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Abstract

The main contribution of the paper is to
show that Gaussian sketching of a kernel-
Gram matrix K yields an operator whose
counterpart in an RKHSH, is a random pro-
jection operator—in the spirit of Johnson-
Lindenstrauss (J-L) lemma. To be precise,
given a random matrix Z with i.i.d. Gaus-
sian entries, we show that a sketch ZK
corresponds to a particular random opera-
tor in (infinite-dimensional) Hilbert space
H that maps functions f ∈ H to a low-
dimensional space Rd, while preserving a
weighted RKHS inner-product of the form
〈f, g〉Σ

.
= 〈f,Σ3g〉H, where Σ is the covari-

ance operator induced by the data distribu-
tion. In particular, under similar assump-
tions as in kernel PCA (KPCA), or kernel k-
means (K-k-means), well-separated subsets
of feature-space {K(·, x) : x ∈ X} remain
well-separated after such operation, which
suggests similar benefits as in KPCA and/or
K-k-means, albeit at the much cheaper cost
of a random projection. In particular, our
convergence rates suggest that, given a large
dataset {Xi}Ni=1 of size N , we can build the
Gram matrix K on a much smaller subsam-
ple of size n� N , so that the sketch ZK
is very cheap to obtain and subsequently
apply as a projection operator on the origi-
nal data {Xi}Ni=1. We verify these insights
empirically on synthetic data, and on real-
world clustering applications.
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1 Introduction

The Gram matrix K, defined as Kij = K(Xi, Xj)
over a (sub) sample X

.
= {Xi}ni=1, for a PSD kernel

K : X × X → R, plays a central role in kernel ma-
chines, where learning tasks in a (reproducing kernel)
Hilbert space H can be performed in sample space
X via K. Sketching of K, i.e., multiplying by a
random matrix (or matrices) Z ∈ Rd×n—as a form
of rank reduction, is now ubiquitous in the design
of computationally efficient approaches to kernel ma-
chines (Wang et al., 2019; Williams and Seeger, 2001;
Yang et al., 2017). The simplest sketching approach
consists of random subsampling of columns of K,
i.e., a data reduction, while the usual alternative of a
Gaussian sketch (of the form ZK, Zi,j∼N (0, 1)) has
less immediate interpretation. A main aim of this
paper is to derive an operator-theoretic interpreta-
tion of Gaussian sketching, i.e., understand its effect
in kernel space H on embedded data K(x, ·). The
analysis reveals interesting norm preservation proper-
ties of ZK, in the spirit of the Johnson-Linderstauss
(J-L) lemma, even when K is viewed as a smaller
submatrix of an initial gram-matrix KN on N � n
samples; these new insights imply an alternative use
of Gaussian sketching in important applications such
as kernel clustering or PCA, while yielding faster
preprocessing than even vanilla Nyström.

Results Overview. It has been folklore in the
community that Gaussian sketching corresponds to
some form of random projection, although it re-
mained unclear in which formal sense this is true.
To draw the link to operators on H, we consider
linear operations of the form ZKf|X ∈ Rd, where

f|X
.
= (f(X1), . . . , f(Xn))> denotes the sampled ver-

sion of f ∈ H. We show that, ZK, viewed in this
sense as an operator, corresponds to a random oper-
ator Θ which maps (potentially infinite-dimensional)
H to lower-dimensional Rd, while preserving—in the
spirit of the J-L lemma (Johnson and Lindenstrauss,
1984; Dasgupta and Gupta, 2003)—a weighted RKHS
inner-product of the form 〈f, g〉Σ

.
= 〈f,Σ3g〉H, Σ
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being the covariance operator induced by the data-
generating distribution (as defined in Section 2).

The corresponding random operator Θ projects—
in the informal sense of dimension reduction—any
f ∈ H onto d i.i.d Gaussian directions1 {vi}di=1

in H: formally, given i.i.d. Gaussians {vi}di=1 ∼
NH(0,Σ3), Θ maps any f ∈ H to the vector

1√
d
(〈f, v1〉H , . . . , 〈f, vd〉H)> ∈ Rd. We refer the

reader to Section 3 for details.

In Section 4 (see Theorem 1), we show the following
correspondence between ZK and Θ: just as Θ pre-
serves

〈
g,Σ3f

〉
H, so does ZK (properly normalized),

i.e., with high probability, we have ∀f, g ∈ H,

1

n3d

〈
(ZK)g|X , (ZK)f|X

〉
2
≈
〈
g,Σ3f

〉
H

≈ 〈Θg,Θf〉2 , (1)

where 〈·, ·〉2 denotes the inner-product in Rd. The
result holds simultaneously ∀f, g ∈ H, with an ap-
proximation rate of order n−1/2 + d−1/2, for n, d
greater than effective dimension terms (sΣ or sΣ3

of Theorem 1). In other words such approximation
holds for both n and d small, whenever the effective
dimension is small; our experiments suggest this is
often the case.

Time complexity. The above result suggests a novel
use of sketching where, given a larger dataset XN =
{Xi}Ni=1, we re-map all Xi ∈XN to Rd using n sub-
samplesX ⊂XN , n, d� N , to form a projection op-
erator ZK. In other words, we re-map feature func-
tions K(·, Xi), Xi ∈ XN to 1

n3/2
√
d
(ZK)K(·, Xi)|X ,

following the intuition that useful properties of ker-
nel feature maps K(·, x) are preserved. We refer to
such a mapping as Kernel JL (K-JL) for short. The
time complexity is exactly d · n2 for forming ZK, in
addition to N · d · n for the subsequent mapping of
all N datapoints. The leading constant is 1 in all
cases. In contrast, the cheapest Nyström approxima-
tion using n subsampled columns costs O(d · n2) (for
pseudo-inverse computation, where constants depend
on desired precision) plus N · d · n for mapping data-
points. K-JL avoids eigen-decompositions or matrix
inversion steps, besides requiring smaller n for sta-
bility (see Section 5, for details including Nyström
formulation).

Performance. Now, whether K-JL preserves useful
properties of feature mapping depends on how the
inner-product

〈
g,Σ3f

〉
H relates to the natural inner-

product 〈g, f〉H of the RKHS H. In the present

1The notion of a Gaussian measure NH on H has to
be suitably defined so as to ensure that random draws
v ∼ NH are indeed elements of H.

work, we consider clustering and PCA applications,
which require that properties such as separation (in
H distance) between given subsets of feature space
{K(·, x) : x ∈ X} ⊂ H are preserved. At first glance,
there seems to be little hope, since in the worst-
case over H, there exist f ∈ H such that ‖f‖2H

.
=

〈f, f〉H is large but
〈
f,Σ3f

〉
H is close to 0 (e.g.,

eigenfunctions f of Σ with eigenvalues tending to 0).

Interestingly however, as we argue in Section 5, we
can expect well-separated subsets of feature space
{K(·, x) : x ∈ X} ⊂ H to remain well-separated af-
ter K-JL, under conditions favorable to kernel PCA
(KPCA) (Blanchard et al., 2007; Mika et al., 1999;
Schölkopf et al., 1998), or conditions favorable to
kernel k-means (K-k-means) (Dhillon et al., 2004).
Namely, if feature maps K(·, x) lie close to a low-
dimensional subspace, or feature maps cluster well
(in which case the means of clusters lie close to a
low-dimensional subspace), then the worst-case dis-
tortions between the two inner-products happen out-
side of feature space {K(·, x) : x ∈ X}. This entails
similar benefits as in KPCA and or K-k-means, albeit
at the cheaper cost of a random projection. This
intuition holds empirically, as we verify on a mix of
synthetic data and real-world clustering applications.

Further Related Work. We note that sketching
is of general interest outside the present context, mo-
tivated by the need for efficient approximations of
general matrices appearing in numerical and data
analysis (Woodruff et al., 2014; Andoni et al., 2016,
2018). Finally, we note that the benefits of Johnson-
Linderstrauss type projections in Hilbert spaces were
considered in Biau et al. (2008), however under the
assumptions of a theoretical procedure which re-
quires explicit Fourier coefficients (basis expansion)
of Hilbert space elements K(Xi, ·).

Paper Outline

Section 2 covers definitions and basic assumptions
used throughout the paper. In Section 3 we develop
some initial intuition about JL-type random projec-
tions in H, followed by formal results in Section 4.
Omitted proofs and supporting results are collected
in an appendix.

2 Preliminaries

Let X denote a separable topological space on which a
Borel probability measure ρX is defined. We assume
that H, consisting of functions X → R, is a reproduc-
ing kernel Hilbert space (RKHS) with a continuous
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and bounded reproducing kernel K : X × X → R
where supx∈X K(x, x) =: κ < ∞. For any f ∈ H,
the outer-product notation f ⊗H f denotes the oper-
ator g 7→ 〈g, f〉H f . We let Σ : H → H denote the
uncentered covariance operator, which is defined as

Σ
.
=

∫
K(·, x)⊗HK(·, x) dρX(x),

in the sense of Bochner integration (Diestel and Uhl,

1977). Given data {Xi}ni=1
i.i.d.∼ ρX where n ≥ 1, the

empirical counterpart of Σ is defined as

Σn
.
=

1

n

n∑
i=1

K(·, Xi)⊗H K(·, Xi).

Given two normed spaces (F , ‖ · ‖F ) and (G, ‖ · ‖G),
let A : F → G and B : F → F be two linear
operators. The operator norm of A is defined as

‖A‖op
.
= supf∈F

‖Af‖G
‖f‖F .

The trace of a non-negative self-adjoint operator
B, operating on a separable Hilbert space F , is de-
fined as tr(B)

.
=
∑
`〈Be`, e`〉F , where (e`)` is any

orthonormal basis in F . The Hilbert-Schmidt norm
of B is then defined as ‖B‖L2(F)

.
=
√

tr(B∗B).

A random element v of H is said to have Gaussian
measure, denoted NH, if for any f ∈ H, 〈v, f〉H is
Gaussian. It is known that such a measure is well-
defined, in the sense that v ∼ NH has finite norm
‖v‖H w.p. 1, whenever its corresponding covariance
operator C .

= E v ⊗H v − µ ⊗H µ, µ = Ev, is trace-
class, i.e., has finite trace (see e.g., Bogachev, 1998).
We can then parametrize the measure as NH(µ, C).

3 Intuition on Random Projection
in RKHS H

As mentioned in Section 1, a key contribution of
this paper is in showing that the random projection
operator Θ is related to the Gaussian sketch of a ker-
nel matrix. Before we present and prove a rigorous
result in Section 4, in this section, we heuristically
demonstrate the connection. In particular, we elu-
cidate why Σ3 shows up (rather than e.g. Σ, given
that a priori K seems most naturally related to Σ),
and why the origin of the peculiar normalization by
n3/2
√
d.

Given a set of N datapoints in RD, classical random
projections in the style of Johnsohn-Lindenstrauss
(J-L) consists of projecting the datapoints onto d
random directions which are sampled from a stan-
dard Gaussian distribution. The same idea can be

intuitively carried forward to an RKHS, H by sam-
pling functions from a Gaussian measure onH—these
functions act as directions along which a function
in H can be projected. Now, consider the random

directions vi
i.i.d.∼ NH(0,Σ3) and define the random

projection of f ∈ H to Rd through the random oper-
ator Θ : H → Rd

f 7→ 1√
d

(〈v1, f〉H, . . . , 〈vd, f〉H)>. (2)

It is important to note that random directions cannot
be sampled from a Gaussian measure with identity co-
variance operator IH (i.e., similar to the classical set-
ting) as such a measure is not well-defined for infinite
dimensional Hilbert spaces since IH has infinite trace.
The above normalization by d−1/2 ensures that, with

high-probability, 〈Θg,Θf〉2
d→∞−−−→

〈
g,Σ3f

〉
H (see

Proposition 1).

Now define (ui)
d
i=1

i.i.d.∼ NH(0,Σ) so that (vi)
d
i=1 can

be written as vi = Σui and

〈vi, f〉H = 〈Σui, f〉H =

∫
f(x)ui(x) dρX(x)

= 〈ui, f〉L2(X ,ρX).

The above can be approximated empirically, using

X
.
= {Xi}ni=1

i.i.d.∼ ρX , as

〈ui, f〉L2(ρX) ≈
1

n

n∑
j=1

f(Xj)ui(Xj)

=
1

n
〈SXui, SXf〉2, (3)

where

SX : H → Rn, f 7→ (f(X1), . . . , f(Xn))>

is a sampling operator (Smale and Zhou, 2007) whose
adjoint is given by

S∗X : Rn → H, β 7→
n∑
i=1

βiK(·, Xi).

It follows from Proposition B.1 (in the appendix)
that, conditioned on the sample X, SXui is dis-
tributed as N (0,M) where M ∈ Rn×n is defined
as

Mjl
.
= 〈K(·, Xj),ΣK(·, Xl)〉H

=

∫
X
K(x,Xj)K(x,Xl) dρX(x), (4)

with Xj , Xl ∈ X. Based on X, M can be further

approximated as M̂ where

M̂jl
.
= 〈K(·, Xj),ΣnK(·, Xl)〉H

=
1

n

n∑
i=1

K(Xi, Xj)K(Xi, Xl) =
1

n
(K2)jl,(5)
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where K is the Gram matrix based on X. To sum-
marize, we have carried out the following sequence
of approximations to 〈vi, f〉H:

〈vi, f〉H = 〈ui, f〉L2(X ,ρX) ≈
1

n
〈SXui, SXf〉2

where SXui ∼ N (0,M) ≈ N
(
0, 1

nK
2
)
. This means

an approximation to 〈vi, f〉H can be obtained by
sampling, say v̂i from N

(
0, 1

nK
2
)

and computing
1
n 〈v̂i, SXf〉2. Recalling the form of Θ (2), define

V̂ =
1

n
√
d

[v̂1, . . . , v̂d] ∈ Rn×d.

The approximate random projection operator is then
V̂ >SX : H → Rd, where

f 7→ V̂ >SXf =
1

n
√
d

(〈v̂1, SXf〉2, . . . , 〈v̂d, SXf〉2)>.

Note that V̂ > = 1
n
√
d
[v̂1, . . . , v̂d]

> = 1
n
√
nd
ZK with

Z ∈ Rd×n having i.i.d. N (0, 1) entries.

4 Main Results

In this section, we formalize the relation between Θ
and V̂ >SX by showing that, with high-probability,〈
V̂ >g|X , V̂

>f|X

〉
2
≈
〈
g,Σ3f

〉
H ≈ 〈Θg,Θf〉2. This

relation is established in Proposition1 (proved in
Section A.1), and Theorem 1. In the sequel, we let
a ∧ b .= min{a, b} and a ∨ b .= max{a, b}.
Proposition 1. Define sΣ = tr(Σ)

‖Σ‖op
. For any τ ≥ 1

and d ≥ (sΣ3 ∨ τ), with probability at least 1− e−τ ,

sup
f,g∈H

∣∣〈Θg,Θf〉2 − 〈g,Σ3f〉H
∣∣

‖f‖H‖g‖H
≤ C‖Σ‖3op

√
sΣ3 +

√
τ

√
d

,

where C is a universal constant independent of Σ, τ
and d.

Theorem 1 (Convergence of inner products). Let

τ ≥ 1. Define sΣ = tr(Σ)
‖Σ‖op

. Suppose

n ≥ 6272κs5
Στ

‖Σ‖op
.

Then, with probability at least 1− 5e−τ jointly over
the choice of {v̂i}di=1 and {Xi}ni=1:

sup
f,g∈H

∣∣∣〈V̂ >SXg, V̂ >SXf〉
2
−
〈
g,Σ3f

〉
H

∣∣∣
‖f‖H‖g‖H

≤ 3C‖Σ‖3op

√
2sΣ3+

√
τ

√
d

+
28‖Σ‖5/2

op

√
2κsΣτ√

n
,

where C is a universal constant that does not depend
on n, d, κ and Σ.

Remark. (Main dependence on n and d) The lead-
ing constants above are in terms of ‖Σ‖op ≤ κ

.
=

supxK(x, x), and are therefore expected to be small
for common kernels such as Gaussian (κ = 1). Thus
the main dependence on n and d in the rates are
given by sΣ and sΣ3 ≤ sΣ, viewed as effective di-
mension terms. Thus, whenever sΣ is small, both
n and d can be chosen small while maintaining the
guarantees of the above theorem. In our experiments
of Section 5, d ≤ n ≤ 100 is often sufficient even for
datasizes in excess of 40K points (see e.g. Figure 2).

Proof of Theorem 1. Define A(f, g)
.
=〈

V̂ >SXg, V̂
>SXf

〉
2
−
〈
g,Σ3f

〉
H . Since〈

V̂ >SXg, V̂
>SXf

〉
2

=
〈
g, S∗X V̂ V̂

>SXf
〉
H
,

we have

sup
f,g∈H

|A(f, g)|
‖f‖H‖g‖H

= sup
f∈H

∥∥∥(S∗X V̂ V̂ >SX − Σ3
)
f
∥∥∥
H

‖f‖H

=
∥∥∥S∗X V̂ V̂ >SX − Σ3

∥∥∥
op
.

In the following, we bound
∥∥∥S∗X V̂ V̂ >SX − Σ3

∥∥∥
op

.

To this end, consider

S∗X V̂ V̂
>SX − Σ3

= S∗X

(
V̂ V̂ > − 1

n3
K2

)
SX +

1

n3
S∗XK

2SX − Σ3

(†)
= S∗X

(
V̂ V̂ > − 1

n3
K2

)
SX + Σ3

n − Σ3,

where in (†), we use the facts that K = SXS
∗
X and

Σn = 1
nS
∗
XSX . Therefore,∥∥∥S∗X V̂ V̂ >SX − Σ3

∥∥∥
op

≤
∥∥∥∥S∗X (V̂ V̂ > − 1

n3
K2

)
SX

∥∥∥∥
op

+ ‖Σ3
n − Σ3‖op

(‡)
≤C

(√
tr(Σ3

n)‖Σ3
n‖op

d
+ ‖Σ3

n‖op

√
τ

d

)
+‖Σ3

n − Σ3‖op,

≤ C

(√
tr(Σ3

n)‖Σ3
n − Σ3‖op

d
+

√
tr(Σ3

n)‖Σ3‖op

d

+‖Σ3‖op

√
τ

d

)
+ ‖Σ3

n − Σ3‖op

(
1 + C

√
τ

d

)
,(6)

where (‡) follows from Lemma B.3, which holds
with probability 1 − e−τ over the choice of (v̂i)

d
i=1

conditioned on X for any τ ≥ 1 and d ≥
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tr(Σ3

n)
‖Σ3‖op−‖Σ3−Σ3

n‖op
∨ τ
)
≥
(

tr(Σ3
n)

‖Σ3
n‖op

∨ τ
)
. C is a uni-

versal constant independent of S∗XK
2SX and d.

We now bound tr(Σ3
n) and ‖Σ3

n − Σ3‖op. Consider

Σ3
n − Σ3 = (Σn − Σ + Σ)3 − Σ3

= (Σn − Σ)3 + (Σn − Σ)2Σ + (Σn − Σ)Σ(Σn − Σ)

+(Σn − Σ)Σ2 + Σ(Σn − Σ)2 + Σ(Σn − Σ)Σ

+Σ2(Σn − Σ),

which yields

‖Σ3
n − Σ3‖op ≤ ‖Σn − Σ‖3op + 3‖Σn − Σ‖2op‖Σ‖op

+3‖Σn − Σ‖op‖Σ‖2op

≤ ‖Σn − Σ‖3L2(H) + 3‖Σn − Σ‖2L2(H)‖Σ‖op

+3‖Σn − Σ‖L2(H)‖Σ‖2op

and

tr(Σ3
n) ≤ tr(Σ3) + 3‖Σ‖L2(H)‖Σn − Σ‖2L2(H)

+‖Σn − Σ‖3L2(H) + 3‖Σ‖2L2(H)‖Σn − Σ‖L2(H).

It follows from Lemma B.2 that for any τ > 0 and
n ≥ 32κsΣτ

‖Σ‖op
,

‖Σ3
n − Σ3

n‖op ≤ 28‖Σ‖2op

√
2κtr(Σ)τ

n
(7)

and

tr(Σ3
n) ≤ tr(Σ3) + 28‖Σ‖2L2(H)

√
2κtr(Σ)τ

n
, (8)

where each of the above inequalities hold with prob-
ability at least 1 − 2e−τ over (X1, . . . , Xn). Using
(7) and (8) in (6) yields the result, upon tying a few
loose ends.

Define ∆
.
= 28‖Σ‖2L2(H)

√
2κtr(Σ)τ

n and ∆′
.
=

‖Σ‖2op

‖Σ‖2L2(H)

∆. As aforementioned, (6) holds if d ≥(
tr(Σ3

n)
‖Σ3‖op−‖Σ3

n−Σ3‖op
∨ τ
)

which is the case whenever

d ≥
(

tr(Σ3)+∆
‖Σ3‖op−∆′ ∨ τ

)
. Under the assumed conditions

on n, it follows that ‖Σ‖3op ≥ 2∆′ and tr(Σ3) ≤ ∆,

which yields that d ≥
(

tr(Σ3)+∆
‖Σ3‖op−∆′ ∨ τ

)
is true when-

ever d ≥ (4sΣ3 ∨ τ).

Theorem 1 shows that the approximate random pro-
jection operator V̂ >SX preserves the inner product
〈g,Σ3f〉H uniformly over all f, g ∈ H at an approxi-
mation rate of n−1/2 + d−1/2.

The following result (proved in Section ??) provides a
different angle by which Θ relates to V̂ >SX , by show-
ing that, for all α ∈ Rd and f ∈ H, 〈α, V̂ >SXf〉2

converges in probability to 〈α,Θf〉2 at the rate of
d−1/2, provided n is large enough for ‖Σn‖op .
‖Σ‖op. Recall that two operators A,B : H → Rd are
equal (in a weak sense) if ∀f ∈ H, ∀α ∈ Rd, we have
〈α, Af〉2 = 〈α, Bf〉2.

Theorem 2 (Convergence of random projection op-

erators). Define sΣ = tr(Σ)
‖Σ‖op

. For any α ∈ Rd,

f ∈ H, τ > 0 and

n ≥ κsΣτ

(
32

‖Σ‖op
∨ 1

)
,

with probability at least 1 − 4e−τ jointly over the
choice of {v̂i}di=1, {vi}di=1 and {Xi}ni=1:∣∣∣〈α, V̂ >SXf〉2 − 〈α,Θf〉2∣∣∣

≤ 16
√

2τ‖α‖2‖f‖H(‖Σ‖3/2
op ∨‖Σ‖

5/4
op )√

d
. (9)

Proof. Note that 〈α, V̂ >SXf〉2 = 〈V̂α, SXf〉2 =
1

n
√
d

〈∑d
i=1 αiv̂i, SXf

〉
2
. Since (v̂i)

i.i.d.∼ N (0, 1
nK

2),

conditioned on X it follows that

1

n
√
d

〈
d∑
i=1

αiv̂i, SXf

〉
2

∼ N
(
0, 1

n3d‖α‖
2
2〈SXf,K2SXf〉2

)
= N

(
0, 1

d‖α‖
2
2〈f,Σ3

nf〉H
)
,

where we used K = SXS
∗
X and nΣn = S∗XSX . On

the other hand, 〈α,Θf〉2 = 1√
d

∑d
i=1 αi〈vi, f〉H ∼

N
(
0, 1

d‖α‖
2
2〈f,Σ3f〉H

)
, which follows from the fact

that (vi)
d
i=1

i.i.d.∼ NH(0,Σ3) which in turn implies
〈vi, f〉H ∼ N (0, 〈f,Σ3f〉H). Therefore

〈α, V̂ >SXf−Θf〉2 ∼ N
(

0,
‖α‖22
d
〈f, (Σ3 + Σ3

n)f〉H
)

conditioned on X. For Y ∼ N (0, σ2), the Gaussian
concentration inequality yields that for any τ > 0,
with probability at least 1 − 2e−τ , |Y | ≤

√
2σ2τ .

Hence it follows that for any τ > 0, with probability
at least 1 − 2e−τ jointly over {vi}di=1, {v̂i}di=1 and
conditioned on X, we obtain∣∣∣〈α, V̂ >SXf −Θf〉2

∣∣∣ ≤‖α‖2√2τ〈f, (Σ3 + Σ3
n)f〉H

d

≤ ‖α‖2‖f‖H
√

2τ

(√
2‖Σ‖3/2op√

d
+
‖Σ3 − Σ3

n‖
1/2
op√

d

)
,

(10)

which follows from the fact that 〈f, (Σ3 + Σ3
n)f〉H =

2〈f,Σ3f〉H + 〈f, (Σ3
n − Σ3)f〉H ≤ 2‖Σ‖3op‖f‖2H +
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‖f‖2‖Σ3
n − Σ3‖op. Therefore, by unconditioning

w.r.t. X, (10) holds with probability at least 1 −
2e−τ jointly over the choice of {v̂i}di=1, {vi}di=1 and
{Xi}ni=1. The result therefore follows by invoking (7)
to bound ‖Σ3 − Σ3

n‖op in (10).

In Theorem 2, we require d → ∞ to achieve
〈α, V̂ >SXf〉2 → 〈α,Θf〉2 in probability for all
α ∈ Rd and f ∈ H, for sufficiently large n. In-
stead in the following result, we keep d fixed, and
show the convergence in distribution of V̂ >SXf to
Θf as n→∞ for all f ∈ H as n→∞.

Theorem 3. For all f ∈ H we have that

V̂ >SXf
dist−−→ Θf, as n→∞.

5 K-JL relations to KPCA and
K-k-means

In the next two subsections we argue, through simple
corollaries to Theorem 1 and experimental evalua-
tion, that K-JL preserves geometric and clustering
aspects of kernel PCA (KPCA) (Mika et al., 1999;
Schölkopf et al., 1998) and kernel k-means (K-k-
means) (Dhillon et al., 2004), at the cheaper costs
of random projection, whenever favorable conditions
for KPCA, resp. K-k-means hold in practice.

Recall that, given a large dataset XN of size N ,
K-JL consists of remapping each Xi ∈ XN as
V̂ >SXK(·, Xi), where X is the size n subsample
of XN used to compute V̂ >

.
= 1

n
√
nd
ZK.

5.1 Preserving Low-dimensional Separation

In this section, we develop the intuition that, Kernel
JL has similar advantages as Kernel PCA (KPCA)
under situations favorable to KPCA. In particular,
KPCA works under the assumption that the data in
feature space {K(·, x) : x ∈ X} lies close to a lower-
dimensional eigenspace of the covariance operator Σ
(Blanchard et al., 2007; Mika et al., 1999; Schölkopf
et al., 1998). We formalize this assumption below.

Assumption 1 (KPCA). Let Σ =
∑
i λi(fi ⊗H

fi) denote a spectral decomposition of Σ (with
non-increasing eigenvalues {λi}, and assume
EX∼ρXK(·, X) = 0. For any k ∈ N, let Pk denote
the projection operator onto span{fi : i ∈ [k]}. There
exists k ∈ N, and 0 < ε, η < 1 such that

ρX
{
x : ‖PkK(·, x)‖2H ≥ (1− ε)‖K(·, x)‖2H

}
≥ 1− η.

We start with some theoretical intuition using the
following formal example.

Example 1 (Well-separated subsets of feature
space). Let Assumption 1 hold for some 0 < ε, η < 1.
Let τ > 1. Let XN denote an i.i.d. sample of size N
from ρX (not necessarily independent from X, since
the results of Theorem 1 hold uniformly over H).

The following holds with probability at least 1−e−τ −
Nη, over any subsets F ,G of {K(·, x) : x ∈ XN}
satisfying minf∈F, g∈G ‖f − g‖2H = ∆, for some sepa-
ration ∆ = ∆(F ,G) > 0. We have for some C1, C2,
both functions of (K, ρX), that for n ∧ d > C1:

inf
f∈F, g∈G

∥∥∥V̂ >SX (f − g)
∥∥∥2

≥ λ3
k · (∆− 2ε · κ)

−C2

√
τ
n∧d . (11)

On the other hand, independent of Assumption 1,
we have with probability at least 1− e−τ that for all
f, g ∈ H we have the upper-bound∥∥∥V̂ >SX (f − g)

∥∥∥2

≤ λ3
1 · ‖f − g‖2H + C2

√
τ

n ∧ d
.

(12)

The above is obtained by noticing that, for any h ∈ H

〈
h,Σ3h

〉
H =

∞∑
i=1

λ3
i 〈h, fi〉

2 ≥ λ3
k ·

k∑
i=1

〈h, fi〉2

= λ3
k · ‖Pkh‖

2
H , and similarly〈

h,Σ3h
〉
H ≤ λ

3
1 ·
∞∑
i=1

〈h, fi〉2 = λ3
1 · ‖h‖

2
H .

Now, under Assumption 1 and Theorem 1, take h
.
=

f − g to obtain the statements of (11) and (12). For
(11), notice further that, under Assumption 1, we
have with probability at least 1−Nη that

‖Pk(f − g)‖2H = ‖f − g‖2H − ‖P⊥k (f − g)‖2H
≥ ‖f − g‖2H − 2

(
‖P⊥k f‖2H + ‖P⊥k g‖2H

)
≥ ‖f − g‖2H − 2ε · κ.

From the above, if the two subsets F ,G are well-
separated in feature space under KPCA, they remain
well-separated after K-JL, provided the condition
number λ1/λk is not too large: distances are rescaled
below by λ3

k, but rescaled above by λ3
1. In the favor-

able case where λ1/λk ≈ 1, we see from (11) and (12)
that K-JL should achieve similar separation proper-
ties as KPCA, provided ∆ is large w.r.t. to interpoint
distances in F and G. This intuition is formalized in
the following example where we consider a scale-free
notion of separation.
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Figure 1: The data Cluster in Cluster and Crescent Full
Moon each have 5000 points, and are shown before and
after K-JL projection. K-JL behaves as a random version
of KPCA in how it separates clusters.

Simulations. Next, we verify the above insights
empirically. In particular, an empirical fact about
KPCA, justifying its popularity, is that it can reveal
separable subsets F ,G (in feature space) of data XN

that were not separable in original space X . Per
the above insights, this should also be the case with
K-JL. In Figure 1 we show projection results, where,
given N = 5000 points, we use a subsampling size
n = 100 and projection dimension d = 2 to verify the
intuition that K-JL (centralized) is able to separate
subsets of data on typical examples (e.g., cluster in
cluster) where KPCA is known to work well (Mika
et al., 1999; Schölkopf et al., 1998).

5.2 Preserving Clustering Properties

In this section we argue that if the data is clus-
terable in feature space—an assumption underlying
K-k-means, and uses of KPCA in clustering—then
it remains clusterable after K-JL.

To develop intuition, we formalize clusterability in
terms of the distribution ρX being given as a mixture
of distributions with sufficiently separated means.
We adapt traditional arguments given in the work
on clustering mixtures of Gaussians (Dasgupta, 1999;
Kannan et al., 2005; Sanjeev and Kannan, 2001)
to the square norm

〈
f,Σ3f

〉
H. In particular, these

works develop the intuition that if the k cluster means
are sufficiently separated, they then lie close to a k-
dimensional subspace close to the top k-eigenspace of

the data covariance. Such intuition holds in general
Hilbert space, and in the sequel we illustrate this in
the case of 2 clusters, while similar arguments extend
to multiple clusters.

Example 2 (Clusterability of ρX). The following
holds with probability at least 1− e−τ , τ > 1.

Let ρX = π1ρX,1 + π2ρX,2, 0 < π1, π2 < 1, π1 +
π2 = 1; let µ1, µ2, Σ1,Σ2 are respectively the means
and covariance operators of ρX,1, ρX,2, i.e., for i =
1, 2, µi = EρX,i

K(·, X) and Σi = EρX,i
K(·, X) ⊗H

K(·, X)− µi ⊗H µi.

Suppose the maximum eigenvalues of Σ1,Σ2 are
upper-bounded by σ. We have for some C1, C2, both
functions of (K, ρX), that for n ∧ d > C1:∥∥∥V̂ >SX (µ1 − µ2)

∥∥∥2

≥ λ3
1

(
‖µ1 − µ2‖2H −

1

π1π2
σ

)
− C2

√
τ

n ∧ d
. (13)

In other words, separation between cluster means are
maintained. On the other hand, as a consequence of
(12), inter-cluster distances are maintained (at the
same scale λ3

1).

The above is a consequence of the following decom-
position. Let γ = π1/π2, so that µ2 = γµ1:

Σ
.
= EρXK(·, X)⊗H K(·, X) = π1 (Σ1 + µ1 ⊗H µ1)

+π2 (Σ2 + µ2 ⊗H µ2)

= π1Σ1 + π2Σ2 +
(
π1 + π2γ

2
)
µ1 ⊗H µ1

= π1Σ1 + π2Σ2 + γµ1 ⊗H µ1.

It follows from the above that

λ1
.
= 〈f1,Σf1〉H ≤ σ + γ 〈f1, (µ1 ⊗H µ1)f1〉H
= σ + γ 〈f1, µ1〉2H , and (14)

λ1 ≥
1

‖µ1‖2H
〈µ1,Σµ1〉H ≥ γ

1

‖µ1‖2H
〈µ1, µ1〉2H

= γ‖µ1‖2H. (15)

Combining (14) and (15), it follows that 〈f1, µ1〉2H ≥
‖µ1‖2H− σ/γ. Noticing that µ1−µ2 = (1 + γ)µ1, we
therefore obtain〈

(µ1 − µ2),Σ3(µ1 − µ2)
〉
H = (1 + γ)2

〈
µ1,Σ

3µ1

〉
H

≥ (1 + γ)2λ3
1 〈f1, µ1〉2H

≥ λ3
1

(
‖µ1 − µ2‖2H −

(1 + γ)2

γ
· σ
)

= λ3
1

(
‖µ1 − µ2‖2H −

1

π1π2
σ

)
.

Equation (13) is then obtained by combining this
last inequality with Theorem 1.
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Table 1: Data description

UCI Datasets Size N Dimension Num. of clusters

Avila Bible 20867 (bible pages) 10 12 (scribes)
IoT 40000 (traffic traces) 115 5 (devices)

Bank Notes 1372 (images) 4 2 (forged or not)

Table 2: Clustering Results: Preprocessing time / Rand Index (best 2 in bold).

UCI Datasets k-means K-k-means KPCA K-JL

Avila Bible NA / .683 ±.026 .112s / .728 ±.003 .103s / .725 ±.002 .086s / .718 ±.002
IoT NA / .548 ±.086 .537s / .745 ±.039 .500s / .759 ±.024 .447s / .749 ±.006

Bank Notes NA / .507 ±.0001 .020s / .529 ±.067 .014s / .526 ±.041 .007s / .527 ±.031

Experiments. We run clustering experiments on
UCI datasets, XN of sizes N , described in Table 1.
We compare K-JL (i.e. k-means after centralized
K-JL) against k-means clustering after KPCA (cen-
tralized), and K-k-means. For KPCA we use a fast
implementation where eigen-decomposition is done
on the centralized gram matrix K̄ of a subsample of
size n to approximate the top d eigenfunctions of the
centralized gram-matrix K̄N on N samples; that is,
if α ∈ Rn is an eigenvector of K̄, then x ∈ XN is
mapped to

∑
i∈[n] αiK(x, xi), xi ∈X.

Nyström embedding. For K-k-means we use a fast

Nyström embedding K̃
1/2
N , where K̃N approximates

the gram matrix KN on N samples, using a rank
d pseudo-inverse K†(d) of the gram-matrix K on n

subsamples (Calandriello and Rosasco, 2018; Wang
et al., 2019; Williams and Seeger, 2001). That is, we

use K̃N = K(N,n)K
†
(d)K

>
(N,n), whereK(N,n) denotes

the gram-matrix between XN and X. In all our
implementations,X are n random subsamples ofXN .
We use a Gaussian kernel K(x, x′)

.
= exp{−‖x −

x′‖2/σ2}, where σ is chosen as the 25th percentile of
interpoint distances.

Relative performance. The results of Table 2 validate
our intuition that K-JL achieves similar clustering as
K-k-means and KPCA, in faster preprocessing time
(for the mapping of XN , as implemented in Matlab
without further optimization of matrix multiplica-
tions). For all methods, we set d = 10k, where k is
the number of clusters, and n = max{200, N/100}.
All experiments are repeated 30 times, and mean and
std of Rand Index (RI) are reported. Interestingly,
K-JL also appears most stable in terms of RI: the
higher instability of the other two methods is likely
due to the fast-eigensolvers used in Matlab.

Effects of d and n. In Figure 2, we vary n, d on
the IOT dataset, where to reduce running time we
now set N = 10000 and use 10 repetitions (rather

than 30 as above) per values of d and n. Average
RI are reported. The main take-home is that the
methods are most sensitive to the choice of n. We
again observe that Kernel-JL appears overall most
stable.

Figure 2: Effects of n and d, using N = 10000 samples
from the IoT dataset. Left, we fix n = 200 and vary d.
Right, we fix d = 10 and vary n. The choice of subsample
size n seems most crucial.
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A Proofs

In this section, we present the missing proofs.

A.1 Proof of Proposition 1

Note that A(f, g)
.
= 〈Θg,Θf〉2 − 〈g,Σ3f〉H =

〈g, (Θ∗Θ− Σ3)f〉H, where the adjoint of Θ is given

by Θ∗ : Rd → H, α 7→ 1√
d

∑d
i=1 αivi. Therefore,

sup
f,g∈H

|A(f, g)|
‖f‖H‖g‖H

=
∥∥Θ∗Θ− Σ3

∥∥
op
.

Since Θ∗Θ = 1
d

∑d
i=1 vi ⊗H vi, the result is a direct

application of Theorem C.1.

A.2 Proof of Theorem 3

We will show that the characteristic function Φn(t) of
V̂ >SXf convergences pointwise to the characteristic
function Φ(t) of Θf . Note that Φn(t) = EXφn(t),
where φn(t) is the characteristic function of V̂ >SXf
conditioned on X.

To start, write Θf = 1√
d

(〈v1, f〉H, . . . , 〈vd, f〉H)
> ∼

N
(
0, 1

d 〈f,Σ
3f〉HId

)
where Id is the d × d identity

matrix. This follows by noting that

〈vi, f〉H ∼ N (0, 〈f,Σ3f〉H)

for all i ∈ [d] and vi’s are mutually independent.
Thus

Φ(t)
.
= exp(−〈f,Σ3f〉Ht2/2d),

the characteristic function of N (0, 1
d 〈f,Σ

3f〉H).

Similarly, conditioned on X,

V̂ >SXf =
1

n
√
d

(〈v̂1, SXf〉2, . . . , 〈v̂d, SXf〉2)
>

∼ N
(

0,
1

d
〈f,Σ3

nf〉HId
)
,

which follows by noting that for any i ∈ [d],

〈v̂i, SXf〉2 ∼ N
(

0, 〈SXf,
1

n
K2SXf〉2

)
= N

(
0, n2〈f,Σ3

nf〉H
)
,

where the last equality uses the fact thatK = SXS
∗
X ,

nΣn = S∗XSX , and that v̂i’s are mutually indepen-
dent. Thus, φn(t) := exp(−〈f,Σ3

nf〉Ht2/2d). Clearly

〈f,Σ3
nf〉H

a.s.→ 〈f,Σ3f〉H

since |〈f,Σ3
nf〉H−〈f,Σ3f〉H| ≤ ‖f‖2H‖Σ3

n−Σ3‖op
a.s.→

0 as n→∞, which is a consequence of exponential

concentration (see (7))—convergence in probability—
followed by an application of Borel-Cantelli lemma.
Since y 7→ exp(−yt2/2d) is a continuous function,
it follows from Corollary 6.3.1(i) of Resnick (2014)

that φn(t)
a.s.−−→ Φ(t). Since φn(t) is bounded, Corol-

lary 6.3.2 of Resnick (2014) implies that EXφn(t)→
EΦ(t), i.e., Φn(t)→ Φ(t) for all t ∈ R as n→∞.

B Supplementary Results

Proposition B.1. Let (H, k) be an RKHS and
NH(0,Σ) be a Gaussian measure on H with covari-
ance operator Σ. Define w̃

.
= (w(x1), . . . , w(xn))>

where w ∼ NH(0,Σ). Then

w̃ ∼ N (0,M)

where Mjl = 〈K(·, xj),ΣK(·, xl)〉H.

Proof. Since w ∼ NH(0,Σ), we have for any g ∈ H,
〈g, w〉H ∼ N (0, 〈g,Σg〉H). Choosing g = K(·, xi),
we obtain for i ∈ {1, 2, . . . , n},

w(xi) ∼ N (0, 〈K(·, xi),ΣK(·, xi)〉H).

Similarly

Cov(w(xi), w(xj))

= Ew [w(xi)w(xj)]

= Ew [〈w,K(·, xi)〉H〈w,K(·, xj)〉H]

= Ew〈K(·, xi), (w ⊗H w)K(·, xj)〉H
= 〈K(·, xi),ΣK(·, xj)〉H

and the result follows.

Lemma B.2. Suppose supx∈X K(x, x) ≤ κ. Then
‖K(·, x)⊗H K(·, x)‖op = K(x, x) ≤ κ for all x ∈ X .
In addition, for any τ > 0 and n ≥ 8κτ

9tr(Σ) ,

ρnX

{
(X1, . . . , Xn) : ‖Σn − Σ‖L2(H) ≥ 4

√
2κtr(Σ)τ

n

}
≤ 2e−τ .

Proof. Throughout the proof, we let ⊗ .
= ⊗H for

ease of notation. It easily follows that

‖K(·, x)⊗K(·, x)‖op = sup
f∈H

‖K(·, x)⊗K(·, x)f‖H
‖f‖H

=‖K(·, x)‖H sup
f∈H

|f(x)|
‖f‖H

= ‖K(·, x)‖2H = K(x, x) ≤ κ.

Define ξi
.
= K(·, Xi)⊗K(·, Xi)− Σ. It is clear that

ξi’s are i.i.d. L2(H)-valued random variables and



Samory Kpotufe, Bharath K. Sriperumbudur

L2(H) is a separable Hilbert space. The result follows
from a straight forward application of Bernstein’s
inequality in Theorem C.2 by noting that

E‖ξi‖mL2(H)

≤ sup
x∈X
‖K(·, x)⊗K(·, x)− Σ‖m−2

L2(H)E‖ξi‖
2
L2(H),

where

sup
x∈X
‖K(·, x)⊗K(·, x)− Σ‖m−2

L2(H)

≤ sup
x∈X

(
‖K(·, x)⊗K(·, x)‖L2(H) + ‖Σ‖L2(H)

)m−2

≤ (2κ)m−2,

and

E‖ξi‖2L2(H) = E‖K(·, Xi)⊗K(·, Xi)− Σ‖2L2(H)

≤ E‖K(·, Xi)⊗K(·, Xi)‖2L2(H)

≤ κtr(Σ).

The result follows by using B = 2κ and θ2 .
= κtr(Σ)

in Theorem C.2.

Lemma B.3. For any τ ≥ 1 and d ≥
(

tr(Σ3
n)

‖Σ3
n‖op

∨ τ
)

,

with probability at least 1 − e−τ over the choice of
(ûi)

d
i=1 conditioned on X, we have∥∥∥∥S∗X V̂ V̂ >SX − 1

n3
S∗XK

2SX

∥∥∥∥
op

≤ C

(√
tr(Σ3

n)‖Σ3
n‖op

d + ‖Σ3
n‖op

√
τ
d

)
,

where C is a universal constant independent of K
and d.

Proof. Note that

E
(
S∗X V̂ V̂

>SX

)
= S∗XE(V̂ V̂ >)SX

=
1

n2d
S∗X

d∑
i=1

E(v̂iv̂
>
i )SX

=
1

n2
S∗XE(v̂1v̂

>
1 )SX

=
1

n3
S∗XK

2SX

=
1

n3
S∗XSXS

∗
XSXS

∗
XSX

= Σ3
n,

where we used the facts that K = SXS
∗
X and Σn =

1
nS
∗
XSX . Therefore conditioning on X, it follows

from Theorem C.1 that for all τ ≥ 1 and d ≥ (r(Σ3
n)∨

τ), with probability 1−e−τ over the choice of (v̂i)
d
i=1,

we obtain∥∥∥∥S∗X V̂ V̂ >SX − 1

n3
S∗XK

2SX

∥∥∥∥
op

≤ C 1
n2 ‖Σ3

n‖op

(√
r(Σ3

n)
d +

√
τ
d

)
,

where r(Σ3
n) ≤ tr(Σ3

n)
‖Σ3

n‖op
.

C Known Technical Tools

Theorem C.1 (Koltchinskii and Lounici, 2017). Let
X1, . . . , Xn be i.i.d. centered Gaussian random vari-
ables in a separable Hilbert space H with covariance
operator Σ = E[X⊗HX]. Let Σ̂ = 1

n

∑
i=1Xi⊗HXi

be the empirical covariance operator. Define

r(Σ)
.
=

(E‖X‖H)
2

‖Σ‖op
.

Then for all τ ≥ 1 and n ≥ (r(Σ)∨τ), with probability
at least 1− e−τ ,

‖Σ̂− Σ‖op ≤ C‖Σ‖op

√
r(Σ) +

√
τ√

n
,

where C is a universal constant independent of Σ, τ
and n.

The following is Bernstein’s inequality in separable
Hilbert spaces which is quoted from (Yurinsky, 1995,
Theorem 3.3.4).

Theorem C.2 (Bernstein’s inequality). Let
(Ω,A, P ) be a probability space, H be a separable
Hilbert space, B > 0 and θ > 0. Furthermore, let
ξ1, . . . , ξn : Ω → H be zero mean i.i.d. random
variables satisfying

E‖ξ1‖mH ≤
m!

2
θ2Bm−2, ∀ m > 2.

Then for any τ > 0,

Pn

{
(ξ1, . . . , ξn) :

∥∥∥∥∥ 1

n

n∑
i=1

ξi

∥∥∥∥∥
H

≥ 2Bτ

n
+

√
2θ2τ

n

}
≤ 2e−τ .
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