

2q2(L2 + 1)L2
σ2

)k
e−

L2

2 .

Notice that

P(Sk ≥ L) =

∞∫
L

(ω ∗k ω)(s) ds.

Example 1. Set q = 0.01, σ = 4.0. We numerically observe that the conditions of Lemma 9
hold up to λ ≈ 14.3. Thus, Corollary 4 holds up to L ≈ 28.6. Figure 1 shows the convergence of
the bound with respect to L.

Example 2 (Illustration of the bound (7.3) of the main article). When q = 0.01 and σ = 2.0,
the conditions of Lemma 9 of the main article hold for λ up to ≈ 9.5 (i.e. (7.3) holds for L up to
≈ 19). Figure 2 shows the convergence of the bound (7.3) in this case.
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Figure 1: Convergence of the bound given by Corollary 4 for q = 0.01 and σ = 4.0.
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Figure 2: Convergence of the bound (7.3) of the main article for q = 0.01 and σ = 2.0 for
different number of compositions k.
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C.2 Errors arising from truncation of the convolution integrals and periodi-
sation

We next bound the second term on the right hand side of (C.2), i.e. the term∣∣∣∣∣∣
L∫
ε

(1− eε−s)(ω ∗k ω)(s) ds−
L∫
ε

(1− eε−s)(ω̃ ~k ω̃)(s) ds

∣∣∣∣∣∣ .
We easily see that this can be bounded as∣∣∣∣∣∣

L∫
ε

(1− eε−s)(ω ∗k ω)(s) ds−
L∫
ε

(1− eε−s)(ω̃ ~k ω̃)(s) ds

∣∣∣∣∣∣
≤

L∫
ε

∣∣∣(ω ∗k ω − ω ~k ω)(x)
∣∣∣ dx+

L∫
ε

∣∣∣(ω ~k ω − ω̃ ~k ω̃)(x)
∣∣∣ dx

(C.6)

C.2.1 Truncation of the convolution integrals

We first bound ω ∗k ω − ω ~k ω. We have the following pointwise bound.

Lemma C.5. Let σ > 0 and 0 < q < 1
2 . Let ω be defined as above, and let L ≥ 1. Then, for all

x ∈ R, ∣∣∣(ω ∗k ω − ω ~k ω)(x)
∣∣∣ ≤ kσe−

−(σ2L+C)2

2σ2 ,

where C = σ2 log( 1
2q )− 1

2

Proof. By adding and subtracting, we may write

ω ∗k ω − ω ~k ω = ω ~ (ω ∗k−1 ω − ω ~k−1 ω) + ω ~ (ω ~k−1 ω)− ω ∗ (ω ~k−1 ω), (C.7)

where
ω ~ (ω ~k−1 ω)− ω ∗ (ω ~k−1 ω)(x)

=

L∫
−L

ω(t)(ω ~k−1 ω)(x− t) dt−
∞∫
−∞

ω(t)(ω ~k−1 ω)(x− t) dt

= −
∞∫
L

ω(t)(ω ~k−1 ω)(x− t) dt,

17



since ω(s) = 0 for all s < log(1 − q) and −L < log(1 − q). Using Lemma D.3 of Appendix, we
see that for all x,

∣∣∣(ω ~ (ω ~k−1 ω)− ω ∗ (ω ~k−1 ω)
)
(x)
∣∣∣ ≤ max

s≥L
ω(s)

∞∫
L

(ω ~k−1 ω)(x− t) dt

≤ max
s≥L

ω(s)

≤ σe−
−(σ2L+C)2

2σ2 .

(C.8)

Using again Lemma D.3, we see that for all x,

|(ω ∗ ω − ω ~ ω)(x)| =
∞∫
−∞

ω(t)ω(x− t) dt−
L∫
−L

ω(t)ω(x− t) dt

=

∞∫
L

ω(t)ω(x− t) dt

≤ max
s≥L

ω(s)

∞∫
L

ω(x− t) dt

≤ σe−
−(σ2L+C)2

2σ2 .

(C.9)

The claim follows from the recursion (C.7) and the bounds (C.8) and (C.9).

C.2.2 Error arising from the periodisation

We next bound the second term on the right hand side of (C.6). The bound is expressed in
terms of the the log of the moment generating function of the privacy loss function L = LX/Y
(see also [1]) which is defined for all λ > 0 as

α(λ) := log E
t∼fX(t)

[eλL(t)].

As shown in equation (7.2) of the main text, α(λ) is related to the moment generating function
of the privacy loss distribution as

E[eλω] = eα(λ). (C.10)

Thus, using the Chernoff bound and (C.10), tail bounds involving ω can bounded in terms of
α(λ). Bounds for α(λ) in the case of Poisson subsampling with ∼R neighbouring relation are
given in [1] and [4].
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Lemma C.6. Let ω be defined as above. Then,

L∫
ε

∣∣∣(ω ~k ω − ω̃ ~k ω̃)(x)
∣∣∣ dx ≤ eα(L/2)e−

L2

2 + 2

∞∑
n=1

ekα(nL)e−2(nL)2 .

Proof. We see that

(ω̃ ~k ω̃ − ω ~k ω)(x)

=

L∫
−L

ω̃(t1) . . .

L∫
−L

ω̃(tk−1) ω̃(x−
∑k−1

i=1
ti) dt1 . . . dtk−1

−
L∫
−L

ω(t1) . . .

L∫
−L

ω(tk−1)ω(x−
∑k−1

i=1
ti) dt1 . . . dtk−1

=

L∫
−L

ω(t1) . . .

L∫
−L

ω(tk−1) ω̃(x−
∑k−1

i=1
ti) dt1 . . . dtk−1

−
L∫
−L

ω(t1) . . .

L∫
−L

ω(tk−1)ω(x−
∑k−1

i=1
ti) dt1 . . . dtk−1

=

L∫
−L

ω(t1) . . .

L∫
−L

ω(tk−1)
(
ω̃(x−

∑k−1

i=1
ti)− ω(x−

∑k−1

i=1
ti)
)

dt1 . . . dtk−1

(C.11)

since ω = ω̃ on the interval [−L,L].
Recall that ω̃ is the 2L-periodic function for which ω̃(t) = ω(t) for all t ∈ [−L,L]. Therefore

ω̃(t)− ω(t) =
∑

n∈Z\{0}

ω̂n(t)− r(t), (C.12)

where

ω̂n(t) =

{
ω(t− 2nL), if t ∈ [(2n− 1)L, (2n+ 1)L]

0, else,

and

r(t) =

{
ω(t), if t ≥ L
0, else.

Thus, from (C.11) and (C.12) it follows that

(ω̃ ~k ω̃ − ω ~k ω)(x) = C1(x) + C2(x), (C.13)
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where

C1(x) =

L∫
−L

ω(t1) . . .

L∫
−L

ω(tk−1)
∑

n∈Z\{0}

ω̂n(x−
∑k−1

i=1
ti) dt1 . . . dtk−1

and

C2(x) =

L∫
−L

ω(t1) . . .

L∫
−L

ω(tk−1)r(x−
∑k−1

i=1
ti) dt1 . . . dtk−1.

We see that |C1(x)| can be bounded as

|C1(x)| =
L∫
−L

ω(t1) . . .

L∫
−L

ω(tk−1)
∑

n∈Z\{0}

ω̂n(x−
∑k−1

i=1
ti) dt1 . . . dtk−1

=
∑

n∈Z\{0}

L∫
−L

ω(t1) . . .

L∫
−L

ω(tk−1) ω̂n(x−
∑k−1

i=1
ti) dt1 . . . dtk−1

≤
∑

n∈Z\{0}

L∫
−L

ω(t1) . . .

L∫
−L

ω(tk−1)ω(x− 2nL−
∑k−1

i=1
ti) dt1 . . . dtk−1

≤
∑

n∈Z\{0}

∞∫
−∞

ω(t1) . . .

∞∫
−∞

ω(tk−1)ω(x− 2nL−
∑k−1

i=1
ti) dt1 . . . dtk−1

=
∑

n∈Z\{0}

(ω ∗k ω)(x− 2nL).

Next, consider the expression

L∫
ε

∑
n∈Z\{0}

(ω∗kω)(x−2nL) dx =
∞∑
n=1

L∫
ε

(ω∗kω)(x−2nL) dx+
∞∑
n=1

L∫
ε

(ω∗kω)(x+2nL) dx. (C.14)
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Clearly, for the second term on the right hand side of (C.14),

∞∑
n=1

L∫
ε

(ω ∗k ω)(x+ 2nL) dx =

∞∑
n=1

L+2nL∫
ε+2nL

(ω ∗k ω)(x) dx

≤
∞∑
n=1

∞∫
ε+2nL

(ω ∗k ω)(x) dx

≤
∞∑
n=1

∞∫
2nL

(ω ∗k ω)(x) dx

≤
∞∑
n=1

ekα(nL)e−2(nL)2 ,

(C.15)

where on the last step we use the Chernoff bound for each term with λ = nL.
In order to bound the second term on the right hand side of (C.14) we consider the following.

From the Chernoff bound we get

P(ω ≤ −L) = P(−ω ≥ L) ≤ E[e−λω]

eλL
(C.16)

for all λ > 0.
Let us use again the notation of the proof of Lemma C.2, i.e., denote fX(t) = qµ1(t) + (1−

q)µ0(t), where µ0(t) = 1√
2πσ2

e
−t2
2σ2 and µ1(t) = 1√

2πσ2
e
−(t−1)2

2σ2 , and fY (t) = µ0(t). By change of
variables s = LX/Y (t), we see that

E[e−λω] =

∞∫
−∞

e
−λ log

fX (t)

fY (t) fX(t) dt =

∞∫
−∞

(
fY (t)

fX(t)

)λ
fX(t) dt. (C.17)

From [4, Corollary 7] it follows that for all λ ≥ 1,

∞∫
−∞

(
fY (t)

fX(t)

)λ
fX(t) dt ≤

∞∫
−∞

(
fX(t)

fY (t)

)λ
fY (t) dt =

∞∫
−∞

(
fX(t)

fY (t)

)λ−1

fX(t) dt = E[e (λ−1)ω].

(C.18)
I.e., from (C.17) and (C.18) we find that for any λ ≥ 1 it holds

E[e−λω] ≤ E[e (λ−1)ω] = eα(λ−1). (C.19)
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Using the bounds (C.16) and (C.19) we get for the second term on the right hand side of (C.14):

∞∑
n=1

L∫
ε

(ω ∗k ω)(x− 2nL) dx =

∞∑
n=1

(1−2n)L∫
ε−2nL

(ω ∗k ω)(x) dx

≤
∞∑
n=1

−(2n−1)L∫
−∞

(ω ∗k ω)(x) dx

≤
∞∑
n=1

ekα(nL)e−2(nL)2 ,

(C.20)

where on the last step we use the Chernoff bound for each term with λ = nL+ 1. Substituting
(C.15) and (C.20) into (C.14), we see that

L∫
ε

|C1(x)| dx ≤ 2

∞∑
n=1

ekα(nL)e−2(nL)2 . (C.21)

Moreover,
L∫
ε

|C2(x)| dx =

L∫
ε

L∫
−L

ω(t1) . . .

L∫
−L

ω(tk−1)r(x−
∑k−1

i=1
ti) dt1 . . . dtk−1 dx

=

L∫
−L

ω(t1) . . .

L∫
−L

ω(tk−1)

L∫
ε

r(x−
∑k−1

i=1
ti) dx dt1 . . . dtk−1.

(C.22)

Clearly, for the inner factor in the integrand it holds by the Chernoff bound (setting λ = L/2)
L∫
ε

r(x−
∑k−1

i=1
ti) dx ≤

∞∫
L

ω(t) dt ≤ eα(L/2)e−
L2

2 .

Thus, from (C.22) it follows that
L∫
ε

|C2(x)| dx ≤ eα(L/2)e−
L2

2 . (C.23)

Substituting (C.21) and (C.23) into (C.13), we get
L∫
ε

∣∣∣(ω ~k ω − ω̃ ~k ω̃)(x)
∣∣∣ dx ≤ eα(L/2)e−

L2

2 + 2
∞∑
n=1

ekα(nL)e−2(nL)2 .
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C.3 Error expansion with respect to ∆x

The purpose of this section is to show that the following assumption used in the main text holds
(recall ∆x = 2L/n):

There exists a constant K independent of n such that
L∫
ε

(1− eε−s)(ω̃ ~k ω̃)(s) ds−∆x

n−1∑
`=0

(
1− eε−(`∆x)

)
Ck` = K∆x+O

(
(∆x)2

)
. (C.24)

We motivate this assumption using the Euler–Maclaurin summation formula which gives the
following expansion for the error of the Riemann sum formula (see [6, Ch. 3.3]).

Lemma C.7 (Euler–Maclaurin formula). Let f ∈ C2m+2[a, b]. Let N ∈ N+ and denote ∆x =
(b− a)/N . Then,

∆x
N−1∑
i=0

f(a+ i∆x)−
∫ b

a
f(x) dx = ∆x

f(a)− f(b)

2
+

m∑
`=1

(∆x)2` B2`

(2`)!

(
f (2`−1)(b)− f (2`−1)(a)

)
+ (∆x)2m+2 B2m+2

(2m+ 2)!
f (2m+2)(η), η ∈ [a, b],

where Bi is the ith Bernoulli number.

Consider the discrete convolution vector Ck as defined in Section 5. By definition (summa-
tions periodic, indices modulo n),

Cki = ∆x
n−1∑
j=0

ω̃(j∆x)Ck−1
i−j , C2

i = ∆x
n−1∑
j=0

ω̃(j∆x)ω̃(i∆x− j∆x)

If, instead, we consider the discrete convolutions

Ĉki = ∆x

n−1∑
j=0

ω(j∆x)Ck−1
i−j , Ĉ2

i = ∆x
n−1∑
j=0

ω(j∆x)ω(i∆x− j∆x),

then by the Euler–Maclaurin formula there clearly exist a constant K independent of n such
that

Ĉki − (ω ~k ω)(−L+ i∆x) = K∆x+O
(
(∆x)2

)
for all k = 1, . . . and i = 0, 1, . . . , n − 1. Since the integrands in the convolution integrals of
ω ~k ω are piecewise smooth (we omit details here), it also has to hold

Cki − (ω̃ ~k ω̃)(−L+ i∆x) = K∆x+O
(
(∆x)2

)
(C.25)

for some constant K independent of n.
Using (C.25) and the Euler–Maclaurin formula and the fact that the expressions in (C.24)

are piecewise smooth, verifies the assumption (C.24).
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D Auxiliary results

The following lemma is needed in the derivation of Newton’s iteration.

Lemma D.1. Let
f(ε) =

∫ ∞
ε

(1− eε−s)g(s) ds.

Then,

f ′(ε) = −
∫ ∞
ε

eε−sg(s) ds.

Proof. Writing

f(ε) =

∫ ∞
ε

g(s) ds− eε
∫ ∞
ε

e−sg(s) ds

and using the fundamental theorem of calculus and the chain rule, we see that

f ′(ε) = −g(ε)− eε
∫ ∞
ε

e−sg(s) ds+ eε · e−εg(ε) = −
∫ ∞
ε

eε−sg(s) ds.

Recall that for the error analysis we consider the neighbouring relation ∼R, i.e., we consider
the density function

ω(s) =

{
f(g(s))g′(s), if s > log(1− q),
0, otherwise,

where
f(t) =

1√
2πσ2

[qe
−(t−1)2

2σ2 + (1− q)e−
t2

2σ2 ], (D.1)

g(s) = σ2 log

(
es − (1− q)

q

)
+

1

2
. (D.2)

The following lemmas which are be needed in the analysis of the approximation error.

Lemma D.2. For all s ∈ (log(1− q),∞):

ω(s) ≤ σ

q
√

2π
e

1
σ2 .

Proof. Consider first the case s ∈ (log(1− q), 0]. We see that then g(s) ∈ (−∞, 1
2 ] and therefore

e−
(g(s)−1)2

2σ2 ≤ e−
g(s)2

2σ2 .
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Thus,

f(g(s)) ≤ 1√
2πσ2

e−
g(s)2

2σ2 . (D.3)

Moreover, for all s ∈ (log(1− q), 0],

g′(s) =
σ2es

es − (1− q)
≤ σ2

es − (1− q)
. (D.4)

Using (D.3) and (D.4), we find that

ω(s) ≤ σ√
2π

e−
g(s)2

2σ2

es − (1− q)
. (D.5)

We make the change of variables x = g(s). Then,

1

es − (1− q)
= q−1 e

−2x+1

2σ2

and from (D.5) we see that

ω(s) ≤ σ

q
√

2π
e
−x2
2σ2 e

−2x+1

2σ2 =
σ

q
√

2π
e

1
σ2 e

−(x+1)2

2σ2 ≤ σ

q
√

2π
e

1
σ2

which shows the claim for s ∈ (log(1− q), 0].
Assume next s ≥ 0. Then,

g′(s) =
σ2es

es − (1− q)
=

σ2

1− 1−q
es

≤ σ2

q
.

Since f(g(s)) ≤ 1√
2πσ2

, we see that when s > 0,

ω(s) ≤ σ

q
√

2π
.

Lemma D.3. For all s ≥ 1 and 0 < q ≤ 1
2 :

ω(s) ≤ σe−
−(σ2s+C)2

2σ2 ,

where C = σ2 log( 1
2q )− 1

2 .
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Proof. Since s ≥ 1,

es − (1− q) ≥ 1

2
es

and therefore
g(s) = σ2 log

(
es − (1− q)

q

)
+

1

2
≥ σ2s+ C,

where C = σ2 log( 1
2q ) + 1

2 . We see that C ≥ 1
2 , since 0 < q ≤ 1

2 . Then also

f(g(s)) ≤ 1√
2πσ2

e−
−(σ2s+C)2

2σ2 ,

Furthermore, when s > 1,

g′(s) =
σ2es

es − (1− q)
≤ 2σ2.

Thus, when s > 1,

ω(s) ≤ σ
√

2

π
e−
−(σ2s+C2)

2

2σ2 ≤ σe−
−(σ2s+C2)

2

2σ2 .

D.1 Bounds for derivatives

Lemma D.4. Suppose σ ≥ 1. For all s ∈ (log(1− q),∞):

∣∣ω′(s)∣∣ ≤ 4e
3
σ2
σ3

q2

and ∣∣ω′′(s)∣∣ ≤ 11e
9

2σ2
σ3

q3
.

Proof. Denote
ω(s) = f(g(s))g′(s),

where
g(s) = σ2 log

(
es − (1− q)

q

)
+

1

2
(D.6)

and
f(t) =

1√
2πσ2

[qe
−(t−1)2

2σ2 + (1− q)e−
t2

2σ2 ].

Straightforward calculation shows that

ω′(s) = f ′(g(s))(g′(s))2 + f(g(s))g′′(s) (D.7)
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and
ω(2)(s) = f ′′(g(s))(g′(s))3 + 3f ′(g(s))g′′(s)g′(s) + f(g(s))g(3)(s). (D.8)

Moreover,

g′(s) =
σ2es

es − (1− q)
,

g′′(s) = − σ2(1− q)es(
es − (1− q)

)2 ,
g(3)(s) =

σ2(1− q)es(es + (1− q))(
es − (1− q)

)3 .

(D.9)

Case s ≥ 0. When s ≥ 0, it holds

es

es − (1− q)
=

1

1− 1−q
es

≤ 1

q

and from this inequality and expressions (D.9) it follows that

∣∣g′(s)∣∣ ≤ σ2

q
,

∣∣g′′(s)∣∣ ≤ σ2

q2
,∣∣∣g(3)(s)

∣∣∣ ≤ 2σ2

q3
.

(D.10)

Notice that when s ≥ 0, g(s) ≥ 1
2 . By an elementary calculus, we find that when σ ≥ 1, for

t ≥ 1
2 it holds

f(t) ≤ 1

σ
,

f ′(t) ≤ 1√
2πσ2

t

σ
e−

(t−1)2

2σ2 ≤ 1

σ

f ′′(t) ≤ 1√
2πσ2

(
t2

σ2
+

1

σ2

)
e−

(t−1)2

2σ2 ≤ 2

σ3
.

(D.11)

Substituting (D.11) and (D.10) into (D.7) and (D.8) we find that

∣∣ω′(s)∣∣ ≤ 2
σ3

q2
,

∣∣ω′′(s)∣∣ ≤ 7
σ3

q3
.

(D.12)
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when s ≥ 0.

Case s ∈ (log(1− q, 0)). When s ∈ (log(1− q), 0), from (D.9) it follows that

∣∣g′(s)∣∣ ≤ σ2

es − (1− q)
,

∣∣g′′(s)∣∣ ≤ σ2(
es − (1− q)

)2 ,∣∣∣g(3)(s)
∣∣∣ ≤ 2σ2(

es − (1− q)
)3 .

(D.13)

Consider next the five terms on the right hand sides of (D.7) and (D.8). Consider first the term
f(g(s))g′′(s). By (D.13), we have the bound

f(g(s))g′′(s) ≤ f(g(s))
σ2(

es − (1− q)
)2 . (D.14)

Next, make the change of variables x = g(s). Then, since (see (D.6))

1

es − (1− q)
= q−1 e

−2x+1

2σ2 , (D.15)

the bound (D.14) gives

f(g(s))g′′(s) ≤ σ2q−2f(x)e
−4x+2

2σ2 ≤ σ2q−2e
3
σ2

1√
2πσ2

e
−(x+2)2

2σ2 ≤ 1√
2π

e
3
σ2
σ

q2
, (D.16)

as f(t) ≤ 1√
2πσ2

e
−t2
2σ2 for t ≤ 1

2 and g(s) ≤ 1
2 for s ∈ (log(1 − q, 0)). With a similar technique,

i.e., by using the change of variables x = g(s) and (D.15), we find after tedious calculation that

f ′(g(s))
(
g′(s)

)2 ≤ 3e
3
σ2
σ3

q2
,

f ′′(g(s))
(
g′(s)

)3 ≤ 6e
9

2σ2
σ3

q3
,

3f ′(g(s))g′′(s)g′(s) ≤ 4e
9

2σ2
σ3

q3
,

f(g(s))g(3)(s) ≤ 1√
2π

e
9

2σ2
σ

q3
.

(D.17)
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Substituting (D.16) and (D.17) into (D.7) and (D.8) gives the bounds

∣∣ω′(s)∣∣ ≤ 4e
3
σ2
σ3

q2
,

∣∣ω′′(s)∣∣ ≤ 11e
9

2σ2
σ3

q3

(D.18)

for all s ∈ (log(1− q, 0)).
The claim follows from the bounds (D.12) and (D.18).
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D.2 Tables of numerical convergence for Section 8

n FA err(L, n)

5 · 104 0.0491228786423 2.01 · 10−2

1 · 105 0.0496089458356 3.12 · 10−4

2 · 105 0.0496013846114 1.06 · 10−6

4 · 105 0.0496014103882 1.71 · 10−9

8 · 105 0.0496014103252 2.66 · 10−11

1.6 · 106 0.0496014103146 8.88 · 10−12

3.2 · 106 0.0496014103163 2.22 · 10−12

Table 1: Convergence of δ(ε)-approximation with respect to n (when L = 12) and the esti-
mate (7.4). The tail bound estimate (7.3) is O(10−24).

L FA estimate (7.3)
2.0 0.0422160172923 3.32 · 10−1

4.0 0.0496008932869 4.96 · 10−3

6.0 0.0496014103158 3.32 · 10−6

8.0 0.0496014103134 1.00 · 10−10

10.0 0.0496014103134 1.36 · 10−16

12.0 0.0496014103163 8.30 · 10−24

Table 2: Convergence of the δ(ε)-approximation with respect to L (when n = 3.2 · 106) and the
error estimate (7.3). The estimate err(L, n) = O(10−12).
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