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Supplementary material for ” A Lyapunov analysis for accelerated
gradient methods: from deterministic to stochastic case”

A Abstract Lyapunov analysis

A.1 Proof of Lemma 2.6

By (8) and using (FEP) and (7), we have
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which concludes the proof.

A.2 Proof of Proposition 2.7

The proof of Proposition 2.7 can be done by induction
and is an adaptation of the one of Oberman and Praz-
eres [2019]. Indeed, the initialization, k = 0, of Fj is
trivial and for all £ > 1, from (12), we have
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and by definition of hx, «, and using the induction
assumption,
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which concludes the proof.
A.3 Proof of Proposition 2.8
First, since t; = Zle & (to = ho = 0), we need
a < 1. Summing (14) over from 0 to k — 1, we obrain
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Now we want to prove that E[E(tx, z)] is bounded.
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Then, In addition, by (15),
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which concludes the proof.
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So now, we have two cases: B.1 Proof of Proposition 3.1
e Case ai,a9,b;y > 0, azg = by = 0: In that case, we e In the convex case, we first start to look for (7):
have shown that
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by convexity, which gives rgc = 0 and ag. = t.
Now, by 1l-convexity of the quadratic term and
L-smoothness of f,
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since, by (16),
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e In the strongly convex case,
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1. Concerning (8), since E*¢ is time independent,
(8) is equivalent to L-smoothness condition which
gives Lgse = L + p.

C Accelerated rate: convex case

C.1 ODE and derivation of Nesterov’s
method

Derivation of (H-ODE)
of (1st-ODE)

Solve for v in the first line

t, .
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S -

differentiate to obtain
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Insert into the second line of (1st-ODE)
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Simplify to obtain (H-ODE).
Proof of Proposition 4.2 The system (FE-C) with
a constant time step hy = % gives t, = h(k +2) =

k+2

ia and

=52V f(yr)

Eliminate the variable vy using the definition of ;. in
(FE-C) to obtain (C-Nest).

{$k+1 — Tk = ﬁ(vk — k) — —Vf(yk)
k
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C.2 Lyapunov analysis for (1st-ODE)

Proposition C.1. Suppose f is conver and L-smooth.
Let z,v be solutions of (1st-ODE) and let E*¢ be
given by (22). Then E®“° is a continuous Lyapunov

function with rgac.e = 0 and agac.c = \t/—% (with gap
2|V f(z)]?) i.e.
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Corollary C.2. Let f be a convex and L-smooth func-
tion. Let (z(t),v(t)) be a solution to (1st-ODE), then
for allt >0,
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Proof of Proposition C.1. First, by definition of F*%¢
we have
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The proof is concluded by convexity,
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C.3 Classical inequality in the perturbed
case

Before proving Proposition 4.4, using the convexity
and the L-smoothness of f, we prove a gneralization
of the classical inequality obtained in Attouch et al.
[2016] or Su et al. [2014] in the case e, = 0:
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The proof is a perturbed version of the one in Beck
and Teboulle [2009], Su et al. [2014], Attouch et al.
[2016]. First we prove the following inequality:

Lemma C.3. Assume f is a convexr, L-soothness
function. For all x,y,z, [ satisfies
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Proof. By L-smoothness,
L 2
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We conclude the proof comibning these two inequali-
ties. U
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If we apply (31) also at (z,y,2) = (2*, Yk, Tp4+1) We
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Summing ( - %)(32) and %(33), we have
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which concludes the proof.
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C.4 Proof of Proposition 4.4
By defintion of vgy1, we have

g1 — x> — 2o, — z*|?
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Therefore, combining it with (30) from Appendix C.3,
we obtain
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and (24) is proved.

D Accelerated rate: strongly convex
case

D.1 ODE and derivation of Nesterov’s

method
Equivalence  between  (1st-ODE-SC) and
(H-ODE-SC) Solve for v in the first line of
(1st-ODE-SC)
i+ V() +
=—(@F+—=Vi(z x
N AN

differentiate to obtain

b= (4 = D?f(x) - &) + &
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Insert into the second line of (1st-ODE-SC)
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VL
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Simplify to obtain (H-ODE-SC).
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Proof of Proposition 5.3
1/v/L becomes

(FE-SC) with hy =

/C -1

Tht1 — Tk = 1Jr\/%(vk —xp) — %Vf(yk)
/C -1

Vk+1 — Uk = ﬁ(zk Uk) \/%va(yk)

Eliminate the variable v using the definition of y; to
obtain (SC-Nest).

D.2 Lyapunov analysis

n the next proposition, we show that F*“¢ is a rate-
generating Lyapunov function, in the sense of Defi-
nition 2.3, for system (1st-ODE-SC) and its explicit
discretization (FE-SC).

Proposition D.1. Suppose f is u-strongly conver and
L-smooth. Let (x,v) be a solution of (1st-ODE-SC)
and (x,vi) be a sequences generated by (FE-SC). Let
E®*®5¢ be given by (27). Then E*%¢ is a continuous
Lyapunov function with rgac.se = /i and agacse =

% i.e.
d
— gac.sc
9 grese(a,v)
ac,sc 1 M M
< — VB a0) = V@)~ B = af
(34)

Then we retrieve the usual optimal rates in the con-
tinuous and discrete cases.

Corollary D.2. Let f be a p-strongly conver and
L-smooth function. Let (z(t),v(t)) be a solution to
(1st-ODE), then for all t > 0,

Fe(®) =+ 5 o) =" [ < exp(—y/fit) E** (w0, vo).

The proof of Corollary D.2 results immedialtly from
Proposition D.1 and then, we focus on the proof of
(34) in the following.
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Proof of (34). Using (1st-ODE-SC), we obtain
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which establishes (34). d
D.3 Proof of Proposition 5.5

First, arguing as in Proposition D.1,
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Summing these two inequalities,
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