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A Regret Bounds

The following lemma bounds the expected per-round regret of any randomized algorithm that chooses the perturbed solu-
tion in round t, θ̃t, as a function of the history.

Lemma 2. Let p2 ≥ Pt
(
Ē2,t

)
, p3 ≤ Pt (E3,t), and p3 > p2. Then on event E1,t,

Et [∆It ] ≤ µ̇max(c1 + c2)

(
1 +

2

p3 − p2

)
×

Et
[
‖xIt‖G−1

t

]
+ ∆max p2 .

Proof. Let ∆̃i = x>1 θ∗ − x>i θ∗ and c = c1 + c2. Let

S̄t =
{
i ∈ [K] : c‖xi‖G−1

t
≥ ∆̃i

}

be the set of undersampled arms in round t. Note that 1 ∈ S̄t by definition. We define the set of sufficiently sampled arms
as St = [K] \ S̄t. Let Jt = arg min i∈S̄t ‖xi‖G−1

t
be the least uncertain undersampled arm in round t.

In all steps below, we assume that event E1,t occurs. In round t on event E2,t,

∆It ≤ µ̇max ∆̃It = µ̇max

(
∆̃Jt + x>Jtθ∗ − x>Itθ∗

)
≤ µ̇max

(
∆̃Jt + x>Jt θ̃t − x>It θ̃t + c (‖xIt‖G−1

t
+ ‖xJt‖G−1

t
)
)

≤ µ̇max c
(
‖xIt‖G−1

t
+ 2‖xJt‖G−1

t

)
,

where the first inequality holds because µ̇max is the maximum derivative of µ, the second is by the definitions of events
E1,t and E2,t, and the last follows from the definitions of It and Jt. Now we take the expectation of both sides and get

Et [∆It ] = Et [∆It1{E2,t}] + Et
[
∆It1

{
Ē2,t

}]
≤ µ̇max cEt

[
‖xIt‖G−1

t
+ 2‖xJt‖G−1

t

]
+ ∆max Pt

(
Ē2,t

)
.

The last step is to replace Et
[
‖xJt‖G−1

t

]
with Et

[
‖xIt‖G−1

t

]
. To do so, observe that

Et
[
‖xIt‖G−1

t

]
≥ Et

[
‖xIt‖G−1

t

∣∣∣ It ∈ S̄t
]
Pt
(
It ∈ S̄t

)
≥ ‖xJt‖G−1

t
Pt
(
It ∈ S̄t

)
,

where the last inequality follows from the definition of Jt and that S̄t is Ft−1-measurable. We rearrange the inequality as
‖xJt‖G−1

t
≤ Et

[
‖xIt‖G−1

t

]
/ Pt

(
It ∈ S̄t

)
and bound Pt

(
It ∈ S̄t

)
from below next.

In particular, on event E1,t,

Pt
(
It ∈ S̄t

)
≥ Pt

(
∃i ∈ S̄t : x>i θ̃t > max

j∈St
x>j θ̃t

)
≥ Pt

(
x>1 θ̃t > max

j∈St
x>j θ̃t

)

≥ Pt
(
x>1 θ̃t > max

j∈St
x>j θ̃t, E2,t occurs

)
≥ Pt

(
x>1 θ̃t > x>1 θ∗, E2,t occurs

)

≥ Pt
(
x>1 θ̃t > x>1 θ∗

)
− Pt

(
Ē2,t

)
≥ Pt

(
x>1 θ̃t − x>1 θ̄t > c1‖x1‖G−1

t

)
− Pt

(
Ē2,t

)
.

Note that we require a sharp inequality because It ∈ S̄t is not guaranteed on event
{
∃i ∈ S̄t : x>i θ̃t ≥ maxj∈St x

>
j θ̃t

}
.

The fourth inequality holds because on event E1,t ∩ E2,t,

x>j θ̃t ≤ x>j θ∗ + c‖xj‖G−1
t
< x>j θ∗ + ∆̃j = x>1 θ∗

holds for any j ∈ St. The last inequality holds because x>1 θ∗ ≤ x>1 θ̄t + c1‖x1‖G−1
t

holds on event E1,t. Finally, we use
the definitions of p2 and p3 to complete the proof.

The regret bound of GLM-TSL is proved below.
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Theorem 3. The n-round regret of GLM-TSL is bounded as

R(n) ≤ µ̇max(c1 + c2)

(
1 +

2

0.15− 1/n

)
×

√
2dn log(2n/d) + (τ + 3)∆max ,

where

a = c1
√
µ̇max ,

c1 = σµ̇−1
min

√
d log(n/d) + 2 log n ,

c2 = c1

√
2µ̇−1

min µ̇max log(Kn) ,

and the number of exploration rounds τ satisfies

λmin(Gτ ) ≥ max
{
σ2µ̇−2

min(d log(n/d) + 2 log n), 1
}
.

Proof. Fix τ ∈ [n]. Let

E4,t =
{
‖θ̄t − θ∗‖2 ≤ 1

}

and p4 ≥ P
(
Ē4,t

)
for t ≥ τ . Let p1 ≥ P

(
Ē1,t, E4,t

)
, p2 ≥ Pt

(
Ē2,t

)
on event E4,t, and p3 ≤ Pt (E3,t). By elementary

algebra, we get

R(n) ≤
n∑

t=τ

E [∆It ] + τ∆max

≤
n∑

t=τ

E [∆It1{E4,t}] + (τ + p4n)∆max

≤
n∑

t=τ

E [∆It1{E1,t, E4,t}] + (τ + (p1 + p4)n)∆max

=
n∑

t=τ

E [Et [∆It ]1{E1,t, E4,t}] + (τ + (p1 + p4)n)∆max .

To get p1 ≤ 1/n, we set c1 as in Lemma 8. Now we apply Lemma 2 to Et [∆It ]1{E1,t, E4,t} and get

R(n) ≤ µ̇max(c1 + c2)

(
1 +

2

p3 − p2

)
E

[
n∑

t=τ

‖xIt‖G−1
t

]
+ (τ + (p1 + p2 + p4)n)∆max ,

where a and c2 are set as in Lemma 4. For these settings, p2 ≤ 1/n and p3 ≥ 0.15. To bound
∑n
t=τ ‖xIt‖G−1

t
, we use

Lemma 2 in Li et al. [2017]. Finally, to get p4 ≤ 1/n, we choose τ as in Lemma 9.

The regret bound of GLM-FPL is proved below.

Theorem 5. The n-round regret of GLM-FPL is bounded as

R(n) ≤ µ̇max(c1 + c2)

(
1 +

2

0.15− 2/n

)
×

√
2dn log(2n/d) + (τ + 4)∆max ,

where

a = c1µ̇max ,

c1 = σµ̇−1
min

√
d log(n/d) + 2 log n ,

c2 = c1µ̇
−1
min µ̇max

√
2 log(Kn) ,
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and the number of exploration rounds τ satisfies

λmin(Gτ ) ≥ max{4σ2µ̇−2
min(d log(n/d) + 2 log n),

8a2µ̇−2
min log n, 1} .

Proof. The proof is almost identical to that of Theorem 3. There are two main differences. First, a and c2 are set as in
Lemma 6. For these settings, p2 ≤ 2/n and p3 ≥ 0.15. Second, τ is set as in Lemma 10.

B Technical Lemmas

We need an extension of Theorem 1 in Abbasi-Yadkori et al. [2011], which is concerned with concentration of a certain
vector-valued martingale. The setup of the claim is as follows. Let (Ft)t≥0 be a filtration, (ηt)t≥1 be a stochastic process
such that ηt is real-valued and Ft-measurable, and (Xt)t≥1 be another stochastic process such that Xt is Rd-valued and
Ft−1-measurable. We also assume that (ηt)t is conditionally R2-sub-Gaussian, that is

∀λ ∈ R : E [exp[ληt] | Ft−1] ≤ exp

[
λ2R2

2

]
. (10)

We call the triplet ((Xt)t, (ηt)t,F) “nice” when these conditions hold. The modified claim is stated and proved below.

Lemma 7. Let ((Xt)t, (ηt)t,F) be a “nice” triplet, St =
∑t
s=1 ηsXs, Vt =

∑t
s=1XsX

>
s ; and for V � 0, let τ0 =

min {t ≥ 1 : Vt � V }. Then for any δ ∈ (0, 1) and F-stopping time τ ≥ 1 such that τ ≥ τ0 holds almost surely, with
probability at least 1− δ,

‖Sτ‖2V −1
τ
≤ 2R2 log

(
det(Vτ )

1
2 det(Vτ0)−

1
2

δ

)
.

Proof. The proof in Abbasi-Yadkori et al. [2011] can easily adjusted as follows. If ((Xt)t, (ηt)t,F) is a “nice” triplet, then
for any δ ∈ (0, 1), F0-measurable matrix V � 0, and stopping time τ ≥ 1,

P

(
‖Sτ‖2V −1

τ
≤ 2R2 log

(
det(Vτ )

1
2 det(Vτ0)−

1
2

δ

)∣∣∣∣∣F0

)
≥ 1− δ . (11)

Now, for t ≥ 0, let X ′t = Xτ0+t, η′t = ητ0+t, and F ′t = Fτ0+t. Then ((X ′t)t≥1, (η′t)t≥1, (F ′t)t≥0) is a nice triplet and the
result follows from (11).

We use the last lemma to prove the following result.

Lemma 8. Let c1 = σµ̇−1
min

√
d log(n/d) + 2 log n and τ be any round such that λmin(Gτ ) ≥ 1. Then for any t ≥ τ ,

P
(
Ē1,t occurs, ‖θ̄t − θ∗‖2 ≤ 1

)
≤ 1/n .

Proof. Let St =
∑t−1
`=1(Y` − µ(X>` θ∗))X`. By Lemma 1, where D1 =

{
(X`, µ(X>` θ∗))

}t−1

`=1
and D2 = {(X`, Y`)}t−1

`=1,
we have that

St = ∇2L(D1; θ′)︸ ︷︷ ︸
V

(θ̄t − θ∗) ,

where θ′ = αθ∗ + (1− α)θ̄t for α ∈ [0, 1]. We rearrange the equality as V −1St = θ̄t − θ∗ and note that µ̇minGt � V on
‖θ̄t − θ∗‖2 ≤ 1. Now fix arm i. By the Cauchy-Schwarz inequality and from the above discussion,

∣∣x>i θ̄t − x>i θ∗
∣∣ ≤ ‖θ̄t − θ∗‖Gt‖xi‖G−1

t
= (θ̄t − θ∗)>Gt(θ̄t − θ∗)‖xi‖G−1

t

= S>t V
−1GtV

−1St‖xi‖G−1
t
≤ µ̇−2

min‖St‖G−1
t
‖xi‖G−1

t
.

By (13) in Lemma 9, which is derived using Lemma 7, ‖St‖G−1
t
≤ σ

√
d log(n/d) + 2 log n holds with probability at least

1 − 1/n in any round t ≥ τ . In this case, event E1,t is guaranteed to occur when c1 is set as in the claim. It follows that
Ē1,t occurs on ‖θ̄t − θ∗‖2 ≤ 1 with probability of at most 1/n.
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The number of initial exploration rounds in GLM-TSL is set below.

Lemma 9. Let τ be any round such that

λmin(Gτ ) ≥ max
{
σ2µ̇−2

min(d log(n/d) + 2 log n), 1
}
.

Then for any t ≥ τ , P
(
‖θ̄t − θ∗‖2 > 1

)
≤ 1/n.

Proof. Fix round t and let St =
∑t−1
`=1(Y`−µ(X>` θ∗))X`. By the same argument as in the proof of Theorem 1 in Li et al.

[2017], who use Lemma A of Chen et al. [1999], we have that

‖St‖G−1
t
≤ µ̇min

√
λmin(Gt) =⇒ ‖θ̄t − θ∗‖2 ≤ 1

Now fix τ such that λmin(Gτ ) ≥ 1. For any t ≥ τ , Gt � Gτ and thus

‖St‖G−1
t
≤ µ̇min

√
λmin(Gτ ) =⇒ ‖θ̄t − θ∗‖2 ≤ 1 . (12)

In the next step, we bound ‖St‖G−1
t

from above. By Lemma 7,

‖St‖2G−1
t
≤ 2σ2 log(det(Gt)

1
2 det(Gτ )−

1
2n)

holds jointly in all rounds t ≥ τ with probability at least 1− 1/n. By Lemma 11 in Abbasi-Yadkori et al. [2011] and from
‖Xt‖2 ≤ 1, we get log det(Gt) ≤ d log(n/d). By the choice of τ , det(Gτ )−1 ≤ 1. It follows that

‖St‖2G−1
t
≤ σ2(d log(n/d) + 2 log n) (13)

for any t ≥ τ with probability at least 1− 1/n. Now we combine this claim with (12) and have that ‖θ̄t − θ∗‖2 ≤ 1 holds
with probability at least 1− 1/n when

λmin(Gτ ) ≥ σ2µ̇−2
min(d log(n/d) + 2 log n) .

This concludes the proof.

The number of initial exploration rounds in GLM-FPL is set below.

Lemma 10. Let τ be any round such that

λmin(Gτ ) ≥ max
{

4σ2µ̇−2
min(d log(n/d) + 2 log n), 8a2µ̇−2

min log n, 1
}
.

Then for any t ≥ τ , P
(
‖θ̄t − θ∗‖2 > 1/2

)
≤ 1/n and Pt

(
‖θ̃t − θ∗‖2 > 1

)
≤ 1/n on event ‖θ̄t − θ∗‖2 ≤ 1/2.

Proof. Fix round t. Let St be defined as in Lemma 9 and τ1 be any round such that

λmin(Gτ1) ≥ min
{

4σ2µ̇−2
min(d log(n/d) + 2 log n), 1

}
.

Then by the same argument as in Lemma 9, P
(
‖θ̄t − θ∗‖2 > 1/2

)
≤ 1/n holds for any t ≥ τ1.

Now fix round t, history Ft−1, and assume that ‖θ̄t − θ∗‖2 ≤ 1/2 holds. Let

S̄t =

t−1∑

`=1

(Y` + Z` − µ(X>` θ̄t))X` =

t−1∑

`=1

Z`X` ,

where the last equality holds because
∑t−1
`=1(Y` − µ(X>` θ̄t))X` = 0. Since ‖θ̄t − θ∗‖2 ≤ 1/2, the 0.5-ball centered at θ̄t

is within the unit ball centered at θ∗. So, the minimum derivative of µ in the 0.5-ball is not larger than that in the unit ball,
and we have by a similar argument to Lemma 9 that

‖S̄t‖G−1
t
≤ 1

2
µ̇min

√
λmin(Gt) =⇒ ‖θ̃t − θ̄t‖2 ≤

1

2
. (14)



Branislav Kveton, Manzil Zaheer, Csaba Szepesvári, Lihong Li

By definition, ‖S̄t‖G−1
t

= ‖U‖2 for U = G
− 1

2
t

∑t−1
`=1 Z`X`. Since Z` are i.i.d. random variables that are resampled in

each round, we have U ∼ N (0, a2Id) given Ft−1, and that ‖U‖2 ≤ a
√

2 log n holds with probability at least 1 − 1/n
given Ft−1. Now we combine this claim with (14) and have that ‖θ̃t − θ̄t‖2 ≤ 1/2 holds with probability at least 1− 1/n
for any round t such that

λmin(Gt) ≥ 8a2µ̇−2
min log n.

For any such round, when ‖θ̄t − θ∗‖2 ≤ 1/2 holds, Pt
(
‖θ̃t − θ∗‖2 ≤ 1

)
≥ 1− 1/n. This concludes our proof.


