
Active Community Detection with Maximal Expected Model Change
- Supplemental Material -

Dan Kushnir Benjamin Mirabelli

1 Proofs

1.1 Theorem 1

Proof. see [Massoulie(2014), Mossel et al.(2015)] for the details of the proof.

1.2 Theorem 2

Proof. We start with some definitions:

Definition 1. For a given adjacency matrix M = M , let e = e(M) be the set of edges in M . Also, let |e| be the
size of the set e (i.e. the total number of edges).

Definition 2. Given the complete labeling assignment X ∈ 4nr , let ein(X) be the number of edges where both
endpoint nodes have the same label according to X. Then, since each Xi is a unit vector,

ein(X) =
1

2

∑
Xi=Xj

(i,j)∈e

〈Xi, Xj〉. (1)

Definition 3. Given the complete labeling assignment X ∈ 4nr , let eout(X) be the number of edges where both
endpoint nodes have different labels according to X. Then, since each Xi lies on the simplex,

eout(X) = −r − 1

2

∑
Xi 6=Xj

(i,j)∈e

〈Xi, Xj〉. (2)

Definition 4. Given the complete labeling assignment X ∈ 4nr , let gu(X) be the number of nodes assigned to
the uth label-vector.

Remark 1. It is helpful to notice that
∑
u

(
gu(X)

2

)
is the total number of within-group pairs of nodes and∑

u<v[gu(X)gv(X)] is the total number of between-group pairs of nodes given the labeling X. From this we see
that the following equalities hold for any labeling assignment X:∑

u

(
gu(X)

2

)
− ein(X) =

1

2

∑
Xi=Xj

(i,j)/∈e

〈Xi, Xj〉,

∑
u<v

[gu(X)gv(X)]− eout(X) = −r − 1

2

∑
Xi 6=Xj

(i,j)/∈e

〈Xi, Xj〉,

(
n

2

)
−
∑
u<v

[gu(X)gv(X)] =
∑
u

(
gu(X)

2

)
.

(3)

1

From the definition of the SBM we first notice that, unconditioned on a specific adjacency matrix M , P[X =
X] = r−n for any X ∈ 4nr . However, given a specific SBM-generated adjacency matrix M ,

P[X = X|M = M] =
P[M = M |X = X]P[X = X]

P[M = M]
= C ′P[M = M |X = X]

=C ′
(
p
)ein(X)(

1− p
)∑

u (gu(X)
2)−ein(X)

·
(
q
)eout(X)(

1− q
)∑

u<v [gu(X)gv(X)]−eout(X)

=C ′
(
p
)|e|−eout(X) ·

(
1− p

)(n
2)−|e|−

∑
u<v [gu(X)gv(X)]+eout(X)

·
(
q
)eout(X)(

1− q
)∑

u<v [gu(X)gv(X)]−eout(X)

where C ′ is a constant independent of X, the first equality follows from Bayes’ Law and the fourth equality
follows from remark 1.

Since, conditioned on M , the values for n, e, p and q are all independent of X we incorporate them into the
constant terms C and C ′′ to get,

P[X = X|M = M]

= C ′′
[(p
q

)−eout(X)

·
(1− p

1− q

)−(∑u<v[gu(X)gv(X)]−eout(X)
)]

= C ′′

[
exp

(
− eout(X) log

(p
q

)
−
(∑
u<v

[gu(X)gv(X)]− eout(X)
)

log
(1− p

1− q

))]

= C ′′

[
exp

(
− reout(X) log

(p
q

)
− r
(∑
u<v

[gu(X)gv(X)]− eout(X)
)

log
(1− p

1− q

))] 1
r

= C ′′

[
exp

(
(r − 1)(−|e|+ ein(X)) log

(p
q

)
− eout(X) log

(p
q

)
+ (r − 1)

(
−
(
n

2

)
+ |e|+

∑
u

(
gu(X)

2

)
− ein(X)

)
log
(1− p

1− q

)

−
(∑
u<v

[gu(X)gv(X)]− eout(X)
)

log
(1− p

1− q

))] 1
r

= C

[
exp

(
ein(X)

(
(r − 1) log

(p
q

))
− eout(X) log

(p
q

)
+
(∑

u

(
gu(X)

2

)
− ein(X)

)(
(r − 1) log

(1− p
1− q

))
−
(∑
u<v

[gu(X)gv(X)]− eout(X)
)

log
(1− p

1− q

))] 1
r

.

Now, from equations (1) and (2) and remark 1 we get

P[X = X|M = M]

= C

[
exp

((∑
(i,j)∈e

〈Xi, Xj〉
)(r − 1

2
log
(p
q

))
+
(∑

(i,j)/∈e

〈Xi, Xj〉
)(r − 1

2
log
(1− p

1− q

)))] 1
r

.

= C exp
(r − 1

2r

∑
(i,j)

Mi,j〈Xi, Xj〉
)

= Ce
r−1
2r Tr(XTMX)

as desired.

2

1.3 Corollary 1

Proof. Notice that P[XU = XU |XL = XL] = r−(n−k) and P[M = M |XL = XL] are both independent of XU .
Thus, by Bayes’ theorem, P[XU = XU |M = M,XL = XL] ∝ P[M = M |XU = XU ,XL = XL] and the rest
follows from the proof of Theorem 1.

1.4 Lemma 1

Proof. Define M¬i to be the matrix M with the ith row and column removed. Then, from Theorem 1, the
symmetry of M and the linearity of the trace function we get,

P[Xi = Xi|M = M,XL = XL,XU¬i = XU¬i]

=
exp

[
r−1
2r

(
Tr(

[XU¬i
XL

]T
M¬i

[XU¬i
XL

]
) + 2Tr(XT

i Mi

[XU¬i
XL

]
) + Tr(XT

i M(i,i)Xi)
)]

∑
Xj∈4r

exp
[
r−1
2r

(
Tr(

[XU¬i
XL

]T
M¬i

[XU¬i
XL

]
) + 2Tr(XT

j Mi

[XU¬i
XL

]
) + Tr(XT

j M(i,i)Xj)
)]

=
exp r−1

2r

(
Tr(

[XU¬i
XL

]T
M¬i

[XU¬i
XL

]
)
)

exp
(

2Tr(XT
i Mi

[XU¬i
XL

]
)
)

exp
(
Tr(XT

i M(i,i)Xi)
)

exp r−1
2r

(
Tr(

[XU¬i
XL

]T
M¬i

[XU¬i
XL

])∑
Xj∈4r

exp
(

2Tr(XT
j Mi

[XU¬i
XL

])
exp

(
Tr(XT

j M(i,i)Xj

)
=

e
r−1
r (Mi[

XU¬i
XL

]XT
i)
e

r−1
2r (M(i,i)XiX

T
i)∑

Xj∈4r
e

r−1
r (Mi[

XU¬i
XL

]XT
j)
e

r−1
2r (M(i,i)XjXT

j)

=
e

r−1
r (Mi[

XU¬i
XL

]XT
i)∑

Xj∈4r
e

r−1
r (Mi[

XU¬i
XL

]XT
j)
.

(4)

where the last equality comes from the fact that XjX
T
j = 1 for any Xj ∈ 4r.

1.5 Theorem 3

Proof. We start with providing three necessary auxiliary results to be used in our proof (their proofs are provided
in the following subsections 1.6, 1.7, 1.8): First, we prove in Lemma 2 that when the absolute differential degree
is similar across all node types (as in SNR < 1), MEMC has a preference for selecting type-1 nodes over type-2
or correctly assigned nodes.

Next, we prove the conditions under which MEMC will have preference to correct type-2 nodes over querying
correctly assigned nodes. In particular, Corollary 2 below guarantees that as long as there are type-2 error nodes
with absolute differential degree that is lower than other nodes they will be queried by MEMC:

Lastly, Lemma 3 provides the probability of having minority nodes. While majority nodes can be classified
correctly by MAP and ML classifiers once most of their neighbors are correctly identified, minority error nodes
(i.e. type-2 error nodes) need to be queried directly in order to be corrected. Therefore estimating their
proportion in the overall set is crucial for bounding sample complexity analysis for querying type-2 nodes:

To this end we have the necessary ingredients to provide the sample complexity: using Lemma 2 we obtain
that all type-1 errors are initially corrected by MEMC using m1 queries. At the following stage nodes are queried
according to their minimal absolute differential degree following Corollary 2. During this stage type-2 minority
nodes as well as correctly assigned nodes are queried at a frequency depending on their distribution around zero
differential degree as function of a and b. Based on Lemma 3 we can bound the search space around 0-differential
degree for type-2 error nodes with the upper bound in Lemma (3)

P (cout ≥ cin) ≤ exp
(
−
(√ b

2
−
√
a

2

)2)
. (5)

and between [0,−lc] with sampling the mass equal to the summation of the Skellam probability P (k; a, b). The
Skellam distribution models the summation of the two racing Poisson processes with means a and b, which forms
positive differential degree smaller than −lc:

−lc∑
k=1

P (k; a, b), where P (k; a, b) = e−(a+b)
(a
b

) k
2

Ik(2
√
ab), (6)

3

and Ik(2
√
ab) is the Bessel function of the first order. The degree value lc can be computed by using the Skellam

distribution. Specifically, by choosing lc s.t.

lc = inf{l|P (dX(v) ≤ l) = o(n−1)}. (7)

We therefore obtain that the expected sample complexity of MEMC is comprised of sampling first the m1 type-1
errors and then sampling a.a.s all the nodes of differential degree within [−lc, lc].

Since the Random criterion selects nodes uniformly at random it will have to sample order n nodes to discover
all m1 and m2 nodes.

1.6 Lemma 2

Proof. Consider the EMC criterion for some node vq:

EMC(M,X ′U , XL,4r)Xq
=

∑
Xq∈4r

P̂[Xq = Xq|M = M,XL = XL,XU¬q = X ′U¬q] · δ(Φ, Xq). (8)

We first focus on the the model change component δ(Φ, Xq) = ‖Φ(M, [XL, Xq], X̃)−Φ(M,XL, X̃)‖. We examine
the model change for a candidate q-node vq that is a v1-node (type-1 error node) where w.l.g its current label is

X̃q = −1, and its newly assigned label is +1. Assume that v1q neighbors are correctly assigned such that k + δ
are +1 node, and k are -1 nodes 1.

The model change δ(Φ, Xq)I(v1q),I(+1), where I(·) maps the input to its corresponding index in the probability

model matrix, will have the following value for changing vq from its current −1 label to +1 label (to facilitate
notation the denominators in Φ and the constants in the exponents are omitted):

δ(Φ, {+1})I(v1q),I(+1) =
∥∥ exp

[∑
k+δ

log
p

q︸ ︷︷ ︸
+1 neighbors

+
∑
k

log
p

q
(−1)︸ ︷︷ ︸

-1 neighbors

+
∑

n−(k+δ)

log
1− p
1− q︸ ︷︷ ︸

+1 non-neighbors

+
∑
n−k

log
1− p
1− q

(−1)︸ ︷︷ ︸
-1 non-neighbors

]

− exp
[∑
k+δ

log
p

q
(−1) +

∑
k

log
p

q
+

∑
n−(k+δ)

log
1− p
1− q

(−1) +
∑
n−k

log
1− p
1− q

(−1)
]
‖

=
∥∥ exp

[
δ log

p

q
− δ log

1− p
1− q

]
− exp

[
− δ log

p

q
+ δ log

1− p
1− q

]
∥∥

⇒ EMC(M,X ′U , XL,4r)I(v1q),I(+1) = exp
[
δ log

p

q
− δ log

1− p
1− q

]
·
∥∥ exp

[
δ log

p

q
− δ log

1− p
1− q

]
− exp

[
− δ log

p

q
+ δ log

1− p
1− q

]
∥∥

(9)

Examining the model change for each of the neighbors u of v1q , and assuming they do not change their label as
a result of the new assignment of v1q (and therefore their neighbors do not change their labels either) provides
EMC(M,X ′U , XL,4r)Xu = 0. Therefore the total model change for a type-1 error node v1 is

EMC(M,X ′U , [XL, X
1
q],4r) = exp

[
δ log

p

q
− δ log

1− p
1− q

]
·
∥∥ exp

[
δ log

p

q
− δ log

1− p
1− q

]
− exp

[
− δ log

p

q
+ δ log

1− p
1− q

]
∥∥ (10)

Next, we examine the model change for a candidate q-node vq that is a v2-node (type-2 error node) where

w.l.g its current label is X̃q = −1, and its newly assigned label is +1. Using similar assumptions on its neighbors
we arrive at

EMC(M,X ′U , [XL, X
2
q],4r) = exp

[
− δ log

p

q
+ δ log

1− p
1− q

] ·
∥∥ exp

[
− δ log

p

q
+ δ log

1− p
1− q

]
− exp

[
δ log

p

q
− δ log

1− p
1− q

]
∥∥ (11)

1This assumption can be used by using similar argument to [Mossel et al.(2015)]: Let Vε = v : dX(v) < ε
√
np logn. According

to Proposition 4.7 therein no two nodes in Vε are adjacent

4

To this end we can conclude that, under the above assumptions,

EMC(M,X ′U , [XL, X
1
q],4r) > EMC(M,X ′U , [XL, X

2
q],4r). (12)

Next, we attend the model change introduced by flipping the assignment of a node correctly labeled (w.l.g. to
+1) to its opposite, resulting in creating a minority node whose model change is similar to that of a v2 node:

EMC(M,X ′U , [XL, X
3
q],4r) = exp

[
− δ log

p

q
+ δ log

1− p
1− q

] ·
∥∥ exp

[
− δ log

p

q
+ δ log

1− p
1− q

]
− exp

[
δ log

p

q
− δ log

1− p
1− q

]
∥∥ (13)

We conclude that
EMC(M,X ′U , [XL, X

3
q],4r) = EMC(M,X ′U , [XL, X

2
q],4r). (14)

1.7 Corollary 2

Proof. We use here the result of Lemma 2 where for a given fixed δ for both nodes

EMC(M,X ′U , [XL, X
2
q],4r) = EMC(M,X ′U , [XL, X

3
q],4r) =

exp
[
− δ log

p

q
+ δ log

1− p
1− q

] ·
∥∥ exp

[
− δ log

p

q
+ δ log

1− p
1− q

]
− exp

[
δ log

p

q
− δ log

1− p
1− q

]
∥∥ (15)

However, for different absolute differential degree such that δ2 < δ3 we obtain EMC(M,X ′U , [XL, X
2
q],4r) >

EMC(M,X ′U , [XL, X
3
q],4r)

1.8 Lemma 3

Proof. We consider the generation of the edges as a Poisson process, where cout Poisson(b2) and cin ∼ Poisson(a2).
Then the difference variable Z = cout − cin Has a Skellam distribution: Z ∼ Skellam(k; b, a) such that

P (X = k) = e(−(a+b))(
a

b
)

k
2 Ik(2

√
ab), (16)

where Ik(z) is the Bessel function of first order. Given that b < a we can use the standard Chernoff bound to
prove the upper inequality. Further noting that X + Y ∼ Poiss(b + a) and X|X + Y ∼ Bin(X + Y, b

b+a), and

P (X > Y) = P (X > X+Y
2) and upper bounding it by conditioning on X + Y = i we can show that

P (X > Y) >
exp(−(

√
b
2 −

√
a
2)2)

(a+b2)2
−

exp(−(b2 + a
2))

√
2ab

−
exp(−(b2 + a

2))

2ab
(17)

see more details at [Kamath et. al. (2015)]

1.9 Lemma 4

Proof. We first consider the case of a majority node vj with neighbor vi which has changed its label from x̃i to
x̃upi . We observe the following probabilities

• P{x̃j 6= x̃upi } = 1
2 (having different label than the newly revealed neighbor’s label),

• P{x̃j 6= xj} = 1
2 (having an erroneous assignment) at SNR < 1, and

• P{xj = xi} = a−b
(a+b) (having similar ground truth label as its neighbors flipped label).

Therefore, the probability of vj flipping its current (erroneous) label to its correct label is a−b
4(a+b) . In the same

pattern we summarize the different label-flip probabilities for majority and minority nodes, given a label-flip at
a neighboring node:

5

node type correct flip incorrect flip

majority a
4(a+b)

b
4(a+b)

minority b
4(a+b)

a
4(a+b)

To this end we can compute the expected number of nodes to correctly change their label following a query

d ·
(
p̄maj

a

4(a+ b)
− p̄maj

b

4(a+ b)

)
= d · p̄maj

(a− b
4(a+ b)

)
= d · pmaj , (18)

where p̄maj = 1− 2p̄min, p̄min is defined as the upper bound in Lemma 3:

P (cout ≥ cin) ≤ exp
(
−
(√ b

2
−
√
a

2

)2)
, (19)

and pmaj = p̄maj

(
a−b

4(a+b)

)
.

Next, given the average degree d we consider the cascade of diameter that is O(logd(n)) as the following power
series:

Nmaj = dpmaj + dpmajdpmaj + ...+ (dpmaj)
logdn =

dpmaj
1− dpmaj

(1− (dpmaj)
logd(n)). (20)

Similar derivation is applied to minority nodes to obtain Nmin.

1.10 Theorem 4

Proof. The active learning process of MEMC is comprised of 3 stages:
1. Super-linear cascades phase. The super-linear phase in which cascades take place poses the highest EMC.
This stage concludes once there exists no path of size larger than 2 in which nodes of zero differential degree
exist, with respect to the assignment X̃. The expected number of queries to attain this state is obtained by
dividing n

2 by the number of nodes that have flipped their assignments per query, and as such attained non-zero
differential degree. The number of such nodes is derived from Lemma 4 as Nmaj+Nmin. Therefore, the expected
number of queried nodes in this stage is the first component in Eq. (18):

n

2(Nmaj +Nmin)
. (21)

2. Local type-1 node queries. The local model change of type-1 error nodes suggest the next highest EMC.
As suggested in Lemma 2 and observed for the SNR > 1 case. The local type-1 node queries starts once there
exists no path of size larger than 2 in which nodes of zero differential degree exist (which typically gives rise to
cascades). We therefore subtract from the existing m1 errors the type-1 error nodes that have been corrected
via the cascades process, and since MEMC will query only type-1 we consider this difference as the set of queries
for this stage (

m1 −
nNmaj

2(Nmaj +Nmin)

)
(22)

The local type-1 error correction is terminated once all type-1 nodes are corrected.
3. Type-2 bounded search. The final active querying stage includes querying both type-2 nodes and already
correct nodes with minimal absolute differential degree within the [lc,−lc] differential degree segment. The
process is also equivalent to the process for the SNR > 1 case following Corollary 2 which establishes preference
for type-2 nodes with low absolute differential degree. As in Theorem 3, we use the Skellam probability here to
represent the mass of nodes with positive differential degree smaller than −lc and the upper bound in Lemma
(3) to cover nodes with negative differential degree down to lc. This mass is taken from the remaining nodes
after subtracting prior m1 queries and type-1 nodes have been corrected during the super-linear cascades phase:(

n− nNmin
2(Nmaj +Nmin)

−m1

)
·
(−lc∑
k=1

P (k; a, b) + exp
(
−
(√ b

2
−
√
a

2

)2))
, (23)

The Random selection algorithm triggers cascades of correction, similarly to MEMC. However, once all paths
of zero differential degree with length l ≥ 2 have been exhausted, the following process entails uniform unbounded
sampling on the remaining mass of nodes, scaling with as n queries.

6

1.11 Anchor Nodes

As mentioned in Remark 1, in the algorithm’s early stages XL may not yet contain all existing community labels.
In these cases, the active learner instead queries for the label of the node that has the largest probability of being
assigned to a community with no current supervised label. We refer to these queried nodes as Anchor nodes
where

Anchor(M,X ′U , XL,4r) = argmax
q∈U

max
Xq∈4r

Xq /∈unique(XL)

P[Xq = Xq|M = M,XL = XL,XU¬q = X ′U¬q].

(24)

Once every distinct label has at least one corresponding queried node, the best-fit-simplex and the simplex formed
by these supervised nodes closely align and the algorithm proceeds in querying according to MEMC criterion.

1.12 Speedup

The fast evaluation of the SDP is manageable due to the fast growing field of low-rank SDP solvers [Bandeira et al.(2016)].
There are two additional modifications designated to further accelerate the active learning cycles:

• Initialize each SDP(M, [XL, Xq]) with the previous output of SDP(M,XL).

• In each iteration greedily query a ‘batch’ of MEMC nodes per full iteration.

2 Best-Fit Simplex

We present the following algorithm for finding the best-fit simplex for a given set of unit-vectors.

bestFitSimplex (X, r)
Input: X: set of unit vectors, r: , r: number of vectors in simplex
Output: 4r: best-fit simplex
1. V = K-Means(X, r)
2. 4r = bestFitSDP(V)

Figure 1: Pseudo-code for bestFitSimplex.

We provide pseudo-code in Figure 1. In this algorithm K-Means is the well-known algorithm and outputs a
set of r vectors. For the algorithm bestFitSDP we define the (2r × 2r)-matrix A where,

〈Ai,j〉 =

1 if i = j + r

1 if i = j − r
0 otherwise.

Then, bestFitSDP finds the best-fit simplex 4r by factoring the solution X =
[4r

V

][4r

V

]T
of the following SDP

bestFitSDP(V, r): max
X

Tr(AX)

s.t. Xii = 1, for 1 ≤ i ≤ 2r

Xij = − 1

r − 1
for 1 ≤ i, j ≤ r

Xij = 〈Vi, Vj〉 for r + 1 ≤ i, j ≤ 2r

X � 0.

(25)

We define the output of bestFitSDP(V, r) to be 4r rotated so that the vectors V in our output
[4r

V

]
line up

with the original input vectors V . This completes the algorithm.

3 Increased SNR error behaviour

7

Figure 2: High SNR comparison of MEMC error with Random error and the optimal active learner error

References

A. E. Allahverdyan, G. Ver Steeg, and A. Galstyan. Community detection with and without prior information.
EPL (Europhysics Letters), 90(1):18002, 2010.

A. S. Bandeira, N. Boumal, and V. Voroninski. On the low-rank approach for semidefinite programs arising in
synchronization and community detection. In Vitaly Feldman, Alexander Rakhlin, and Ohad Shamir, editors,
29th Annual Conference on Learning Theory, volume 49 of Proceedings of Machine Learning Research, pages
361–382, Columbia University, New York, New York, USA, 23–26 Jun 2016. PMLR.

J. Cheng, M. Leng, L. Li, H. Zhou, and X. Chen. Active semi-supervised community detection based on must-link
and cannot-link constraints. PLoS One, 9(10):18002, 2014.

A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová. Asymptotic analysis of the stochastic block model for
modular networks and its algorithmic applications. Physical Review E : Statistical, Nonlinear, and Soft Matter
Physics, 84:066106, 2011. 25 pages, 9 figures.

E. Eaton and R. Mansbach. A spin-glass model for semi-supervised community detection. In Proceedings of the
Twenty-Sixth AAAI Conference on Artificial Intelligence, AAAI’12, pages 900–906. AAAI Press, 2012.

S. Fortunato. Community detection in graphs. Physics Reports, 486(3-5):75 – 174, 2010.

A. Freytag, E. Rodner, and J. Denzler. Selecting influential examples: Active learning with expected model
output changes. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars, editors, Computer
Vision – ECCV 2014, pages 562–577, Cham, 2014. Springer International Publishing.

A. Gadde, E. En Gad, S. Avestimehr, and A. Ortega. Active learning for community detection in stochastic
block models. CoRR, 1605 02372, 2016.

M. X. Goemans and D.P. Williamson. Improved approximation algorithms for maximum cut and satisfiability
problems using semidefinite programming. Journal of the ACM, 42:1115–1145, 1995.

P. Holland, K. Laskey, and S. Leinhardt. Stochastic blockmodels: First steps. Social Networks - SOC NET-
WORKS, 5:109–137, 06 1983.

E. Mossel and J. Xu. Local algorithms for block models with side information 7th Innovations in Theoretical
Computer Science (ITCS), Jan. 2016.

8

H. Saad, and A. Nosratinia. Community Detection with Side Information: Exact Recovery under the Stochastic
Block Model. IEEE Journal of Selected Topics in Signal Processing, May. 2018

V. Kanade, E. Mossel, and T. Schramm. Global and local information in clustering labeled block models. IEEE
Trans. Information Theory, 62(10):5906–5917, 2016.

Erdős,Rényi. On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian
Academy of Sciences, 5:17-61, 1960.

D. Kushnir. Active-transductive learning with label-adapted kernels. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’14, pages 462–471, New York, NY,
USA, 2014. ACM.

M. Leng, Y. Yao, J. Cheng, W. Lv, and X. Chen. Active semi-supervised community detection algorithm
with label propagation. In Weiyi Meng, Ling Feng, Stéphane Bressan, Werner Winiwarter, and Wei Song,
editors, Database Systems for Advanced Applications, pages 324–338, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

S. Liu. Maximum likelihood estimation and inference: With examples in r, sas, and admb by russell b. millar.
International Statistical Review, 80(2):346–346, 2012.

L. Massoulié. Community detection thresholds and the weak ramanujan property. In Proceedings of the Forty-
sixth Annual ACM Symposium on Theory of Computing, STOC ’14, pages 694–703, New York, NY, USA,
2014. ACM.

C. Moore, X. Yan, Y. Zhu, J.-Baptiste Rouquier, and Terran Lane. Active learning for node classification in
assortative and disassortative networks. In Proceedings of the 17th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’11, pages 841–849, New York, NY, USA, 2011. ACM.

E. Mossel, J. Neeman, and A. Sly. Consistency thresholds for the planted bisection model. In Proceedings of
the Forty-seventh Annual ACM Symposium on Theory of Computing, STOC ’15, pages 69–75, New York, NY,
USA, 2015. ACM.

E. Mossel, J. Neeman, and A. Sly. Reconstruction and estimation in the planted partition model. Probability
Theory and Related Fields, 162(3):431–461, Aug 2015.

R. R. Nadakuditi, and M. EJ Newman. Graph spectral and detectability of community structure in networks.
Physical Review Letters 108(18): 188701, 2012.

S.-Y. Yun and A. Proutiere. Optimal Cluster Recovery in the Labeled Stochastic Block Model. ArXiv e-prints,
October 2015.

E. Abbe. Community detection and stochastic block models: recent developments Journal of Machine Learning
Research 18, pages 1–177, 2017

B. Settles. Active learning literature survey. Technical report, 2010.

L. Tang and H. Liu. Community Detection and Mining in Social Media, volume 2. 01 2010.

A. L. Traud, P. J. Mucha, and M. A. Porter. Social structure of facebook networks. Physica A: Statistical
Mechanics and its Applications, 391(16):4165–4180, 2012.

A. Vezhnevets, J. Buhmann, and V. Ferrari. Active learning for semantic segmentation with expected change.
06 2012.

L. Yang, D. Jin, X. Wang, and X. Cao. Active link selection for efficient semi-supervised community detection.
Scientific Reports, 5, 2015.

P. Zhang, C. Moore, and L. Zdeborova. Phase transitions in semisupervised clustering of sparse networks.
Physical review. E, Statistical, nonlinear, and soft matter physics, 90, 04 2014.

J. Leskovec, and A. Krevl. Stanford Large Network Dataset Collection. http: // snap. stanford. edu/ data .
06 2014.

9

G. M. Kamath and E. Sasoglu and D. N. C. Tse. Optimal Haplotype Assembly from High-Throughput Mate-Pair
Reads. In http://arxiv.org/abs/1502.01975, 2015.

10

