EM Converges for a Mixture of Many Linear Regressions

Appendix A Proofs for Population EM

Throughout the proof, we will use C, ¢, ¢/, cany without explicit mention whenever we need universal constants to
bound any terms.

A.1 Key Lemmas for Population EM Analysis

Before getting into detailed proofs, we state some essential lemmas modified from Yi et al. (2016); Balakrishnan
et al. (2017).

Lemma A.1 Let X ~ N(0,1;). For any fized vector v € RY, and a set of vectors uy,...,up € R such that
llujll > ||v|| for all j, we define
E={|(X,u;)| = (X,v)|, Vji=1,.. Kk}

Then,

k
=1

gl

Furthermore, for any unit vector s € S~ and for any p > 1, we have
E[[(X, s)[P[€°] < k2PT(1 + p/2), (5)

where I' is a gamma function.

Lemma A.2 Let X ~ N(0,1;). For any set of fized vectors uy, ...,ur, € R?, and fived constants oy, ..., ax > 0,
define

E = {|(X,u;)| > aj, Vj=1,...k}.

Then,

k
P(E) <3 (6)

sl

Furthermore, for any unit vector s € S®=! and for p > 1, we have
E[[(X, s)[PI€°] < k2°T((1 +p)/2)/ /7. (7)

Proofs of these lemmas can be found in Appendix C. As a consequence of Lemma A.1, A.2, we can show the
Lemma 4.2.

Lemma 4.2 Let X ~ N(0,1). Suppose any fized vector v € R?, a set of vectors uy,...,ur € R? such that
;|| > ||v|| for all j, and constants cu, ..., > 0. Then consider two events

&= {|<X7uj>| > ‘<X,1}>|, v] = 17---7k}a
&= {l(X,uj)| = aj, Vj=1,...k}.

Then for any fized unit vector s € S¥1,
E[[(X, s)[*[€), E[(X,s)|*|€"] < Clogk, (2)

for some universal constant C' > 0.
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Proof. We show for Lemma A.1 first. By Holder’s inequality,
E[[(X. 5)]?|€] < E[|(X, s)|*|€°]/PE[L]€°] /9,

for any p,q > 1 such that 1/p+1/q = 1. We can take p as arbitrary as we want, say p = logk, in order to get rid
of k factor in equation (5). Then,

E[|(X, 5)[*|E] < E[I(X, )| PE[L|E] < kV/P(4PD (1 + p)) /P
< 4e(T(1 4 p)t/?)2 < Clogk,
for some universal constant C' > 0. We used the fact that T'(1 + p) < (p + 1)P. The proof of Lemma A.2 can be

written similarly. O

Remark 6 These lemmas are modified from Balakrishnan et al. (2017); Yi et al. (2016) to involve multiple
components and higher order moments. They are also used in proofs of finite-sample EM, to find sub-exponential
norm Vershynin (2010) of random variables conditioned on specific events. Note that boundedness of any p'"
moment by Gamma function implies sub-Gaussianity. We conjecture that k factor in (5) and (7) might be
sub-optimal, and it will improve the SNR condition by O(logk) if resolved.

A.2 Bounding B

Since || B|| = sup,ega—1 Eplwi (X, s)(Y — (X, 87))], for any fixed unit vector s, we bound
= [Ep[wi (X, s)(Y — (X, B7))]l
UED[w1<X s)(Y = (X, B1))] = Ep[wi (X, s)(Y — (X, 57))]]
= [Ep[Aw(X, s)(Y — (X, ﬂ1>)}|
< [Epy [Au (X, 8)(Y = (X, B)))|+ D f [Ep, [Au(X, ) (Y = (X, 57))]].

By J#1

B;

We will then bound B; and Bj separately, as B; is the error term from its own component and Bj is the error
from other components.

Term in Bj; can be decoupled as
Bj = [Ep, [Aw(X, s)(X, 8} = B1)] + Ep, [Aw(X, s)e]|
< |Ep, [Aw (X, sH(X, B} — B)]| + [Ep, [Aw(X, s)e]| .

b1 b2

Then for each j = 1, ..., k, we give a bound for B;. We divide the cases between max; [|A;|| > 1 and max; ||A;|| < 1.
The proof for ||A;|| <1 will be given in Appendix D. We use D,,, to denote max; ||A;|| to simplify the notations.
We also define pj; := 7/} for j # [,

Case I. max; |[|A;] > 1:

j#1: To bound first term, define four events as follows:

& = {|(X.8; - B1)| > 4v/2r;}
& = {4({X, )| V (X, A)) < (X, 8] = BD)[}
& = {lel < 75}
E=&ENENEs.
When all four events happen at the same time, it is a good sample: weights given to this sample is almost 0, as it

comes from component j. For other events, we bound the probability of each event with respect to A; and 7.
We decide threshold parameter 7; at the end of the stage.

b1 < |EDj [Aw<X7 S><X, 5; - 5T>ﬂ6]| + |]EDJ' [Aw<X75><Xa 5]* - ﬁf>]15f052]|
+ |]EDJ [Aw<Xa 3><X7 ﬂ]* - /Bik>15§]| + UEDj [A’w<X7 5><Xa 5]* - Bik>]15§] .
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1. Event £: Observe the value of the weight w;. First note that

(X, 8] = Bj) +e)?

<
>

2\<X AP +2e < (X, 85 — B})°/8 + 2¢7

= B1) = (X, A1) /2 — € > (9/32) (X, B} — B7)|* — €®

mpexp(—(Y — (X, 51>)2/2)

(
(X,51))%/2) + mj exp(=(Y = (X, 5;))?/2)
(—((X, 8] = B1) +¢)*/2)

T exXp

(X, 8] = B1) +e)” = [(X,
Then,
= mexp(—(Y —
T exp(—((X,
<
< (m/m;)ex
< (mi/mj) exp(=7

Similarly, we get

— B1) +€)?/2) + mj exp(=((X, B} — B;) +€)*/2)

(=
(m1/mj) exp ((((Xﬁ = Bj) +e)* = (X, 8] — 1) +¢)*)/2)
)exp ((=5(X, 8 — B1)[?/32 + 3¢%)/2)

)

7)-

wi < (mf/m})exp (e = (X, 8] = B]) + €)*)/2)
< (mi/m5) exp ((€* — ((X, 8] — B1)| — lel)?) /2)
< (/7 ) exp ((7']2 - 167]2)/2)
< (n1/7}) exp (=77)

Note that due to our initialization condition for 7; for all j, pj1 = i /7} < 3m/m;.

Thus, |Ay| < 3pj1exp (-7 ) From this inequality, we can get

[Ep, [Au(X, s)(X, B} = B)Lell < 3pjrexp (=77) Ep, [[(X, 5)(X, 8} = B7)]]

<3pjrexp (=77) Ry,

where the last inequality comes from Cauchy-Schwartz inequality.

2. Event £ N &y: In this case, from Lemma A.2,

Then, we proceed as

[Ep; [Aw (X, s)

(X, B5

3. Event &£: Bound it as follows:

4\/>7'j

(81ﬂ52)<P(51)_ ||6* Bik”

— B eeng, ]l < 4V21Ep, [|Au(X, s)lecne, |]

< AV21Ep, [|[ Ay (X, s)Lee|]

< 4v2r;\JE[A2 5]y [EI(X, 5)2|E51P(€F)

3272
<4V2rP(ES) < — L.
R

[En, [Au(X, 5)(X, 8 = B es]| < \/EIAZ(X, 5)215),/ELX. 8 - B)21E5] P(E5).

Under this event, we note that

(X, B5

— B1) < 4(

(X, 85)[ VX, An)) < 4((X, Ay + [(X, An)).
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E[(X, B} — 1)?|€5] < E[32[(X, A)[” + 32/(X, A1) *|€5]
< 32(E[{X, A))*[€5] + E[I(X, An)*€5)
< 512D2
where we used Lemma A.1 for bounding E[(X, A;)?|&S].
Now plugging this into the above,

VELX, 5121851\ BIX 8 — B1)21€51P(E5)
Dm

Ry’

< 64D, P(E5) < 512Dy,

4. Event £5: Similarly,

B, [ (X, 5) (X, 8} — B Les]] < \JBIAZ (X, 5)215] [RICX 57 — B1)21E5]P(ES)
<187 = BIIP(&3)
< 2R} exp(—TJ2/2).
We used independence of e and X. Combining all,

by < O(exp(—2/2)(1V pj1) R}y + 72/ Ry + D/ R2y) Do, (9)

Now we turn our attention to bo. Recall by = [Ep,[A, (X, s)e]|. For this setup,

by < |[Ep, [Aw(X, s)ele]| + [Ep, [Ay (X, s>e]lgf]\
+ [Ep, [Aw(X, s)elg,. ]| + [Ep, [Ay (X, s)elee]].

Under good event &, as previously we have |A,| < 3pj1 exp(—TJ?), thus

|Ep, [Aw(X, syele]| < 3pj1exp(—77)Ep, [[(X, s)e|] < 3pj1 exp(—77).

Similarly, we go through on the bad events. First,

Eo, [Aw(X, s)ele]| < \/Eo, [(X, )25y /Ep, [2IE]P(ES) < e17 /R,
where we used Lemma A.2 for bounding Ep, [(X, s)?|£].

Second,

[Ep, [Auw(X, s)eles]| < \/En, [(X, 5)2|E5)y /Ep, [e2E5] P(ES) < 2D/ R}y
where we used Lemma A.1 for bounding Ep, [(X, s)?|€5].
Finally,

[En, [Au(X, s)eleg]| < /Bn, [(X, 5)2¢2)y/ P(ES) < 5 exp(—72/4).

Combining three items, we have

by < O((1V pjr) exp(—7; /4) + 73/ R}y + D/ R}1). (10)

Now we set

7= cT\/log(R;flk/(l Apin))s Riy > eokpitlog(RS).

With given good initialization D,,/R}, < cppji/k, we get by < cyDypj1/k and by < ey Dipj1/k since Dy, > 1.
Combining (9) and (10), we get B; < cgDyp,pj1/k for some small universal constant cg < 1/4 with large enough
¢r, ¢ and small enough cp.
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j=1 : We only need to consider bounding by = |Ep, [A, (X, s)e]|. We define some events similarly, but each
involves multiple factors in this case.

& ={[{X, 81 = Bj)| = 47, Vj # 1}

& = {4[(X, A < (X, B = Bj)l, Vi #1}
& = {le| <7},

E=&ENE&ENEs.

Then follow the same path as in cases j # 1,
by < |Ep, [Aw (X, s)ele]| + [Ep, [Ay (X, s)elee]|
+ [Ep, [Aw (X, s)ele,e ]| + [Ep, [Ay (X, s)eleg]|.
Then, on event & N & N E;, for all j # 1, we have

wj < (m1/mj) exp ((—((X, 87 = B;) + €)* + ((X, A1) + €)*))/2) < 3pj1 exp(=37%/2),

as before. Thus, wy > 1 — 3kp, exp(—372/2). Similarly, w} > 1 — 3kp, exp(—372/2). Thus, A,, can be at most
k3pr exp(—372/2). Then,

|Ep, [Aw (X, s)ele]| < 3kpr exp(—37'2/2)]Epl[|(X, s)e|] < 3kpx exp(7372/2).

We can go over other events similarly.

k
[Ep, [Au(X, s)elec]] < /En, [(X,5)21E5]y /B, 2|5 P(EF) < e1/Toghpy—.

kD,,
B, [Au(X, s)elles]| < \/Bo, [(X, )2(E5]y/Bo, 2165 P(E5) < cav/log by

min

[Ep, [Au (X, sheleg]| < VEp, [(X, 5)%€?]y/ P(E5) < czexp(—7°/4).
For first two inequalites, we used Lemma A.1 and A.2. They all gives a bound for bs as,
by < O(kpr exp(—72/4) + (k\/log k)T /Rinin + (k\/10g k) Dy / Rinin).- (11)

Now we set 7 = O(y/log(kpr)), Rmin = Q(klog(kp,)) and D,, = O(Rpmin/(kv1ogk)), and we get by < c¢p and
B1 = bg S CBDm.

Combining (9), (10), and (11), we get the first part of Lemma 4.1. We conclude

B_7r131+27rB < wiecgDm —i—ZTI' cgDmpj1/k =77 cB—l—ZcB/k D,, <27njcgDyy,
J J#1 J#1

where we used 77pj1 = 77. Thus B < cpniD,, for some universal constant ¢ € (0,1/4) with properly set

constants in the proof.

Update for mixing weights. In this case D,, > 1, we will not focusing on improvement over the quality of
;. Instead, we will only show that 7; stays in a neighborhood of the true parameter, i.e., |7; — 7r;‘| < 77;‘/2. It
can be actually very easily shown with reusing the results we derived for 5. Observe that

WIF—WT:E'D[wl—wﬂ:ED[Aw}. (].2)
Now we can proceed as before:

ED[Aw} :WT]ED1 —‘rZW*ED <7T1 |ED1 |+Zﬂ' ‘ED

J#1 P J#1
J
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Moving along the same trajectory as in (10) for j # 1 case,
P <O ((1 + 7y /7)) exp(—7;) + 7/ Ry + Dm/le) .

With properly setting parameters similarly as in § case, we get P; < p;1/4k. For j =1 case, in fact, we can reuse
the result for (11) as it is. To see this, for instance,

|Ep, [Awlee]] < Ep, [[Leg]] = P(ET) < c1kT/Rmin.
We can do for all cases similarly to get
Py <0 (kpx exp(—72) + k7 /Rppin + kDo /Rinin) -

By setting the parameters similarly as before, i.e., 7 = O(y/log(kpx)), Rmin = Q(k), D,,, = O(Rin/k), we can
get Py < 1/4 with properly set constants. Therefore, |7 — 73| < 77 /2 as desired.

A.3 Bounding A

We will prove the following lemma in order to give a lower bound for minimum sinular value of A.

Lemma A.3 There exists universal constants c1 € (0,1/2) and ca,c3 > 0, such that:

Amin (Ep, [n XXT]) > 1 — (01 + o (k10g k) Do/ Romim + (K log®2(kpy)) /Rmm) .

We start it with a following observation.
Eplw1 XX '] = mEp, [wi XX ].
Thus, we will only focus on giving a constant lower bound for Ep, [w; X X T]. We define good events as

& ={le| <7}
& ={[(X, 8 — BI)| = 4(X, Ay)[, Vi # 1}
We will set 7 = ¢, +/log(kp,) with some large constant ¢, > 0 in this case. Let £ =& NE N Es.

Using
Ep, [wi XX "] =Ep, [XXT] - Ep, [(1 —w)) XX "1g] — Ep,[(1 — w) XX "1ge],

(@) (@)

we will give an upper bound to last two terms.

Under &, it can be similarly shown as before that (1 —w1) < 3kp, exp(—72). Thus, (i) is easily bounded:

EDI [(1 - wl)XXT]lr‘:] = Skp‘n' exp(_T2)ED1 [XXT]lg] = 3kp7r eXp(_T2)I.

We should split the cases for (ii). Observe that

Ep, [(1 —w) XX "ge] < Ep, [XX "1gc]
= Ep, [XXT[E{P(E]) + Ep, [X X T|E5]P(£5) + Ep, [X X T |E5]P(£5)

We bound each one by one. First,

Ep, [XXT|E[]P(E) = Ep, [XX "le| > 7]P(e > 7)
=Ep, [XX T|P(e > 7) < exp(—72/2)1.

where in the first inequality we used independence of e and X.



EM Converges for a Mixture of Many Linear Regressions

For the second term,
Ep, [XX T[&5] < ei(log k)1,

from Corollaray 4.2. Meanwhile, we have P(&5) < k%. Thus,

Dy,
Ep, [XX " |E5]P(E5) < ca(klogk) 1

min

Finally, we bound the operator norm for

Ep, [XXT|E5] = Ep, [XX "|3j # 1,(X, B; — B;) < 47] < c3(logk)I,

from Corollary 4.2. On one hand, P(£5) < k%*—. Now combining three pieces, we have

Rpin

y D,,
i) lop < exp(~72/2) + ea(klog k) 2" + ex(klog k)

min min

Return to bounding Ep, [wy XX "] = I — (i) — (4i), we have

Dy,
Ep, [ XX']=1-0 (kpﬂ exp(—712/2) + (klog k)R + (klog k)R : > .

Giving appropriate 7 = ¢;/10g kpx, D /Rmin < 1/O(k), Rmin = Q(k), we have |[Ep, [w1 X X T]||op > 1/2. Thus,
||A71||op <2/m.

Appendix B Proofs for Finite-Sample EM

B.1 Proofs for concentration of B

To couple it with population EM, we rearrange and write as

s == (2 waxax ) ( (5 3 wniilos — (X B7)) — Elwn X(¥ = (X, 57))
i %

An €B

+ (Eplw X (Y — (X, 7))] — Ep[wi X (Y — (X, 57))]) )

B

We will consider the following events for concentration result

&; = {sample comes from ;" linear model}

&1 ={lel <75},

&2 = {4 ANV ICX Ap)I) < (X 87 = B}
Ejs ={{X, 8] — B1)| = 4V2ry}

Ejgood =Ej1NEj2NE)3

then decompose each sample using the indicator functions of these events.

wl,in( X ﬂ1 <Zwlz i z:ﬂ; _B >]l£ NE;, good + w4 z< z>ﬁ Bik>]15jﬂ£_;l
J#1

+ w4 z< 175 B >]15 NE;1NES 5 + w1 z< zvﬂ 5>1k>]]-5jﬁ$j,1ﬁ$j,gﬁ$]ﬁ3

+wiiXieileng; 4ooa +W1iXieile;nee | + w1,iXi€i]15jng,-,m(g,-,zug,-,g)c)

+ ’LU17Z'X1‘€,L‘]151 .
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We will bound the deviation under each event separately. Before getting into detailed analysis, we remind some
basics on sub-exponential random variables.

From standard tail bound for sub-exponential random variable W with sub-exponential norm K, we have
Vershynin (2010)
P <

If W is a random vector in R? with all elements being sub-exponential with same norm K, then

P ( > t> <yop (
j=1
, t t o\’
§ 2dexp (Cnmln (m, <m> ))

[t t VLo
= exp (C’nmln <m, <m> > +C logd) . (13)

Therefore, in order to achieve ¢ probability error bound, we should have

t=0 (K\/& (k’g(;f/é) Vv log(d/5)>> : (14)

LS W

> t> < 2exp (—Cnmin(t/K, (t/K)?)).

LS ), —E(w);]

n

Dl?&

%ZWi —E[W]

> t/ﬁ)

)

n

Now we get into concentration of random variables multiplied with indicator functions. For each decomposed
random variable, we will find the bound for deviations of empirical mean from true mean that holds with
probability at least 1 — §/k*T.

1. w1 X (X, ﬁ]’-‘ - B3 >]lgj NE; gooa: We first check if the target random variable is sub-exponential random vector.
For any fixed direction s € S~1, we will show W; = w1 ;(X;, s)(Xi, B; — BiE; N E;j good is sub-exponential
by bounding sub-exponential norm.

W |y, = sggp*EDmex, sHX, B — BIIPIE; N Ejgood]/*
p=

= sgl)p’lEDj [lwi (X, $)(X, B8] = B)IPI€j,go0d] /7
p=

Now recall (8) that how we bounded w;. Under good event, we know that w; is less than 1 or
3pj1exp ((=5/32(X, 85 — Bi)? +3¢%)/2) < 3p;1 exp(—72). Thus,

IWlly, = 3pj1 exp(=77) sup p~ Ep, [[(X, s)(X, B} — B1)IPI€j gooa] /*

p>1
<—— = paexp(=7)supp 'Ep. [[(X,s 2|1/ 2P, X, B — B¢ 2p)1/2p
= P(gj,good‘gj)pjl p( g)pzll)p D][|< >| ] ’D]H< 7 ﬂ1>‘ ]
< Cpji exp(ijz)R}‘l,

with sufficiently large constant C' > 0. We used the fact that P(&; 400a|€;) > 1/2 given good enough
initialization and SNR, and /,-norm of Gaussian is bounded by O(,/p).

Now we got a sub-exponential norm of W, we are almost ready to apply our Proposition 5.3. In order to
invoke Proposition 5.3, we need to choose proper n.. First let us bound the probability of large deviation of
Bernoulli random variables Z; = 1(x, y.)e€,ng; yo0a- NOte that Bernstein’s inequality for Bernoulli random
variable is

n TL2
p(h{bzzimznzt) < exp (m’;p/g) (15)
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Observe that p := P(E; N &) gooa) < P(E;) = 7. We can choose n. by checking if the following holds:

ZZ >ne+1 < ZZ pzt>§5/(k2T).

By solving the equation (15) = §/(k?T), we get

n n

— 0 <log(k:2T/6) . plog(k2T/5)>_

Therefore, right choice of ne = np + O (10g(k‘2T/5) Vy/np log(k;QT/(S)).

We can also use Bernstein’s inequality to get

nt?
P IEW]I=Y Z — E[Z]| > < - 2 1

where we used basic fact that ||E[W]|| < |[W ||y, from Vershynin (2010). For ¢, we set

2= W0 (<

pl g(k2T/6)>

W0 [ oy 2y ETL) a7

Then recall (13), we have

1 n n22 nty
Pl|—) W;—E[W]|>—t; | <exp| —Cn,min . +C'logd
( ne = ne n2d||WI3, " nevd| W2,

— exp [ —C'min ”Zt%Q L +C'logd |, (18)
nedWIE, " Vawie,

Therefore, proper scale of ¢; is

ty =0 (IW”%\/f\/WV W”“W)
< [[Wlly, O (\/P\/ 711\/: 10g2(dk2T/5)> . (19)

Since n = Q(1/7Tmin) as we will use, with probability at least 1 — 38/ (k>T),

1 * * * *
Hﬁ Z w1 Xi(Xi, B] — B e;ng; yoos — Elw1iXi(Xi, B — Bi)e;ng; yoodll

=0 <pJ1R]1exp 2, [ \/ log (dk2T/9) )

Cwy i X (X, B -5 )]1 £,nE, : It corresponds to the case where the noise power is larger than 7;. The probability
of this event is p := (E ﬂ E51) < 2m¥exp(—77/2). In this case, W; = w1 (X, s)(Xy, B — B1)1E; N €Sy is
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bounded as
Wy, = ig};p’lED[lwﬂX, $)(X, B — BIIPIE; N €417
= g;p’llEDijlW, s$)(X, B} — BI)IPIESL)MP
< supp™'Ep, [|(X, s)(X, 8} — B7)1P1E54]1/"
= it;}f;p‘llEDjH(X, s)(X, 85 — BPIPIVP

S CR;lv

for some constant C, where the last equality comes from the fact that X and e are independent. While we
want to reuse (17) and (19) to decide deviation of means under this event, we also need to cancel out the
norm of W = O(Rj;). We consider two cases: 1/n < pt/¢ and 1/n > p'/¢ for some number ¢ > 2.

If 1/n < p'/¢, then \/pV 1/n < p'/?¢ = 2exp(f7'j2/(4c)). We can just plug in this bound into (17) and (19)
to get the deviation

1
Hﬁ Z w1, Xi(Xs, B = Bi)le;nes, — Elw1i Xi(Xi, B — B1)Le;nes |l
* 2 d 2 2
= O | R}y exp(—7;/(4c)) Elog (dk2T/d) |,

with probability at least 1 — &/(k2T).

On the other side, if 1/n > p/¢, then we will set n, = 0, i.e., no sample fell into this event. This is true with
probability 1 —np = 1 — 1/n°"L. The statistical error is thus just

E[Wp = O(Rj, exp(—77/2)) < O(Rjy exp(~77 /4)/n).
By setting ¢ = 4 and n > (k*T/8)"/3, this will hold with probability at least 1 — &/(k>T).

- wi,i Xi( Xy, B] — Bf)le;ne;nes,: Under this event, we first note that |wii(X;,s) (X385 — B7)| <
(X5, ) ({XG, A+ [{Xq, Aj)]). In turn,

IWlly, = supp™ Ep[lwi(X, s)(X, 5} — B1)IPIE; N €1 NES )P

p>1

= sggpflEDj [lwi (X, s)(X, B — B)IPIEj 1 N ESH]P
p>

< sgx;p”IED,-[KX, )X, B — BDIPIES o)MP
p>

< dsupp'Ep, [|(X, s)((X, A1) + (X, A)|P| £5,5] "7

p>1

1/p
< asupp™" (1/En, [1(X, 5)[271€5,] /10X, A7) [€5 )

(i) p>1

1/p
+dsupp ((/En, [1(X, ) PPIES o] /10X, An)IPIES )

p>1

S CQDm7
(i)

where (i) we used Minkowski’s inequality and Cauchy-Schwartz inequality, then (ii) we invoked Lemma A.1.
Recall that D,, = max; [|A;[|. Thus W = wi X (X, 87 — B7)|(€; N ES,) is sub-exponential with parameter at
most ¢ Dy, We can also check that p:= P(E; NES,) < O() Din/ Rjy).
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We choose n, = np + O(log(k?T/8) V \/nplog(k2T/5)) as before. Using (17) and (19),

=0 (Dm \/ PV k’g@”“:T/‘s)\/ % 1og(dk2:r/5)) ,

O ( b, /plog(/:LQT/& D, log(lf;T/cS)) | 20)

We can see that n = Q(dklog(dk*T/d)/x}) suffices to ensure ty,ty < O(Dyi/k) since p < O(w5 /(kpr)) =
O(mi/k) by the initialization condition. Overall, ¢; + t5 is bounded by

*Dy, 2
o) (Dm\/ T om , log(dk*T/o) /d 1og(dk2T/5)) .
R} n n

) wl,iXi<Xi7B; — ﬁfﬂlgjmgj’lmgjgmgjc’s: In this case, we define W as

W; = w1,2X1<XZ7ﬁ; - BT>]l£j,lm£j,2|(€j N gjc,?))

In other words, we are leaving some events in the indicator. Then, we can restart from bounding the
sub-exponential norm of W.

W |, = Sglip_l]EDj lw (X, 8)(X, 85 — Bi)PLe, e, .| N ES 8P
Pz

< Sglfp_1EX~N(O,I)[(EY~N((X,ﬁ;*),1)[w1]> (X, s)(X, B) — B)PLe, ,|E55] /7.
s .

Then, use the following bound for expectation of w; when &; 2 is true,
Eyn((x,60)0)[wi] < Eeno,n) [min (3pj1 exp ((—5/32(X, 85 — 57)* + 3¢%)/2) , 1)]
< Eeono,1) [303'1 exp (—5/32(X, 85 — B7)° + 3¢?) IlBezg\(X,B;fﬁf)l?/SQ@

+Eeno,) {]13622<X,B;—5I‘>2/32}

< Eenn(o,1) [3/%1 exp (—(X, B} — B{)?/16) | + P(3¢* > |(X, B} — B1)I?/32)

< 5(1V py1) exp(—(X. ] — B7)2/192). (21)

Then we compute the upper bound for exp(—(X, 87 — 57)%/192)|(X, 85 — B)|P. Letting [(X, 87 — 81)| = a,
and find a maximum for —a?/192 + plog a by finding a zero point in its derivative. We get a maximum at
a = +/96p with value (96p)P/? exp(—p/2). Now plug this upper bound to continue bounding norm of W.

- * * C 1/p
Wy, < sup "Exn0,1) [(EY~N(<X,B;>,1)[W1]) Te, ,[(X,s)(X, 8] — fh)l”l%g}
p=

_ e 11
< 5LV pyn) supp™ (969) /2 exp(—1 /2B oy (11X 5)71€5] 77
p=
< C(1Vpj),

with sufficiently large constant C' > 0 and Lemma A.2 for the final inequality.

The probability of this event p := P(&; N ES,) < 4\/§7r;-‘7'j/R;f1. Again we use Proposition 5.3 to get a
deviation of this random variable. We can set t; and t5 as

h=0 ((1 Vo oy BTN ] dlog(dk?T/é)) ,

n

log(k2T'/0
%n/)v(l\/pﬂ)

t2 =0 ((1 vpjl) W) .
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With probability at least 1 — §/k*T, we conclude that the deviation of sum under this event is

(1\/ i ( [log( kQT/(S U TJ) /ZIOg(dkrzT/&)).

Now we will bound terms for w; ; X;e;, it is almost exact repetition of previous procedures when it comes from
h £ 1 component.

1. wi1Xseile;ng; yoous J 7 1: One can show that following the exact same procedure for the first case we
handled}for w; 1 X (X, B; — B31). In this case, W; = w; 1.X;€;|E5 N Ej good, we can get |||y, < Cpji exp(fo).
To see this,

Wy, = Supp_lEDle (X, 5)el’1€; N €5 gooa] /”
—Slill)p ED [Jwi (X, s)(X, 6 = BDIP Jgood]l/p
p>

< 3/ P(Ej.go0dl€)pj1 exp(—77) sup p~ Ep, [|(X, s)¢|"]"/7

p>1
< Cpj1exp(—77).

Following the same trick we used with Proposition 5.3, (see (17) and (19)), we get

1
”ﬁ ZwuX,'e,-]lgjmgj,gwd —Elwi Xelg;ne; ,o0qlll = O (pﬂ exp(—77), /7 \/ log (dk2T/9) >

2. w1 Xieileg;nee,, j # 1: The challenge here is how to bound Een(0,1)[e[?|le] = 7;]. We will use the standard
lower bound for Gaussian tail bound:
2
2 eXp(—Tj /2)
2) > ——.
T+1\/76Xp( i/2) 2 37;

Ple>Tj) >

Now for the sub-exponential norm of W = w; Xe|&; N ES, is given as
Wy, = Slil?pflEDjHUJl (X, s)elP|€54]"7
P>

< Sg};p_lEDj (X, 8)[P]Y/PEp, [lef?| €5 ,]'/7
pz

-1 p11/p P c 1/p
= supp Ep, [[{X, s)/"] (]EDJ[\el Lee ]/P( j,l)) ~
p>

where in the inequality we used the independence of X and e. E.nr(0,1)[|e[P1le>r,] can be upper-bounded as
follows:

EconvonllelLesr] = Eeononllef Lor > ei>r;] + Eennro,1) (€l Ljej>27,]

< (2m)"P(lel = 75) + VE[ e[*]y/ P(le] = 275).

For the comparison of \/P(|e] > 27;) and P(|e| > 7;), the standard lower and upper bounds for Gaussian
tail are useful. That is,

Ple=7) > g ——exp(=7}/2)

P(e > 21;) < exp(fQTj ).

Thus,

P(le| > 27;)/P(le|] > 7;) < 87; exp(—7}/2).
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Now we can plug those values we found to proceed
1/p
[Wly, < supp™En, [(X,5) 177 ((27;)? + VE[ePP]87; exp(~77/2))
p>

< cosupp /2 <2Tj + E[\e|2p]1/p(87j exp(Tj?/Q))l/P)

p>1
S OT L
for some universal constant cg, C. Now we have the sub-exponential norm of W, we can follow the procedure

for w1, Xi(Xi, 8] — BT>]lgjngJ¢1. Similarly to previously guaranteed in Remark 7, the deviation will be given
as

O (Tj exp(—rf/(élc)) Zlog2(dk2T/6)> .
Again, we may set ¢ = 4 and n > (k*T/6)/3 to get 6/(k*T) probability bound.
3. winXieilg g, \n(g;2ne;5)e)s J # 1: For this case, we set W; = w; 1 X eile;, [N (€2 NE;3)¢ and find that
Wiy, = il;}fpflEDle(Xv shel"Le, 1 1€ N (€52 N Ej) )P
= supp~ 'Ep, (w1 (X, s)e[PE1|(Ej2 N E;3) TP

p>1

< supp™ B, [|(X, s)el’ |5, U &5
p=

1/p
< suppt (/B [1(X, ) 7155 U E5 ]\ [EllePPIEs, U 5]

p>1

-1 2p|cc 2p|cc 2 /e
< supp" (/En, [I(X, 5)2[&5,] + B, [1(X, 5) 7[5 5] /E[e[])

p>1

<C,

for some constant C' > 0. The probability is bounded as P(£; N (€;2NE;3)¢) < 750 (D /R5y + 75/ RYy), s0
we can bound the deviation in this case as

(dk2T/5) [dlog(dk2T/5)

1 T  log
||ﬁ Zwl,iXiei]lgjﬁS;J — Blwy i Xieilg,ne: ]| = O \/ka7r V

n n
given our initialization and SNR condition.
4. w;1X;e;1¢g, (7 =1): Finally, it is the easiest case since
[Wlly, = supp ™ Ep[lwi (X, s)e[?|&]'/7
p>1
=supp 'Ep, [Jwi (X, s>e|p]1/”
p=>1
<supp 'Ep, [|(X, s)e"]"/?
p>1
1 5 5 1/p
< supp~* ((VEn, [(X 5] 7] /En, [[e])
p>
S C3,

for some constant c3. We can apply the same trick and get

1 log(dk2T/5) |dlog(dk2T/6
||ﬁ Zwl,iXiei]lc‘fl — Elwy ; X;eilg ]| = O (\/Wik v & / )\/ o / )) :

n n
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Now we collect every scale of deviations from each item, and conclude that with probability 1 — §/kT (by taking
union bound over O(k) items), we have

eB:*Zwli i Xﬂl))f}ED[le(Y*<X7ﬂr>)}
) 7r;-‘Dm 1
< log (dk2T/6) Jz?;l L pﬂRﬂexp )+ R}y exp(—7; 2/16) + D,, 7, V -
7T TJ * 1
+(1Vpn) + /7 pﬂexp —&—Tjexp( 2/16)+ k;ﬁvﬂ)
1 2T
dlog(dk2T/6) o (22)
n
As we set 7; = ¢ [log(kpxR};), SNR and initialization condition
i1 = Q (kpr log(pekRy)) = Q(k),
D[R}y < O(1/(kpx)),
and sample complexity
n>> (k/?rfnm(d/e2) log2(dk2T/5)) Vv (kQT/cS)l/?’, (23)

every term inside the summation in (22) is now less than O(y/7}/k) or O(D, /7 /k). Thus,

ep <O (GW (k:(l + Dm)M) + 67rf> .

We can conclude that ep < 7f Dy,e + wfe with probability at least 1 — §/kT (changing § to ¢d with some constant

c).

Remark 7 The high probability result is usually given as 1 — exp(—cn), but it is also enough to show that it
holds with probability 1 — 1/n® for some constant ¢ > 0. The choice of 8 is rather arbitrary and we could have
picked any other larger constant with slight constant penalty in SNR requirement.

B.2 Concentration of A

As we only are interested in lower bound of the minimum eigenvalue, we only need to consider the concentration of
wl’iXiXiT]lgj since % > wl,iXiXiT > % ¥ wliniXiT]lgl. The concentration comes from standard concentration
argument for random matrix with sub-exponential norm Vershynin (2010). For any fixed s € S¥~!, we have

||w1<X75>2H¢1 < 2H<X7s>”12/)2 <K,

with some universal constant K, since w; is bounded in [0,1]. Using this and (1/2) covering-net argument over
unit sphere, and the same argument we used with Proposition 5.3, we get

2
H%Zwl,ixixjnglf]E [ XX 1, <o<\ﬁ dlong/6)>,

with high probability. As we see in the proof of Appendix A.3, Ep[wi XX "1¢,] = (7} /2)I with good initialization
and SNR. Thus,

*ZwliXiXiTiﬁI— MIE ﬁ—eﬂf I,
n < ' 2 n 2

given n = Q(dlog(k*T /) /Tmin). Thus, we can get ||A;!,, < 2/7; with high probability.
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B.3 Concentration of Mixing Weights

We can again use the per-sample decomposition strategy. The target we will bound is the error % > w1 —Eplwq]|.

As before, decompose w; ; as

k
wii= | Y wiileng o+ wilgnee | Hwiile,.
i>1

It is the repetition of proofs for other quantities we have considered so far.

1. w;i1lg;ng; yooar J # 1: The difference is, now in all cases W is a sub-Gaussian random variable. Note that w;
is always less than 1.

Wy, = Sggp‘l/QED[lel”lgj N &) good] "
p=
=supp *Ep, [[w1|P|€; good)/”
p>1

< Cpj exp(—7'-2)7

Following the same trick we used with Proposition 5.3,with probability at least 1 — &§/(k%T), we get

1
|ﬁ Zwl,iﬂsjmsj,good — Blwiilg;ne; 000l = O (pjl exp(— ,/ \/ log (k2T /95) )
i

2. winle;nee ., # 1: For this case, we set W =w;1|E; NEF 54 and find that

Wiy, = supp TYPEp[lwi[PE; N EF gopa] /P < 1.

The probability is bounded as P(&; N E”good) <70 (exp(—=77/2) 4+ Dy /Ry + 75/ R3y) < O(7} [/ (kpx)), s0
we can bound the deviation in this case as

1 i log(k*T/6) [log(k?T/9)
- zi:wmlsjms;,z = Blwiile;neg, ]| = O \/kmr vV n

given our initialization and SNR condition.

3. w;,11g,: Finally, it is the easiest case since

Wiz = supp™ o unl7&)” < 1.
p=

We can apply the same trick and get
1 . log(k2T/5) [log(k2T/6)
|ﬁzw1’i]1£1 —E[wl,i]lng =0 <\/ﬂ'1\/ 1’L - .

Now combining this all, given n = Q(ke~2/m,nin) we have

1 / 7 log(k2T/5)
ﬁzwl’i —Epluwy]| < log (k2T/0) Zpﬂl exp(— I + 1#

j>1
T NIZTRYAL T N N
Se\/?l Z ;pr ?1 + ey < O(ye).

j>1

This implies the concentration of mixing weights in relative scale.
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Appendix C Proof of Auxiliary Lemmas

Lemma A.1 Let X ~ N(0,1;). For any fized vector v € RY, and a set of vectors uy,...,up € R? such that
llujll > ||v|| for all j, we define
E={|[(X,u)| = (X, v)|, Vji=1,...k}

Then,

[Jugll

k

Furthermore, for any unit vector s € S~ and for any p > 1, we have
E[[(X, s)[P[€°] < k2PT(1 + p/2), (5)

where I' is a gamma function.

Proof. Equation (4) is a consequence of Lemma 6 in Yi et al. (2016) and elementary rule of union bounds.

For (5), we first look at p*” moment conditioned on only one event. Recall that in Yi et al. (2016), only the case
for p = 2 is proven. Without loss of generality, due to the rotational invariance of standard Gaussian distribution,
we can assume span(u,v1) = span(ep, es).

Change first two coordiantes of X, z1,z2 to combination of r Rayleigh distribution and 6 uniformly distributed
over [0,27). Then define Y = (s3.4, X35.4) where s3.4, X3.4 be partial vectors of s and X from third coordinate.
Then Y ~ N(0,]ss:4]|?), and 7, 6,Y are all independent.

Now note that the event & = |(X, u1)| > [(X,v)| only depends on 6. Then,

E[(X, s)P|Ef] = E[|s1r cos 0 + sarsinf + Y|P|EY]
_ E[|s1ircos 0 + sarsind + Y [PLeg]

P(&p)
Eg[E; y[|rsicosd +rsysind + Y|P[0] Tgcee]
- P(&x)
Eg[(,.y [|rs1 cos @ + 7sasin 6 + Y|P|0]1/P)P Tocee]
a P(€F)
< Eg[(E,[|rsi cos 8 + rsysin 0|P|0]1/P 4+ Ey [|Y|P|6]'/P)P Tocee]
5 P(&r)
< Eg[(E,[rP|s1 cos 0 + sosin 0|P|0]'/P + Ey [|Y|[P]1/P)P Tocee]
(i) P(&F)
EG[E [P svall + By (Y17 Tpee]
: P(E)
(B[] |Is1al + Ev [[Y[P]T/P)P Eg[lloee]
(i) P(&})

= (717 svall + E[Y P77

where (i) we used Minkowski’s inequality, (ii) we used independence of  and Y, and (iii) used independence of
all terms from 6.

Then, since r ~ Rayleigh(1) and Y ~ N(0, ||s3.4|%), we have an exact value for each p*"* moments from well-known
distribution properties. That is,

B[(X,5)716° < (sl VAT(1 -+ p/2V7 + llsaal V2 (D0 + 1)/2) /) )

p

Now since I'(1 + p/2) > 2T'((p+ 1)/2)/+/7 for p > 1, and
Isvizll + llssall < Vsl + Is3:al?vV2 = V2
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since s is an unit vector, we conclude that

E[(X, 5)P[E7] < 2°T(1 + p/2).

Now we move on to conditioning on £°. It comes from elementary property of union of the events,

E[(X, s)Plec] _ EBI(X,8)[P 20 Ler]

E[|(X, s)|P|E] = <
10X, 5)P1e] o e
B Z (X, s \P]lgc Z (X, s \P]lgc]
< k2pI‘(1 +p/2),
where we used P(£¢) > P(Ef), and 1ge < )7, Tge since £¢ = U;Ef. The claim follows. O

Lemma A.2 Let X ~ N(0,1;). For any set of fized vectors uy,...,u, € R, and fived constants oy, ...,y > 0,
define

E={|(X,u;)| > aj, Vj=1,...k}.
Then,

B

Furthermore, for any unit vector s € S~ and for p > 1, we have

E[[(X,s)|P|€] < k2°T((1 +p)/2)/ V7. (7)

sl

Proof. Equation (6) is a direct consequence of lemma 9(v) in Balakrishnan et al. (2017) and union bound.

We start of (7) with the same strategy in proof of A.1. Let us consider only one comparison first. Let
&1 = {|{X,u1) > a1 }. Without loss of generality (by rotational invariance of standard Gaussian), let u; = e; and
Y = <I2:d, 82:d>~
E[[(X, s)|P|€7] = Ells1z1 + YP|(Je1] < )]
E[‘Slml +Y‘p]l£v1Sa1]
P(lz1| < a1)
E[E“Slml + Y|p|‘r1]]1$1§061]
P(z1 < )
< EBlE[s121[P[aa]'/? + B[Y [Pl21]VP)? 1] La, <a,]
- P($1 < Oq)
E[(s1z1| + E[[YP]/?)P Ly, <a,]
- P(l’l < 011)
E[(|s101] + v2[|s2all(T((L +p)/2)/VT)/P)PLa; <ai]
P( < al)

(|s1a1|+f ls2.al(0((1 +p)/2)/ V) 7)
PD((1+p)/2) V.

<

The rest of the proof follows by decomposing union events into separate events as before.

E[(X,5)"Led] _ E[(X,5) 5 Le:]

E[|<Xa 8> |p‘gc} = (gc) — (gc)
B Z (X, s \P]lgc . Z (X, s \Pngc]
< k’2”F((1 +p)/2)/\/7?
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Proposition C.1 Let X be a random d-dimensional vector, and A be an event defined in the same probability
space with p = P(X € A) > 0. Let random variable Y = X|A, i.e., X conditioned on event A, and Z = lxca.
Let X;,Y;, Z; be the i.i.d. samples from corresponding distributions. Then, equation (3) holds for any 0 < n. <n
and tl + t2 =1t.

Proof. We are interested in bounding the following probability

P <|| > (Xila - E[Xi1a)) |2 > nt) .

We will upper bound this probability by spliting it with conditioning on every possible set of Bernoulli variables
Z;, then arrange them.

P(H > (X4 - ELXi14])|| 2 nt> - Y r <|| > (XiZi ~ E[X,14))| 2 nt‘{ZZ-}?) P({Z:}D).

{ziyre{o1}n

Note that X;Z; = 0 when Z; = 0, and X,;Z; = X;|A = Y; when Z; = 1. Now we divide the cases into when
YiZi <neand Y, Z; > ne.

> (|< X,) ~ nE[X,|A]P(4)] > nt\{zi}?> P{Z})
Zi=1

{Z:}7ef{o,1}m
< > P <||< 3" Xi) - nE[X|A]P(A)]| > nt\{zi}’f> PH{Z}}) +P (Z Zi>ne+ 1) .

{Z2:37€{01},3; Zi<ne i:Z;=1

We can decouple the first term above into two terms as the following:

( > X) - nElXIAIP(A >||zm\{zi}“f)

—p || (X, — E[X|A]) + E[X|A] Zz —nP(A ))||>nt‘{Zi}’f>

IN

~
/—
I

(X ~ E[X]A])] 2 ntl\{zi}’f> +P <||E[X|A}<Z Z; = nP(4))] 2 mj{&-}?) .

where t1 + to = t. Then we observe that conditioned on Z; = 1, X; is actually Y;, and we can discard all X; for ¢
such that Z; = 0. Thus, the first expression is simplified to

p <| > (X —E[X|A]]| > "tl){Zi}?szi = m) =P Z(Yj —EY])|| = nt1 |, (24)

:Z;=1
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Here, j is a new index variable, and now the condition is only on the sum of Z;, which is m. Now we are ready to
wrap up the result:

P(H > (Xi]lA - E[Xi]lA]) H > nt)
< > P i(Yj—E[Y]) >ty | PUZ)} ZZ—m

{Zi}ile{ovl}n’Zi Zi<ne

+ > P (IE[Y]I\ > Zi—nP(4)| 2 ntz\{zi}zl) PUZ}Y)

{Z:37e{0,1}", 3, Zi<ne
+P (ZZ Zne+1>

< max P i(Y] —E[Y])| > nt;

m<ne

+P <||E[Y]||‘ Nz - nP(A)‘ > nt2> +P (Zzi > n, + 1) ,
where the last inequality we used the fact Z{Z,-};”E{O,l}” P({Z;}T) =1, and (24) is only conditioned on the sum

of Z; being less than n.. We divide by n in conditions inside the first two probabilities, and we get the theorem.
O

Appendix D Defered Proof: Bounding B for population EM when D,, <1

Case II. max; [|Aj]| < 1: We use mean-value theorem to reformulate A,,. We additionally define a symbol

0; == m; — ;. Denote B} = 7 + uA; and 73 = 7} + ud; for u € [0, 1], and let w} be the weight in E-step
constructed with 8} and 7). Then, by mean-value theorem, for some u € [0, 1], B = ||IED [AL (X, )Y — (X, BN
where

AY = —wi (1 —wi)((X, B1) = Y)(X, A1) + > wiwf (X, B) = Y)(X, A)
1£1

Aw,l

—wi (1= wi)dy /7l + > wiwid,/af',
1#£1

Aw,Q

for some u € [0,1]. Note that J; /ﬂj“ < 2§, /775* < 1 guaranteed by initialization condition and the result for
Dy, > 1. Let us now redefine Dy, = max(max; [|A;|[, max; d; /7). Then for each j, we can decompose the target
term as

[Ep, [AL (X, ) (Y = (X, B1)]| < [Ep, [Aw,1 (X, 8)(Y — (X, B7)]| + [Ep, [Aw,2 (X, 5) (Y — (X, 57))]| -

El E2

We will bound E; and FE5 separately as we proceed.
J# L

Bounding E1. We first consider bounding the first term.

= [Ep; [Aw,1 (X, s)(Y — (X, B7))]]
< [Ep, [Aw 1 (X, s)(X, 87 = B[ + [Ep; [Aw 1 (X, s)e]|,

b1 b2
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As before, we will first bound b;. It is a bit complicated as it involves many algebraic terms, but the idea is the
same.

bl S ’ED][w?(<X7B]* _/67;> —|—€)<X7A1><X, S><X76]* _/Bik>H

dy

+ |Ep, [Zwlwz -6+ )<X,Az><X78><X’5§‘—BT>H~

ds
We bound ds first. Consider the following good events:
& ={[(X, An)| < D, Vi} N {lel < 73}, & = {[(X, Bj — BY)| = 475}
We will set 7, = ¢, ( log (R, k;pﬂ)) for some large constant ¢, > 0.

Under event &, when | # j, we claim |wj((X, 87 — Bf) + €)| < pjilexp(—677)47;| + wj*4r;. Let us denote
= (X, B — By 4+ e). Then

_ ;=B 2 * _ gu 2
wlu<pjlexp< (X, 85 — Bi) +e) 2+(<X7ﬁj ﬂ]>+e)>

= pjrexp (X, 8] — B}) +e)?/2) exp (= ((X, B} — Bi') +¢)*/2)
= pji exp (2732) exp (—7“2/2) :

Thus |wj'r| < pjiexp(277)rexp(—r?/2). The function f(r) = rexp(—r?/2) is maximized when 7 = 1, and
decreasing afterward. Therefore, we can conclude that whenever r > 47;,

lwi'r] < pjiexp (273-2) sup rexp (—1%/2) < pji exp(27'j2)47j exp(f87j2) < pjidT; exp(fGsz).
>4

T24Tj

When 47; > 7, we have |wj'r| < wj*4r;. Thus, we have |wj'r| < 4pj;T; exp(fﬁTJZ) + |wjdT;).

For | = j, under event &, we know [(X,A;) + el < 27;. Thus, it is also true for j = [ that |wj'r| <
(47; exp(—67'j2) V |wit|47;).

Now we plugging these relations into dy, we get
Ep, lz wilw}'( — Bt + e) (X, A (X, 5)(X, B — Bi‘>]

< p‘n'ED

D wi exp(=677)47; (X, A){X, 5)(X, B — B7) ]
l

+ ED].

Z |w11Lw?4Tj <X7 Al><X’ S> <X7 5; - BT>| 151‘|
l

Zwﬂi’z = Bi") + e)(X, A (X, s)(X, B} — BY) 115;]
> [wi (X, s)(X, 85 — B7)

| |

(4)
151]

< 4p, DmTj2 eXp(—GTjQ) Ep,

+4D,77 Ep, H(Z wi)wy (X, s)(X, 57 = B7)
l

(i)
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] |

> wiw (X, B — Bl + ) (X, ANX, s)(X, B} — B} )L
l

(i)
For (i),
Bo, | 32wt (X, = 50 m]

<Z\/ED (X, B — B7)? \/]ED (X, 5)2 ZR*lfk

For (ii),
| =Ep, [|Jwi (X, s)(X, 8} — B7)| Leyne. ]
+Ep, [|wi(X,s)(X,8; — B7) <.

Ep, [[wi (X, s)(X, 8] - B7)

Under event & N &,, it is easy to see that
(X, B85 — BY) +e| <275, (X85 —B}) +e|l > 37, wi < pj1 exp(—277),

thus
Ep, [Jwi(X,s)(X, 8] — B7)| Le,ne,] < pj1 exp(—277 )R,

For the second term:

Ep, [|wi(X,s)(X, B8} — 57)| Le,nes] < E(X, 8)|[(X, 85 — BY) + u(X, A1)[Lg,neg]
< E[I(X; 9)[(57)) e, neg]
< 57 E[[(X, 5)||€5]1P(€3)
<o)/
For (iii), note that P(£f) < 2kexp(—77/2). Then,
111 <ED Zwlwl ﬁl> )<X7 Al><X78><XaB; —5T>ﬂ£f ‘|

< Z\/IEDJ 2(X, B2 — BY) + €)2(X, A \/EDJ (X, 8)2(X, B — B1)?1g]

<Z\/ED wi)2((X, 85 = B1) + )2(X, A))2 {/Ep,[(X, 5)8 \/IED (X, By — B7)® \/P5°

< chlx/EeXp 2/8 ( \/ED wl ((X, ﬁ* 6lu> +e)2(X, Al>2> ]

In order to bound (25), we need the following equation which we defer to prove in D:
Lemma D.1 If D,, <1, forj#l,
Ep, [(wi')*(X, (8] = Bi" + ) (X, A)?] < O ((pjuR5)* exp(=77/2) + 7/ R},) | A,
which is less than O(||A]|?) with 7, = O( log(R,px)).
If j =1, we have
Ep, [(wd)2(X, (5] — B3 +e)*(X, 8,7 <O (2 + (18] + DVFexp(—2/4)) [1A,]%

which is less than O(||A;]|? log k) with ; = O(y/logk).

(25)

(26)

(27)
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Then, we can bound (25) by

(25) < O | By, VEexp(—77/8)( Dy + \/log kD)

I#j
<0 (R;1k5/4 exp(—TjQ/S)Dm) .

Combining all results, we have

dz < O ((pekr? + K/ ) exp(~73/8) Ry, + 73/ R}y ) D

Then, we set 7; = O ( log(R;lk‘pﬂ)) to get dy < ¢gDp,/(kpr) along with R3 > Rin > Q(k:p,r).

Now for dq, we follow the exactly same path, while the only difference is that it does not involve summation over
all components.

dy = Ep, [wi((X, ] — B) + ) (X, A)(X, s)(X, B} — 57)]
< prexp(~672)dr; [[(X, Ay)(X, 5)(X, B} — B7)[Le,]
+4nEp, [[wi (X, A) (X, 5)(X, 5] — B7)|1e,]
+E [Jwf (X, 8] — BY) + )(X, A)(X, s)(X, 8] — B})[Leg]
< O ((par} + VE) exp(~72/8) R}y + 7}/ By ) Do,

where we can set 7; the same, and we get di < ¢¢ D, /(kpr). Therefore we complete the proof for b1 < ¢y Dy, / (kpx).

The bound for by is replicate of the proof for by except that, at the end of inequality we get \/E[{X], s)2e?] instead
of \/EKX, $)2(X, B; — B5)?]. Specifically, we start from

by < [Ep, [wi' (X, 8] — B1') + e)(X, A1)(X, s)e]|

dy

k
+ |ED][Z’UJ?UJ?(<X’ﬂ; - Blu> + 6)<Xa Al><)(7 5>6H .
=1

do

For ds, applying the same argument, we get

EDj Zw?wf((X, /8]* - ﬂlu> —|—€)<X, Al><Xv S>€]
l

< 4p, DmTj2 exp(—67'j2) Ep,

> Wi (X, s)el Le,

l

]151]

—5—4Dm7'j2 Ep, H (Z w)wi(X, s)e
1

(@) (i1)

] |

Then, we can go through exactly same path to bound each (i), (ii), (iii). Finally, set 7, = © (, /log(R;lkpﬂ)) as
before and we get the bound E; < ¢, D, /(kpx) for j # 1.

+ ED.7

> wiwi (X, B = B) + e)(X, A (X, s)elle
l

(#)
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Bounding Es, the term from mismatch in mixing weights. Recall that
By = [Ep, [Aw2(X, s)(Y = (X, B7))],

Ay = —wi(1—wi)dy/mf + ) wiw)'e, /'
1#1

< Jwi (1l —w}) + Zw’l‘w}‘ 2D,, = 2w Dy,.
1#1

Hence, Eo < 2D,,Ep, [wi|(X, s)(Y — (X, 7))|]. We have already seen similar equation when we handle D,, > 1.
Only difference is that A,, is now changed to w}, but we can observe that we can reuse the exactly same procedure.
(Remember the only property we needed for A,, was that it to be less than exp(-) under good events, which is
also true for wy). Following the procedure to derive equation (9) and (10), E5 can be bounded by

@) (eXP(*sz/Zl)(l \ pjl) 1T / 1+ Dm/ ) ms
which the same choice of parameters 7; = ©(, /log(R}, kpr) gives Bz < ¢y Dy, /(kpx) with the same SNR condition.
j=1
Bounding E1. We define events
&1 = {|(X.8,)] < Dy ¥} 0 {le < 7)
& = {[(X, 8] = B)| = 47,Vj # 1}.
For bounding F4, same as when D,, > 1, by = 0. Thus, we consider b, only, which is

b2 - |]ED1 [Aw <X7 S>€]|

Ep, [w?(l —wi)((X, 87 = A1) + e)(X, A1)(X, 8>€]

dy

> wiw (X, 8 = BY) + e)(X, A)(X, s>e] :

1#1

+Ep,

da

First part of the proof follows the path for j # 1.

do < Ep, Zwithlaxvﬁf _ﬁlu>+e)<X7Al><X’5>e]151

|1

< Ep, Z ’wi‘p,r exp(—672)41(X, A} (X, s>e| 1g | +Ep, Z |wiw 4T (X, A (X, s)e| 1g,
| i#1 1#1

+Ep, ||D wiwi (X, 8 = Bi') + e)(X, A)(X, she| Leg
1#1

< 4p; D, exp(—672) Ep,

Z |wi{X, s)e| 1g,

l

+4D,, 7* Ep, Zw wi(X, s)e| 1g,
1#1

(@) (i)

+Ep, |[D wiwi (X, 8] = Bi) + e)(X, A (X, s)ellge
1£1

(i)
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For (i),

Ep, [Z |wi‘<X,s>e| ]]-51‘| < ZED1[|6<Xa 8>|] <k.
l k

(ii), we use event &; as before,
Ep, H(]- - wllt)wat<X7 8>6| 1151] =Ep, [|(1 - will)wllea S>6| ]151052}
+Ep, [|(1—wi)wi (X, she| Leyneg] -
Under event £ NEx, it is now easy to show that wi* < 3p, exp(—272) for all | # 1. Thus, 1 —w} < 3kp, exp(—272),

and
Ep, [|(1 — wi)wi(X, s)e| Lg,ne,] < 3kpx exp(—277)Ep, [|(X, s)el] < 3kpx exp(—277).

For & N &4,
Ep, [|(1 —wi)wi(X,s)e| Le,neg] < Ep, [[(X, s)e|leg]
< \/E,[(X, 5)21&5]/En, [e2|E5]P(£5)
< cly/logk:ka .
For (iii),

(iii) = Ep, || wiwf (X, 87 — Bt") + e)(X, A)(X, s)ele
1#£1
<Y Ep, [Jwi((X, 8] = B") + e)(X, A)(X, s)elee|] ,
1#£1

| </Eo, [(wf)2((X, 5 — 67) + )2(X, A
y ED1[<X7 S>464} \ P(glc)7

Ep, [Jwf((X, 8] = B') + e)(X, A)(X, s)ell g

For bounding /Ep, [(wj*)2((X, B; — B}*) + €)2(X, A;)?] for | # 1, we can again use Lemma D.1. We also have
that P(Ef) < kexp(—72/2). Then,
(ii1) < cokVkexp(—72/8)D

Combining all,
dy <O ((k5/4 + k72 exp(—72/8) + k+/log k7 /Rmm) Don. (28)

Along with our choice 7 = O(y/log(kp)) and Ry = Q(k), we get da < cqD,.

For bounding dy, (all constants c¢1, g, ... are renewed)

= Ep, [wi(1 —wi)({X, 67 — B1') + e)(X, Ar)(X, s)e]
< Ep, [lwi (1 —wi)((X, 87 — B1) + e)(X, A1)(X, s)e[le, e, ]
+Ep, [lwy' (1 —wi)((X, 87 = BY) + e)(X, Ar)(X, s)e|Leg]
+Ep, [lwy'(1 = wi)((X, B = BY) + e)(X, Ar)(X, s)e|Le,neg]
< kprexp(=7%/2) Ep, [|(Ju(X, Ar)| + [e))(X, A1) (X, s)elLe,ne,]

(i
+Ep, [([ulX, Ar)| + [el){X, A1 )(X, she[Leg]
(i)
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+Ep, [([u(X, An)] + [e)(X, Ar)(X, s)e|Le, neg] -
(i)

(1) = Ep, [[(Ju{X, Ar)[ + [e[)(X, A )(X, s)e[le, ne,]
< EDI [<X,A1>2|<X,S>6H +ED1| [<X7A1><X’ 3>€2H
< allAf[(1+[[Aq]]) < 261Dy

(i1) < Ep, [(X,A1)*[(X, s)e[lee] + Ep, [[(X, A)(X, s)e?|[Lee]

= VEp, [(X, A1)4(X, 5)2e2]\/ P(£F) + VEp, [(X, A1) (X, 5)%¢4]/ P(EF)

< eaVk|| Ar | exp(=72/4).

(ii1) < D37/, [(X, )21€5)y/ B, [e2/€5)P(E5)
- meapl X.op1ed) VEo, €115 P(€5)

csv/logkD,,

mln

where we applied Corollary 4.2. (i), (ii), (iii) gives a bound for d; as

d <O (k}pﬂ exp(—72/4) + k+/log k73 /Rmm) Dy (29)

Now combining (28) and (29) we get the bound for Ey < ¢.D,,, with the choice of 7 = O(y/log(kp,)) and high
SNR Q(k).

Bounding E5, the term from mismatch in mixing weights. When j =1,

Ay =—wi(l—wi)d/m5 + Zwlw;‘él/ﬂ'l < |lwi (1l —wi)+ Zwl w'| Dy = 2w (1 — w}) Dy,
1#1 1£1

Hence, Ey < Dy Ep, [(1—wi)|[(X, s)(Y — (X, 57))|]. Again, we have already seen similar equation when we handle
D,, > 1. Following the procedure to derive equation (11), E5 can be bounded by

O (kpﬂ' eXp -7 /4 k V 1og T/RTﬂZTL + k V ]‘Og D’H'L/le’n) mo

which the same choice of parameters 7 = ©(y/log(kp,)) gives Ey < 3Dy, with the SNR condition Q(k).

Summing up everything, for j # 1 we have B; < O(D,,/(kp=)), and for j = 1 we have B; < O(D,). Thus,
B <aiBi+ 3, 7 Bj < cgDmny for some constant ¢ € (0,1/8) by properly setting constants in the proof.
That is ||8; — Bf]| < e D}

Update for mixing weights. The procedure is exactly same for proving the bound for ||8] — Bi||. Tt is
actually easier since it does not involve additional terms (X, s) and Y — (X, 7) as can be seen in (12). Thus we

can follow the exact same procedure, getting |7 — 7f|/7% < cgDp.

Proof of Lemma D.1
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Proof. 1f j # 1, we define a new event with new parameter 7,

i ={(X, A)| < Dm0 {le] < 7}
Eay = {I(X,B; — BI")| = 4n}.

Under event &£, we can show that
[wi' (X, (B = B + )’ 1e, , < (pjrexp(=677)4m) 1e, e, + (0]'4m)*Lg, e -
Now we can bound (26) as

Ep, [(wi)*(X, (8] — B + €))*(X, Ar)?]
< Ep, [16p; exp(—1277) 77 (X, A))*1g, e,

+En, (160w (X, A)*Te, e, |
+Ep, [(wf)?(X, (8] - B + )X, A1 ).

We do similarly bound each term:

Ep, [16 exp(—1277)77 (X, Ai)*1g, ine, ] < crpjiexp(=1277 )71 | A2,

Eo, [16(wf)*7 (X, A)*Le, snes, | < 167, [(wi')2(X, A 1e |
< 167°Ep, [(X,A))?|E5,] P(Es))

< e | AP /Ry,

En, [[(w)?(X, (5 — B +)*(X, A |
< Ep, [2<X75* = BHX, A Leg } +Ep, [262<X, A))*lep }

< 2\/En, [(X,5; — B4 (X, A)4]\[P(E5 ) + 2\ [En, [e4(X, A4, [P(Ef )
< e3(R5)? | Alf? exp(—77/2) + eal| A]|? exp(—77/2).

Set 7, = O(y/log(R};px)). Then every terms will be canceled out and we get
(26) < O(flAr).

If I = j, then

Ep, [(wi)*(X, (8] — B + €))*(X, A)?]
< Ep, [477(X, A;)*1¢, ]

+Ep, [((X, &) + 0)X(X, A)?1g, |
Each term is easy to bound.
Ep, [477(X, A))?1¢, ] < O(r7DZ,).
Ep, [(<X, A + €)X, Al>2115il} < Ep, [2<X, A+ 262 (X, ) Lgg ]

<2\/IED (X, A)8 \/P £¢,) +2\/ED 40X, A \/P £,
< O((|A* + AP VE exp(—17/4)).

We set 71 = O(y/log k) and get
(26) < O([|A]* log k).
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