Supplementary material for "A Lyapunov analysis for accelerated gradient methods: from deterministic to stochastic case"

A Abstract Lyapunov analysis

A.1 Proof of Lemma 2.6

By (8) and using (FEP) and (7), we have

$$\begin{split} E(t_{k+1}, z_{k+1}) - E(t_k, z_k) \\ &\leq \partial_t E(t_k, z_k)(t_{k+1} - t_k) \\ &+ \langle \nabla E(t_k, z_k), z_{k+1} - z_k \rangle + \frac{L_E}{2} |z_{k+1} - z_k|^2 \\ &\leq h_k \Big(\partial_t E(t_k, z_k) \\ &+ \langle \nabla E(t_k, z_k), g(t_k, z_k, \nabla f(z_k)) \rangle \Big) \\ &+ h_k \langle \nabla E(t_k, z_k), g_2(t_k, z_k) e_k \rangle \\ &+ \frac{L_E h_k^2}{2} |g(t_k, z_k, \nabla f(z_k) + e_k)|^2 \\ &\leq -h_k r_E E(t_k, z_k) \\ &- h_k a_E |g(t_k, z_k, \nabla f(z_k))|^2 \\ &+ h_k \langle \nabla E(t_k, z_k), g_2(t_k, z_k) e_k \rangle \\ &+ \frac{L_E h_k^2}{2} |g(t_k, z_k, \nabla f(z_k) + e_k)|^2 \\ &\leq -h_k r_E E(t_k, z_k) \\ &- h_k \left(a_E - \frac{L_E h_k}{2} \right) |g(t_k, z_k, \nabla f(z_k))|^2 \\ &+ h_k \langle \nabla E(t_k, z_k), g_2(t_k, z_k) e_k \rangle \\ &+ L_E h_k^2 \langle g(t_k, z_k, \nabla f(z_k)), g_2(t_k, z_k) e_k \rangle \\ &+ \frac{L_E h_k^2}{2} |g_2(t_k, z_k) e_k|^2, \end{split}$$

which concludes the proof.

A.2 Proof of Proposition 2.7

The proof of Proposition 2.7 can be done by induction and is an adaptation of the one of Oberman and Prazeres [2019]. Indeed, the initialization, k = 0, of E_k is trivial and for all $k \ge 1$, from (12), we have

$$\mathbb{E}[E(t_{k+1}, z_{k+1})] \le (1 - h_k r_E) E(t_k, z_k) + \frac{h_k^2 L_E g_2(t_k, z_k)^2 \sigma^2}{2}$$

and by definition of h_k , α , and using the induction assumption,

$$\mathbb{E}[E(t_{k+1}, z_{k+1})] \leq \left(1 - \frac{2}{k + \alpha^{-1}E_0^{-1}}\right) \frac{1}{\alpha(k + \alpha^{-1}E_0^{-1})} + \frac{1}{\alpha(k + \alpha^{-1}E_0^{-1})^2} \\ \leq \frac{1}{\alpha(k + \alpha^{-1}E_0^{-1})} - \frac{1}{\alpha(k + \alpha^{-1}E_0^{-1})^2} \\ \leq \frac{1}{\alpha(k + \alpha^{-1}E_0^{-1})^2}$$

which concludes the proof.

A.3 Proof of Proposition 2.8

First, since $t_k = \sum_{i=1}^k \frac{c}{i^{\alpha}}$ $(t_0 = h_0 = 0)$, we need $\alpha < 1$. Summing (14) over from 0 to k-1, we obtain

$$\mathbb{E}[E(t_k, x_k)] \le E_0 + \frac{\sigma^2}{2} \sum_{i=1}^{k-1} h_i^2 (a_1 + a_2 t_i + a_3 t_i^2).$$

Now we want to prove that $\mathbb{E}[E(t_k, x_k)]$ is bounded.

• Term $\frac{a_1\sigma^2}{2}\sum_{i=1}^{k-1}h_i^2$: By comparison seriesintegral, we have

$$\sum_{i=1}^{k-1} \frac{c^2}{i^{2\alpha}} \leq c^2 \left(1 + \int_1^k \frac{1}{t^{2\alpha}} dt \right)$$

$$\leq c^2 \left(1 + \left[\frac{t^{1-2\alpha}}{1-2\alpha} \right]_1^k \right)$$

$$\leq \frac{2\alpha c^2}{2\alpha - 1},$$

if $\alpha > \frac{1}{2}$.

Then,

$$\frac{a_1 \sigma^2}{2} \sum_{i=1}^{k-1} h_i^2 \le \frac{c^2 \alpha a_1 \sigma^2}{2\alpha - 1}.$$

• Term $\frac{a_2\sigma^2}{2}\sum_{i=1}^{k-1}h_i^2t_i$: First, we have

$$t_i = \sum_{j=1}^i \frac{c}{j^{\alpha}} \le \int_0^i \frac{c}{t^{\alpha}} dt = \frac{ci^{1-\alpha}}{1-\alpha}.$$

Then,

$$\begin{split} \sum_{i=1}^{k-1} h_i^2 t_i & \leq & \frac{c^3}{1-\alpha} \sum_{i=1}^{k-1} \frac{1}{i^{3\alpha-1}} \\ & \leq & \frac{c^3}{1-\alpha} \left(1 + \frac{1}{3\alpha-2} \right) \\ & = & \frac{c^3 (3\alpha-1)}{(1-\alpha)(3\alpha-2)}, \end{split}$$

if $\alpha > \frac{2}{3}$. Now, if $\alpha > \frac{2}{3}$. Now, if $\alpha = \frac{2}{3}$,

$$\sum_{i=1}^{k-1} h_i^2 t_i \leq 3c^3 \sum_{i=1}^{k-1} \frac{1}{i}$$

$$\leq \frac{c^3}{1-\alpha} (1 + \log(k)).$$

Then, we have

$$\frac{a_2\sigma^2}{2}\sum_{i=1}^{k-1}h_i^2t_i \leq \begin{cases} \frac{c^3(3\alpha-1)a_2\sigma^2}{2(1-\alpha)(3\alpha-2)}, & \alpha > \frac{2}{3} \\ \frac{3c^3a_2\sigma^2}{2}(1+\log(k)), & \alpha = \frac{2}{3}. \end{cases}$$

• Term $\frac{a_3\sigma^2}{2} \sum_{i=1}^{k-1} h_i^2 t_i^2$:

$$t_i^2 = \left(\sum_{j=1}^i \frac{c}{j^{\alpha}}\right)^2 \le \frac{c^2 i^{2-2\alpha}}{(1-\alpha)^2}.$$

Then,

$$\begin{split} \sum_{i=1}^{k-1} h_i^2 t_i^2 & \leq & \frac{c^4}{(1-\alpha)^2} \sum_{i=1}^{k-1} \frac{1}{i^{4\alpha - 2}} \\ & \leq & \frac{c^4}{(1-\alpha)^2} \left(1 + \frac{1}{4\alpha - 3} \right) \\ & = & \frac{c^4 (4\alpha - 2)}{(1-\alpha)^2 (4\alpha - 3)}, \end{split}$$

if $\alpha > \frac{3}{4}$, and, if $\alpha = \frac{3}{4}$,

$$\sum_{i=1}^{k-1} h_i^2 t_i^2 \leq 16c^4 \sum_{i=1}^{k-1} \frac{1}{i}$$

$$\leq 16c^4 (1 + \log(k)).$$

Then, we have

$$\frac{a_3\sigma^2}{2}\sum_{i=1}^{k-1}h_i^2t_i^2 \leq \left\{\begin{array}{ll} \frac{a_3c^4(4\alpha-2)\sigma^2}{2(1-\alpha)^2(4\alpha-3)}, & \alpha > \frac{3}{4} \\ \frac{16c^4a_3\sigma^2}{2}(1+\log(k)), & \alpha = \frac{3}{4}. \end{array}\right.$$

So now, we have two cases:

• Case $a_1, a_2, b_1 > 0$, $a_3 = b_2 = 0$: In that case, we have shown that

$$\mathbb{E}[E(t_k, x_k)] \le E_0 + \begin{cases} \frac{c^2 \alpha a_1 \sigma^2}{2\alpha - 1} + \frac{c^3 (3\alpha - 1)a_2 \sigma^2}{2(1 - \alpha)(3\alpha - 2)}, & \alpha > \frac{2}{3} \\ 2c^2 a_1 \sigma^2 + \frac{3c^3 a_2 \sigma^2}{2} (1 + \log(k)), & \alpha = \frac{2}{3}. \end{cases}$$

In addition, by (15),

$$\mathbb{E}[E(t_k, x_k)] \ge b_1 t_k (\mathbb{E}[f(x_k)] - f^*),$$

combine with

$$t_k \ge \frac{c}{1-\alpha} (k^{1-\alpha} - 1),$$

we obtain

$$\mathbb{E}[f(x_k)] - f^* \\ \leq \begin{cases} \frac{\frac{1-\alpha}{c}E_0 + \left(\frac{a_1c(1-\alpha)\alpha}{2\alpha-1} + \frac{a_2c^2(3\alpha-1)}{2(3\alpha-2)}\right)\sigma^2}{b_1(k^{1-\alpha}-1)}, & \alpha \in \left(\frac{2}{3},1\right) \\ \frac{\frac{1}{3c}E_0 + \left(\frac{2a_1c}{3} + \frac{a_2c^2}{2}(1+\log(k))\right)\sigma^2}{b_1(k^{1/3}-1)}, & \alpha = \frac{2}{3}. \end{cases}$$

• Case $a_1 = a_2 = b_1 = 0$, $a_3 > 0$, $b_2 > 0$: In that case, we have shown that

$$\mathbb{E}[E(t_k, x_k)] \le E_0 + \begin{cases} \frac{a_3 c^4 (4\alpha - 2)\sigma^2}{2(1-\alpha)^2 (4\alpha - 3)}, & \alpha > \frac{3}{4} \\ \frac{16c^4 a_3 \sigma^2}{2} (1 + \log(k)), & \alpha = \frac{3}{4}. \end{cases}$$

By (15),

$$\mathbb{E}[E(t_k, x_k)] \ge b_2 t_k^2 (\mathbb{E}[f(x_k)] - f^*),$$

combine with

$$t_k^2 \ge \frac{c^2}{(1-\alpha)^2} (k^{1-\alpha} - 1)^2,$$

we obtain

$$\mathbb{E}[f(x_k)] - f^* \\ \leq \begin{cases} \frac{\frac{(1-\alpha)^2}{c^2} E_0 + \frac{a_3 c^2 (4\alpha - 2)\sigma^2}{2(4\alpha - 3)}}{b_2 (k^{1-\alpha} - 1)^2}, & \alpha \in \left(\frac{3}{4}, 1\right) \\ \frac{\frac{1}{16c^2} E_0 + \frac{a_3 c^2 \sigma^2}{2} (1 + \log(k))}{b_2 (k^{1/4} - 1)^2}, & \alpha = \frac{3}{4}, \end{cases}$$

which concludes the proof.

B Gradient descent

B.1 Proof of Proposition 3.1

• In the convex case, we first start to look for (7):

$$\partial_t E^c(t,z) - \nabla E^c(t,z) \nabla f(z)$$

$$= f(z) - f^* - \langle t \nabla f(z) + z - x^*, \nabla f(z) \rangle$$

$$= f(z) - f^* - \langle z - x^*, \nabla f(z) \rangle - t |\nabla f(z)|^2$$

$$< -t |\nabla f(z)|^2,$$

by convexity, which gives $r_{E^c} = 0$ and $a_{E^c} = t$. Now, by 1-convexity of the quadratic term and L-smoothness of f,

$$E^{c}(t_{k+1}, z_{k+1}) - E^{c}(t_{k}, z_{k})$$

$$\leq t_{k+1}(f(z_{k}) - f^{*} + \langle \nabla f(z_{k}), z_{k+1} - z_{k} \rangle$$

$$+ \frac{L}{2}|z_{k+1} - z_{k}|^{2}) - t_{k}(f(z_{k}) - f^{*}) \qquad \text{Si}$$

$$+ \frac{1}{2}|z_{k+1} - x^{*}|^{2} - \frac{1}{2}|z_{k} - x^{*}|^{2} \qquad \mathbf{P}$$

$$\leq \langle t_{k}\nabla f(z_{k}) + z_{k} - x^{*}, z_{k+1} - z_{k} \rangle \qquad \frac{k}{\sqrt{2}}$$

$$+ \frac{Lt_{k+1} + 1}{2}|z_{k+1} - z_{k}|^{2}$$

$$+ (t_{k+1} - t_{k})\langle f(z_{k}) - f^{*}\rangle$$

$$+ (t_{k+1} - t_{k})\langle \nabla f(z_{k}), z_{k+1} - z_{k} \rangle$$

$$\leq (t_{k+1} - t_{k})\partial_{t}E^{c}(t_{k}, z_{k}) \qquad \text{E}$$

$$+ \langle \nabla E^{c}(t_{k}, z_{k}), z_{k+1} - z_{k} \rangle$$

$$+ \frac{Lt_{k+1} + 1}{2}|z_{k+1} - z_{k}|^{2}, \qquad \text{C}$$

since, by (16),

$$(t_{k+1} - t_k) \langle \nabla f(z_k), z_{k+1} - z_k \rangle \le 0.$$

Then $L_{E^c} = Lt_{k+1} + 1$.

• In the strongly convex case,

$$\begin{split} \partial_t E^{sc}(z) - \nabla E^{sc}(z) \nabla f(z) \\ &= -\langle \nabla f(z) + \mu(z - x^*), \nabla f(z) \rangle \\ &= -\mu \langle z - x^*, \nabla f(z) \rangle - |\nabla f(z)|^2 \\ &\leq -\mu \left(f(z) - f^* - \frac{\mu}{2} |z - x^*|^2 \right) \\ &- |\nabla f(z)|^2, \end{split}$$

by strong convexity and then $r_{E^{sc}} = \mu$ and $a_{E^{sc}} = 1$. Concerning (8), since E^{sc} is time independent, (8) is equivalent to L-smoothness condition which gives $L_{E^{sc}} = L + \mu$.

C Accelerated rate: convex case

C.1 ODE and derivation of Nesterov's method

Derivation of (H-ODE) Solve for v in the first line of (1st-ODE)

$$v = \frac{t}{2}(\dot{x} + \frac{1}{\sqrt{L}}\nabla f(x)) + x$$

differentiate to obtain

$$\dot{v} = \frac{1}{2}(\dot{x} + \frac{1}{\sqrt{L}}\nabla f(x)) + \frac{t}{2}(\ddot{x} + \frac{1}{\sqrt{L}}D^2f(x)\cdot\dot{x}) + \dot{x}.$$

Insert into the second line of (1st-ODE)

$$\frac{1}{2}(\dot{x} + \frac{1}{\sqrt{L}}\nabla f(x)) + \frac{t}{2}(\ddot{x} + \frac{1}{\sqrt{L}}D^2f(x)\cdot\dot{x}) + \dot{x}$$

$$= -\frac{t}{2}\nabla f(x).$$

Simplify to obtain (H-ODE).

Proof of Proposition 4.2 The system (FE-C) with a constant time step $h_k = \frac{1}{\sqrt{L}}$ gives $t_k = h(k+2) = \frac{k+2}{\sqrt{L}}$ and

$$\begin{cases} x_{k+1} - x_k &= \frac{2}{k+2} (v_k - x_k) - \frac{1}{L} \nabla f(y_k) \\ v_{k+1} - v_k &= -\frac{k+2}{2L} \nabla f(y_k) \end{cases}$$

Eliminate the variable v_k using the definition of y_k in (FE-C) to obtain (C-Nest).

C.2 Lyapunov analysis for (1st-ODE)

Proposition C.1. Suppose f is convex and L-smooth. Let x, v be solutions of (1st-ODE) and let $E^{ac,c}$ be given by (22). Then $E^{ac,c}$ is a continuous Lyapunov function with $r_{E^{ac,c}} = 0$ and $a_{E^{ac,c}} = \frac{t^2}{\sqrt{L}}$ (with gap $t^2 |\nabla f(x)|^2$) i.e.

$$\frac{d}{dt}E^{ac,c}(t,x(t),v(t);0) \le -\frac{t^2}{\sqrt{L}}|\nabla f(x)|^2.$$

Corollary C.2. Let f be a convex and L-smooth function. Let (x(t), v(t)) be a solution to (1st-ODE), then for all t > 0.

$$f(x(t)) - f^* \le \frac{2}{t^2} |v_0 - x^*|^2.$$

Proof of Proposition C.1. First, by definition of $E^{ac,c}$, we have

$$\begin{split} \frac{d}{dt}E^{ac,c}(t,x(t),v(t)) &\leq 2t(f(x)-f^*)+t^2\langle\nabla f(x),\dot{x}\rangle\\ &+4\langle v-x^*,\dot{v}\rangle\\ &\leq 2t(f(x)-f^*)+2t\langle\nabla f(x),v-x\rangle\\ &-\frac{t^2}{\sqrt{L}}|\nabla f(x)|^2\\ &-2t\langle v-x^*,\nabla f(x)\rangle\\ &\leq 2t(f(x)-f^*-\langle x-x^*,\nabla f(x)\rangle)\\ &-\frac{t^2}{\sqrt{L}}|\nabla f(x)|^2. \end{split}$$

The proof is concluded by convexity,

$$f(x) - f^* - \langle x - x^*, \nabla f(x) \rangle \le 0.$$

C.3 Classical inequality in the perturbed case

Before proving Proposition 4.4, using the convexity and the L-smoothness of f, we prove a gneralization of the classical inequality obtained in Attouch et al. [2016] or Su et al. [2014] in the case $e_k = 0$:

$$t_{k}^{2}(f(x_{k+1} - f^{*}) - t_{k-1}^{2}(f(x_{k} - f^{*})) \\ \leq -h^{2}(f(x_{k}) - f^{*}) \\ + 2ht_{k}\langle \nabla f(y_{k}), v_{k} - x^{*} \rangle \\ -\left(\frac{1}{\sqrt{L}} - \frac{h}{2}\right) ht_{k}^{2}|\nabla f(y_{k})|^{2} \\ -\frac{ht_{k}^{2}}{\sqrt{L}}\langle \nabla f(y_{k}), e_{k} \rangle \\ + h^{2}t_{k}^{2}\langle \nabla f(y_{k}) + \frac{e_{k}}{2}, e_{k} \rangle.$$
(30)

The proof is a perturbed version of the one in Beck and Teboulle [2009], Su et al. [2014], Attouch et al. [2016]. First we prove the following inequality:

Lemma C.3. Assume f is a convex, L-soothness function. For all x, y, z, f satisfies

$$f(z) \le f(x) + \langle \nabla f(y), z - x \rangle + \frac{L}{2} |z - y|^2. \tag{31}$$

Proof. By L-smoothness,

$$f(z) - f(x) \le f(y) - f(x) + \langle \nabla f(y), z - y \rangle + \frac{L}{2} |z - y|^2.$$

and since f is convex,

$$f(y) - f(x) \le \langle \nabla f(y), y - x \rangle.$$

We conclude the proof comibning these two inequalities. $\hfill\Box$

Now apply inequality (31) at $(x, y, z) = (x_k, y_k, x_{k+1})$:

$$f(x_{k+1})$$

$$\leq f(x_k) + \langle \nabla f(y_k), x_{k+1} - x_k \rangle + \frac{L}{2} |x_{k+1} - y_k|^2$$

$$\leq f(x_k) + \frac{2h}{t_k} \langle \nabla f(y_k), v_k - x_k \rangle - \frac{h}{\sqrt{L}} |\nabla f(y_k)|^2$$

$$- \frac{h}{\sqrt{L}} \langle \nabla f(y_k), e_k \rangle + \frac{h^2}{2} |\nabla f(y_k) + e_k|^2,$$

and then

$$f(x_{k+1})$$

$$\leq f(x_k) + \frac{2h}{t_k} \langle \nabla f(y_k), v_k - x_k \rangle - \left(\frac{1}{\sqrt{L}} - \frac{h}{2}\right) h |\nabla f(y_k)|^2$$

$$- \frac{h}{\sqrt{L}} \langle \nabla f(y_k), e_k \rangle + h^2 \left\langle \nabla f(y_k) + \frac{e_k}{2}, e_k \right\rangle. \quad (32)$$

If we apply (31) also at $(x, y, z) = (x^*, y_k, x_{k+1})$ we obtain

$$f(x_{k+1})$$

$$\leq f^* + \langle \nabla f(y_k), x_{k+1} - x^* \rangle + \frac{L}{2} |x_{k+1} - y_k|^2$$

$$\leq f^* + \langle \nabla f(y_k), y_k - x^* \rangle - \frac{h}{\sqrt{L}} |\nabla f(y_k)|^2$$

$$- \frac{h}{\sqrt{L}} \langle \nabla f(y_k), e_k \rangle + \frac{h^2}{2} |\nabla f(y_k) + e_k|^2$$

then,

$$f(x_{k+1})$$

$$\leq f^* + \langle \nabla f(y_k), y_k - x^* \rangle - \left(\frac{1}{\sqrt{L}} - \frac{h}{2}\right) h |\nabla f(y_k)|^2$$

$$- \frac{h}{\sqrt{L}} \langle \nabla f(y_k), e_k \rangle + h^2 \left\langle \nabla f(y_k) + \frac{e_k}{2}, e_k \right\rangle. \quad (33)$$

Summing $\left(1 - \frac{2h}{t_k}\right)(32)$ and $\frac{2h}{t_k}(33)$, we have

$$f(x_{k+1}) - f^* \le \left(1 - \frac{2h}{t_k}\right) (f(x_k) - f^*)$$

$$+ \frac{2h}{t_k} \langle \nabla f(y_k), v_k - x^* \rangle$$

$$- \left(\frac{1}{\sqrt{L}} - \frac{h}{2}\right) h |\nabla f(y_k)|^2$$

$$- \frac{h}{\sqrt{L}} \langle \nabla f(y_k), e_k \rangle$$

$$+ h^2 \left\langle \nabla f(y_k) + \frac{e_k}{2}, e_k \right\rangle.$$

Then,

$$t_k^2(f(x_{k+1}) - f^*) \leq (t_k - 2h) t_k(f(x_k) - f^*)$$

$$+ 2ht_k \langle \nabla f(y_k), v_k - x^* \rangle$$

$$- \left(\frac{1}{\sqrt{L}} - \frac{h}{2}\right) ht_k^2 |\nabla f(y_k)|^2$$

$$- \frac{ht_k^2}{\sqrt{L}} \langle \nabla f(y_k), e_k \rangle$$

$$+ h^2 t_k^2 \left\langle \nabla f(y_k) + \frac{e_k}{2}, e_k \right\rangle$$

$$\leq (t_{k-1}^2 - h^2) (f(x_k) - f^*)$$

$$+ 2ht_k \langle \nabla f(y_k), v_k - x^* \rangle$$

$$- \left(\frac{1}{\sqrt{L}} - \frac{h}{2}\right) ht_k^2 |\nabla f(y_k)|^2$$

$$- \frac{ht_k^2}{\sqrt{L}} \langle \nabla f(y_k), e_k \rangle$$

$$+ h^2 t_k^2 \left\langle \nabla f(y_k) + \frac{e_k}{2}, e_k \right\rangle,$$

which concludes the proof.

C.4 Proof of Proposition 4.4

By defintion of v_{k+1} , we have

$$\begin{split} 2|v_{k+1} - x^*|^2 - 2|v_k - x^*|^2 \\ &= -2ht_k \langle v_k - x^*, \nabla f(y_k) + e_k \rangle \\ &+ \frac{h^2 t_k^2}{2} |\nabla f(y_k) + e_k|^2 \\ &= -2ht_k \langle v_k - x^*, \nabla f(y_k) + \frac{h^2 t_k^2}{2} |\nabla f(y_k)|^2 \\ &- 2ht_k \langle v_k - x^*, e_k \rangle \\ &+ h^2 t_k^2 \left\langle \nabla f(y_k) + \frac{e_k}{2}, e_k \right\rangle. \end{split}$$

Therefore, combining it with (30) from Appendix C.3, we obtain

$$\begin{split} E_{k+1}^{ac,c} - E_k^{ac,c} &\leq -h^2(f(x_k) - f^*) \\ - \left(\frac{1}{\sqrt{L}} - h\right) h t_k^2 |\nabla f(y_k)|^2 \\ - 2h t_k \langle v_k - x^* - \frac{t_k}{\sqrt{L}} \nabla f(y_k), e_k \rangle \\ + 2h^2 t_k^2 \left\langle \nabla f(y_k) + \frac{e_k}{2}, e_k \right\rangle, \end{split}$$

and (24) is proved.

D Accelerated rate: strongly convex case

D.1 ODE and derivation of Nesterov's method

Equivalence between (1st-ODE-SC) and (H-ODE-SC) Solve for v in the first line of (1st-ODE-SC)

$$v = \frac{1}{\sqrt{\mu}}(\dot{x} + \frac{1}{\sqrt{L}}\nabla f(x)) + x$$

differentiate to obtain

$$\dot{v} = \frac{1}{\sqrt{\mu}} (\ddot{x} + \frac{1}{\sqrt{L}} D^2 f(x) \cdot \dot{x}) + \dot{x}.$$

Insert into the second line of (1st-ODE-SC)

$$\frac{1}{\sqrt{\mu}}(\ddot{x} + \frac{1}{\sqrt{L}}D^2 f(x) \cdot \dot{x}) + \dot{x}$$
$$= -\dot{x} - \left(\frac{1}{\sqrt{L}} + \frac{1}{\sqrt{\mu}}\right) \nabla f(x).$$

Simplify to obtain (H-ODE-SC).

Proof of Proposition 5.3 (FE-SC) with $h_k = 1/\sqrt{L}$ becomes

$$\begin{cases} x_{k+1} - x_k &= \frac{\sqrt{C_f^{-1}}}{1 + \sqrt{C_f^{-1}}} (v_k - x_k) - \frac{1}{L} \nabla f(y_k) \\ v_{k+1} - v_k &= \frac{\sqrt{C_f^{-1}}}{1 + \sqrt{C_f^{-1}}} (x_k - v_k) - \frac{1}{\sqrt{L\mu}} \nabla f(y_k) \end{cases}$$

Eliminate the variable v_k using the definition of y_k to obtain (SC-Nest).

D.2 Lyapunov analysis

n the next proposition, we show that $E^{ac,c}$ is a rategenerating Lyapunov function, in the sense of Definition 2.3, for system (1st-ODE-SC) and its explicit discretization (FE-SC).

Proposition D.1. Suppose f is μ -strongly convex and L-smooth. Let (x, v) be a solution of (1st-ODE-SC) and (x_k, v_k) be a sequences generated by (FE-SC). Let $E^{ac,sc}$ be given by (27). Then $E^{ac,sc}$ is a continuous Lyapunov function with $r_{E^{ac,sc}} = \sqrt{\mu}$ and $a_{E^{ac,sc}} = \frac{1}{\sqrt{L}}$ i.e.

$$\frac{d}{dt}E^{ac,sc}(x,v)$$

$$\leq -\sqrt{\mu}E^{ac,sc}(x,v) - \frac{1}{\sqrt{L}}|\nabla f(x)|^2 - \frac{\mu\sqrt{\mu}}{2}|v-x|^2.$$
(34)

Then we retrieve the usual optimal rates in the continuous and discrete cases.

Corollary D.2. Let f be a μ -strongly convex and L-smooth function. Let (x(t), v(t)) be a solution to (1st-ODE), then for all t > 0,

$$f(x(t)) - f^* + \frac{\mu}{2} |v(t) - x^*|^2 \le \exp(-\sqrt{\mu}t) E^{ac,sc}(x_0, v_0).$$

The proof of Corollary D.2 results immedialtly from Proposition D.1 and then, we focus on the proof of (34) in the following.

Proof of (34). Using (1st-ODE-SC), we obtain

$$\begin{split} \frac{d}{dt}E^{ac,sc}(x,v) &= \langle \nabla f(x),\dot{x}\rangle \\ &+ \sqrt{\mu}\langle v-x^*,\dot{v}\rangle \\ &= \sqrt{\mu}\langle \nabla f(x),v-x\rangle \\ &- \frac{1}{\sqrt{L}}|\nabla f(x)|^2 - \mu\sqrt{\mu}\langle v-x^*,v-x\rangle \\ &- \sqrt{\mu}\langle \nabla f(x),v-x^*\rangle \\ &= -\sqrt{\mu}\langle \nabla f(x),x-x^*\rangle \\ &- \frac{1}{\sqrt{L}}|\nabla f(x)|^2 \\ &- \frac{\mu\sqrt{\mu}}{2}\left[|v-x^*|^2 + |v-x|^2 - |x-x^*|^2\right]. \end{split}$$

By strong convexity, we have

$$\begin{split} \frac{d}{dt} E^{ac,sc}(x,v) & \leq -\sqrt{\mu} \left(f(x) - f^* + \frac{\mu}{2} |x - x^*|^2 \right) \\ & - \frac{1}{\sqrt{L}} |\nabla f(x)|^2 \\ & - \frac{\mu\sqrt{\mu}}{2} \left[|v - x^*|^2 + |v - x|^2 - |x - x^*|^2 \right] \\ & \leq -\sqrt{\mu} E^{ac,sc}(x,v) \\ & - \frac{1}{\sqrt{L}} |\nabla f(x)|^2 - \frac{\mu\sqrt{\mu}}{2} |v - x|^2. \end{split}$$

which establishes (34).

D.3 Proof of Proposition 5.5

First, arguing as in Proposition D.1,

$$f(x_{k+1}) - f(x_k) \le \langle \nabla f(y_k), y_k - x_k \rangle - \frac{\mu}{2} |y_k - x_k|^2$$

$$+ \left(\frac{h^2}{2} - \frac{h}{\sqrt{L}} \right) |\nabla f(y_k)|^2$$

$$- \frac{h}{\sqrt{L}} \langle \nabla f(y_k), e_k \rangle$$

$$+ h^2 \left\langle \nabla f(y_k) + \frac{e_k}{2}, e_k \right\rangle,$$

and.

$$\begin{split} \frac{\mu}{2} |v_{k+1} - x^*|^2 &- \frac{\mu}{2} |v_k - x^*|^2 \\ &\leq -h \sqrt{\mu} E_k^{ac,sc} \\ &+ (\sqrt{\mu} + Lh) \frac{\sqrt{\mu}}{2} |x_k - y_k|^2 + \frac{h^2}{2} |\nabla f(y_k)|^2 \\ &- h \sqrt{\mu} \langle v_k - x^* + x_k - y_k, e_k \rangle \\ &+ h^2 \left\langle \nabla f(y_k) + \frac{e_k}{2}, e_k \right\rangle. \end{split}$$

Summing these two inequalities,

$$E_{k+1}^{ac,sc} - E_k^{ac,sc} \le -h\sqrt{\mu}E_k^{ac,sc} + \left(h^2 - \frac{h}{\sqrt{L}}\right)|\nabla f(y_k)|^2$$

$$+ \left(\frac{h\sqrt{\mu}L}{2} - \frac{\sqrt{\mu}}{2h}\right)|x_k - y_k|^2$$

$$- h\sqrt{\mu}\langle x_k - y_k + v_k - x^*, e_k\rangle$$

$$+ \frac{h}{\sqrt{L}}\langle \nabla f(y_k), e_k\rangle + 2h^2 \left\langle \nabla f(y_k) + \frac{e_k}{2}, e_k \right\rangle.$$