Domain-Liftability of Relational Marginal Polytopes (Appendix)

Ondřej Kuželka
Czech Technical University in Prague, Czech Republic

Yuyi Wang
ETH Zurich, Switzerland

A A Lemma Used in Theorem 3

Lemma 1. Given a set S of linear inequality constraints, there is an algorithm to find a minimal subset $S^{\prime} \subseteq S$ such that S^{\prime} specifies the same polytope as S, in polynomial time in the size of S.

Proof. Without loss of generality, we assume that every constraint c_{j} in S is of the form $\sum_{i} a_{j, i} x_{i} \leq b_{j}$. We construct $|S|$ linear programs: The i-th linear program uses all constraints in S except c_{j} as the constraints, and its objective function is $\max \sum_{i} a_{j, i} x_{i}$. If the optimal solution of this linear program is strictly larger than b_{j}, then we add c_{j} into S^{\prime}. It is not difficult to see that every constraint in S^{\prime} cannot be implied by other constraints, or else that constraint cannot be added into S^{\prime}, so S^{\prime} is minimal. Besides, we only have $|S|$ linear programs each of which can be solved in polynomial time (e.g., using some interior-point methods), hence the whole procedure is in polynomial time.

