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A PRELIMINARIES

Before providing the proof of the theorems, we introduce some regularity assumptions on the dose-toxicity model
as follows.

Assumption 1. There exist C1,s,k > 0, 1 < γ1,s,k , C2,s,k , and 0 < γ2,s,k ≤ 1 such that |ps,k(a) − ps,k(a′)| ≥
C1,s,k |a − a′ |γ1,s ,k and |ps,k(a) − ps,k(a′)| ≤ C2,s,k |a − a′ |γ2,s ,k for all s ∈ S, k ∈ K, and a, a′ ∈ A.

We then immediately have the following proposition.

Proposition 1. For ps,k(a), ∀s ∈ S,∀k ∈ K satisfying Assumption 1,

1. ps,k(a) is invertible;

2. For each s ∈ S, k ∈ K, and d, d ′ ∈ P, we have |p−1
s,k
(d) − p−1

s,k
(d ′)| ≤ C̄1,s,k |d − d ′ |γ̄1,s ,k , where ¯γ1,s,k =

1
γ1,s ,k

and

C̄1,s,k = C
− 1
γ1,s ,k

1,s,k
.

For notational simplicity, we denote C1,s = mink∈K C1,s,k , C2,s = maxk∈K C2,s,k , γ1,s = maxk∈K γ1,s,k , γ2,s =

mink∈K γ2,s,k , γ̄1,s = γ
−1
1,s, and C̄1,s = C−γ̄1,s

1,s .

B PROOF OF THEOREM 1

From the Hoeffding bound, the following upper bound of the probability is given:

P[â(t) − a∗s > αs(t) + ε] ≤ exp(−2Ns(t)(αs(t) + ε)2).

In addition, the difference between the MTD threshold and the expected toxicity is also bounded as

ps,I (t)(a∗s) − ζ ≤ ps,I (t)(a∗s) −ζ+ζ − ps,I (t)(a∗s − αs(t))

≤ C2,s |a∗s − âs(t) + αs(t)|γ2,s .

By rearranging the terms, we have

P

[∑Ns (T )
t=1 pn,I (N−1s (t))

(a∗s)

Ns(T)
− ζ < Cn,2ε

γn ,2

]
≥ 1 − exp(−2Ns(T)(αs(Ns(T)) + ε)2)

≥ 1 − δs .

C PROOF OF THEOREM 2

C.1 Case 1: k∗s , 0

We first bound the probability that the recommended dose error for subgroup s occurs with C3T-Budget if k∗s , 0.
The event that the recommended dose error occurs satisfies the following:{

k̂∗s , k∗s
}
⊆

{
ps,k∗s (âs(T)) > ζ

}
∪

{
q̄s,k∗s (T) < θ

}
∪

{
max
k∈Ks

q̄s,k(T) , k∗s

}
.

Thus, the probability of the recommended dose error for subgroup s can be bounded as

P
[
k̂∗s , k∗s

]
≤ P

[
ps,k∗s (âs(T)) > ζ

]
+ P

[
q̄s,k∗s (T) < θ

]
+ P

[
max
k∈Ks

q̄s,k(T) , k∗s

]
.



Then, we can bound the probability by obtaining the bound for each term.

Bound of First Term: The probability in the first term can be transformed and bounded as

P
[
âs(Ns(T)) < p−1s,k∗s (ζ)

]
≤ P

[
|a∗s − âs(Ns(T))| > ΓUs

]
≤

∑
k∈K

P

[��p̂s,k(Ns(T)) − ps,k(a∗s)
�� > (

ΓUs Ns(T)
Ns,k(T)C̄1,sK

)γ1,s
]

≤
∑
k∈K

2 exp

(
−2Ns,k(T)

(
ΓUs Ns(T)

Ns,k(T)C̄1,sK

)γ1,s
)

(1)

≤ 2K exp

(
−2

(
ΓUs

C̄1,sK

)γ1,s

Ns(T)
)
, (2)

where ΓUs = |a
∗
s − p−1

s,k
(ζ)|. The inequality in (1) follows from the Hoeffding’s inequality and the inequality in (2)

follows from the regularity assumption γ1,s > 1.

Bound of Second Term: From the Chernoff-Hoeffding’s inequality, we have

P
[
q̄s,k∗s (T) < θ

]
= P

[
q̄s,k∗s (T) < qs,k∗s − (qs,k∗s − θ)

]
≤ exp

(
−2Ns,k∗s (T)∆

2
s,θ

)
≤ exp

(
−

8

25

cNs(T)∆2
s,θ

∆2
s∗

)
, (3)

where ∆s∗ ,θ = |qs,k∗s − θ | and

∆s∗ =

{
9(mink∈K ,k,k∗s qs,k∗s − qs,k), if k∗s = maxk∈K {qs,k},
maxk∈K {qs,k} − qs,k∗s , otherwise.

The inequality in (3) follows from the lemmas in (Audibert et al., 2010).

Bound of Third Term: The bound of the third term can be obtained by following the proof of Theorem 1 in
(Audibert et al., 2010). The third term is bounded as

P

[
max
k∈Ks

q̄s,k , k∗s

]
≤ 2Ns(T)K exp

(
−

2cNs(T)
25

)
. (4)

Total Bound: From the bounds in (2), (3), and (4), we can bound the probability of the recommended dose
error for subgroup s as

P
[
k̂∗s , k∗s

]
≤ exp

(
−M(1a)Ns(T)

)
+ 2K

(
exp

(
−M(1b)Ns(T)

)
+ Ns(T) exp

(
−M(1c)Ns(T)

) )
,

where M(1a) = 8
25

c∆2
s ,θ

∆2
s∗

, M(1b) = 2
(
ΓUs

C̄1,sK

)γ1,s

, and M(1c) = 2c
25 .

C.2 Case 2: k∗s = 0

For the case with k∗s = 0, we can bound the probability of the recommended dose error for subgroup s similar to
Case 1. We have {

k̂∗s , 0
}
⊆

⋃
k∈K

{
ps,k(âs(T)) ≤ ζ

}
∪

⋃
k∈K

{
q̄s,k(T) ≥ θ

}
and

P
[
k̂∗s , 0

]
≤

∑
k∈K

P
[
ps,k(âs(T)) ≤ ζ

]
+

∑
k∈K

P
[
q̄s,k(T) ≥ θ

]
.

Similar to Case 1, we can bound the probability as

P
[
k̂∗s , 0

]
≤ K exp

(
−M(2a)Ns(T)

)
+ 2K2 exp

(
−M(2b)Ns(T)

)
,

where M(1a) = 8
25

c∆2
s∗θ

∆2
s∗

, M(1b) = 2
(
Γ̄Us

C̄1,sK

)γ1,s

, ∆̄s∗ ,θ = maxk∈K |θ − qs,k |, ∆s∗ = maxk∈K {qs,k} −mink∈K {qs,k}, and

Γ̄Us = maxk∈K ΓUs .



C.3 Recommended Dose Error Bound

Finally, we have the theorem with MR1 = max{1 + 2K + Ns(T),K + 2K2} and MR2 =

min{M(1a),M(1b),M(1c),M(2a),M(2b)}.

D Worst-Case Reget Bound For Total Efficacy of C3T-Budget-E

To evaluate C3T-Budget-E, we compare its performance to that of an algorithm with the complete knowledge of
qs,k ’s and ps,k ’s called an oracle algorithm. We denote the expected total cumulative efficacy achieved by the
oracle algorithm by E∗(T,B). Then, the regret of C3T-Budget-E is defined as

R(T,B) = E∗(T,B) − E(T,B), (5)

where E(T,B) is the expected total cumulative efficacy. Then, we provide the efficacy regret bound of C3T-Budget.

Theorem 1. Given a fixed ρ ∈ (0,1), the worst-case regret of C3T-Budget-E is bounded as

R(T,B) ≤ T δ̄∆̄ + q∗1
√
ρ(1 − ρ)T + ME log T +O(1),

where ME is a non-negative constant (provided in our supplementary material).

Proof. For the regret bound of C3T-Budget-E, we first define the optimal value of the LP problem that can be
obtained by solving the LP problem with q∗s ’s (see (3) in our main paper) as

v(ρ) =

s̃(ρ)∑
s=1

πsd∗s + ψs̃(ρ)+1(ρ)πs̃(ρ)+1d∗s̃(ρ)+1.

This optimal value v(ρ) can be considered the maximum expected reward in a single round with average budget
ρ. Thus, using v(ρ), we can bound the total expected cumulative efficacy of the oracle E∗(T,B) as the following
lemma.

Lemma 1. (Wu et al., 2015) If the time-horizon and budget are given by T and B, respectively, then we have
Ê(T,B) = Tv(ρ) ≥ E∗(T,B).

Then, the upper bound of the expected cumulative efficacy of the oracle E∗(T,B) as follows.

R(T,B) = E∗(T,B) − E(T,B)

≤ Ê(T,B) − E(T,B)

= Tv(ρ) −
∑
s∈S

∑
k∈K

qs,kE[Ns,k(T)].

From the regret using Ê(T,B), we can partition the regret according to the source of regret as follows:

R(T,B) = Tv(ρ) −
∑
s∈S

∑
k∈K

qs,kE[Ns,k(T)]

=
∑
s∈S

∑
k∈K

∆
(s)
s,k
E[Ns,k(T)] + Tv(ρ) −

∑
s∈S

q∗sE[Ns(T)]

=
∑
s∈S

∑
k∈K

∆
(s)
s,k
E[Ns,k(T)]︸                        ︷︷                        ︸

=R(1)(T ,B)

+

T∑
t=1

E

[
v(ρ) −

∑
s∈S

ψ̂s(ρ(t))πsq∗s

]
︸                                    ︷︷                                    ︸

=R(2)(T ,B)

.

Recall that ∆(s
′)

s,k
is the difference between the optimal expected efficacy of subgroup s′ and the expected efficacy

of subgroup s with dose k, ∆(s
′)

s,k
= qs′ − qs,k . The decomposed regret R(1) represents the regret due to taking

suboptimal doses and the other decomposed regret R(2) represents the regret due to ordering errors in subgroups. It
is worth noting that in R(2), it is supposed that the optimal doses are chosen. Finally, the regret of C3T-Budget-E
is bounded as

R(T,B) ≤ R(1)(T,B) + R(2)(T,B).

Then, we can bound the regret of C3T-Budget by obtaining the bound of each regret.



D.1 Bound of R(1)

We first bound the first part of the regret, R(1). In C3T-Budget-E, the set of candidate recommended doses is
constructed in each round and the dose is chosen among the doses in the set. Thus, taking the suboptimal doses
can occur due to not only the inaccurate estimation of the efficacy but also the inaccurate estimation of the
toxicity. To reflect this, we decompose the regret R(1) into two parts according to whether the optimal dose is
included in the set of the candidate doses or not as follows.

R(1)(T,B) =
T∑
t=1

∑
s∈S

I{H(t) = s}P[k∗s < Ks(t)]∆̄s︸                                         ︷︷                                         ︸
=R(1a)(T ,B)

+

T∑
t=1

∑
s∈S

I{H(t) = s}P[k∗s ∈ Ks(t)]Rs,2(t)︸                                               ︷︷                                               ︸
=R(1b)(T ,B)

,

where ∆̄s = maxk∈K ∆
(s)
s,k

.

Bound of R(1a)(T,B): We bound the regret R(1a). Since the event {k∗s < Ks(t)} can be bounded by {ps,k∗s (âs(t) −
αs(t)) > ζ } ∪ {q̂s,k∗s (t) < θ}, we can bound the regret R(1a) as

R(1a)(T,B) ≤
T∑
t=1

∑
s∈S

I{H(t) = s}
(
P[ps,k∗s (âs(t) − αs(t)) > ζ] + P[q̂s,k∗s (t) < θ]

)
∆̄s

=

T∑
t=1

∑
s∈S

I{H(t) = s}P[ps,k∗s (âs(t) − αs(t)) > ζ]∆̄s︸                                                           ︷︷                                                           ︸
=R(1a−1)(T ,B)

+

T∑
t=1

∑
s∈S

I{H(t) = s}P[q̂s,k∗s (t) < θ]∆̄s︸                                           ︷︷                                           ︸
=R(1a−2)(T ,B)

.

We first bound R(1a−1)(T,B). In the following lemma, we show that the safe dose for each subgroup (i.e., the
toxicities of the dose levels are below the MTD threshold) are included in the set of the candidate doses with
high probability.

Lemma 2. For each subgroup s, P[ps,k(âs(t) + αs(t)) > ζ] ≤ δs, for any ps,k(a∗s) ≤ ζ .

Proof. We have

P[âs(t) + αs(t) < a∗s] = P[a
∗
s − âs(t) > αs(t)]

≤
∑
k∈K

P

[
| p̂s,k(t) − ps,k(a∗s)| >

(
αs(t)Ns(t)

Ns,k(t)C̄s,1K

)γs ,1 ]
≤

∑
k∈K

2 exp

(
−2Ns,k(t)

(
αs(t)Ns(t)

Ns,k(t)C̄s,1K

)2γs ,1
)

(6)

≤ 2K exp

(
−

(
αs(t)
C̄s,1K

)2γs ,1

Ns(t)

)
= δs

The inequality in (6) follows from the Hoeffding’s inequality. �

From this lemma, the probability that the event {ps,k∗s (âs(t) − αs(t)) > ζ } occurs is bounded by δs since the set of
the candidate doses for subgroup s is constructed by {k ∈ K : ps,k(âs(t) + αs(t)) ≤ ζ } in C3T-Budget-E. Then, the
regret R(1a−1) can be simply bounded as

R(1a−1)(T,B) ≤
∑
s∈S

Ns(T)δs∆̄s

≤ T δ̄∆̄,

where δ̄ = maxs∈S δs and ∆̄ = maxs∈S ∆̄s.

We bound the regret R(1a−2)(T,B). For the minimum efficacy threshold, we have the following lemma.



Lemma 3. Let For each subgroup s, P[q̂s,k∗s (t) < θ] ≤ Ns(t)−2c.

Proof. We have

P[q̂s,k∗s (t) < θ] ≤ P

[
q̄s,k∗s (t) < qs,k∗s −

√
c log Ns(t)

Ns,k∗s (t)

]
≤ Ns(t)−2c

The first inequality follows from the fact qs,k∗s ≥ θ and the second inequality follows from the Chernoff-Hoeffding
inequality. �

Then, for c ≥ 1
2 , the regret R(1a−2)(T,B) is bounded as

T∑
t=1

∑
s∈S

I{H(t) = s}P[q̂s,k∗s (t) < θ]∆̄s ≤

T∑
t=1

∑
s∈S

I{H(t) = s}Ns(t)−2c∆̄s

≤ S
T∑
t=1

t−2c∆̄

≤ S log(T)∆̄ (7)

In summary, we have the bound of R(1a)(T,B) as following.

R(1a)(T,B) ≤ (T δ̄ + S log T)∆̄

Bound of R(1b)(T,B):We now bound the regret R(1b). In this case, the optimal dose is included in the set of the
candidate doses. Then, the error occurs when the suboptimal doses are chosen in the set due to the inaccurate
parameter estimation âs and the inaccurate efficacy estimation. To bound this, in the following lemma, we show
that the unsafe dose for each subgroup (i.e., the toxicities of the dose levels exceed the MTD threshold) are
excluded from the set of the candidate doses with high probability.

Lemma 4. Let Γs = mink∈K |a∗s − p−1
s,k
(ζ)| and

αs(t) = C̄s,1K

(
log 2K

δs

2Ns(t)

) γ̄s ,1
2

.

For each subgroup s, if Ns(t) ≥ t(1b)s = 1
2

(
C̄s ,1K
Γs−ε

)2γs ,1
log 2K

δs
, then we have P[ps,k(âs(t)+αs(t)) ≤ ζ] ≤ exp(−2Ns(t)ε2),

for any ps,k(a∗s) > ζ .

Proof. From the Hoeffding’s inequality, we have

αs(t) ≤ p−1s,k(ζ) − a∗s − ε = ∆s,k − ε,

where ∆s,k = |a∗s − p−1
s,k
(ζ)|. With the definition of αs(t), we can conclude the lemma. �

Let N−1s (τ) = mint {t : Ns(t) = τ} which represents the round index at which the τ-th patient of subgroup s arrives.
Then, we can bound the regret R(1b) as

R(1b) ≤
∑
s∈S

t(1b)s + (K −Us)

Ns (T )∑
t=1

exp(−2tε2) +

Ns (T )∑
t=ts+1

∑
k:ps ,k (a

∗
s )≤ζ

I{I(N−1s (t)) = k}


≤
∑
s∈S

t(1b)s +
K −Us

2ε2
+

∑
k:ps ,k (a

∗
s )≤ζ

c log T

∆
(s)
s,k


≤ t̄(1b) +

K −U
2ε2

+
∑
s∈S

∑
k:ps ,k (a

∗
s )≤ζ

c log T

∆
(s)
s,k

,



where t̄(1b) = maxs∈S t(1b)s and U = mins∈S Us.

Bound of R(1)(T,B): Finally, from the bounds of R(1a) and R(1b), we have the regret bound of R(1) as following:

R(1)(T,B) ≤ (T δ̄ + S log T)∆̄ +
∑
s∈S

∑
k:ps ,k (a

∗
s )≤ζ

c log T

∆
(s)
s,k

+O(1). (8)

D.2 Bound of R(2)

We now bound the second part of the regret, R(2). Recall that the regret R is decomposed into two parts: the
regret due to taking suboptimal doses R(1) and the regret due to ordering errors in subgroups R(2). Thus, in here,
we do not have to consider the suboptimal doses and consider the ordering errors only.

In Wu et al. (2015), the regret due to the ordering error is analyzed. Compared with the case that is analyzed, we
additionally consider the safety constraint. However, we can follow the analysis on the regret due to the ordering
error in Wu et al. (2015) for the bound of R(2) since the safety constraint reduces the ordering errors by excluding
the unsafe doses which is not the optimal doses. Thus, we can provide the regret bound of R(2) by using the
analysis.

Before providing the regret bound, we define some boundary cases according to ρ and ηs’s since the bound
depends on them. We first define a non-boundary case for a given fixed ρ ∈ (0,1) as a case in which ρ , ηs for any
s ∈ S, and define a boundary case for a given fixed ρ ∈ (0,1) as a case in which ρ = ηs for some s ∈ S. Then, by
applying the analysis on our algorithm, we have the regret bounds on the following lemma.

Lemma 5. (Wu et al., 2015) Given a fixed ρ ∈ (0,1), the regret R(2)(T,B) is bounded as follows:

(1) For the non-boundary case,

R(2)(T,B) ≤ [q̄∗ + v(ρ)]M (2)
nb

log T +O(1)

(2) For the boundary case,

R(2)(T,B) ≤ q∗1
√
ρ(1 − ρ)T + M (2)

b
log T +O(1)

where q̄∗ =
∑

s∈S πsq∗s,

M (2)
nb
=

s̃(ρ)∑
s=1

∑
k∈K

27

2gnb
s̃(ρ)+1

[
∆
(s)

s̃(ρ)+1,k

]2
+

S∑
s=s̃+2

∑
k∈K

27

2gnbs

[
∆
(s̃+1)
s,k

]2
+ 2SK,

M (2)
b
=

s̃(ρ)−1∑
s=1

∑
k∈K

27

2gb
s̃(ρ)

[
∆
(s)

s̃(ρ),k

]2
+

S∑
s=s̃+1

∑
k∈K

27

2gbs

[
∆
(s̃)
s,k

]2
+ 2SK,

gnbs = min

{
πs,

1

2
(ρ − ηs̃(ρ)),

1

2
(ηs̃(ρ)+1 − ρ)

}
,

and gbs = min

{
πs,

1

2
(ρ − ηs̃(ρ)−1),

1

2
(ηs̃(ρ)+1 − ρ)

}
.

D.3 Regret Bound of R(T,B)

Form Lemma 5, we can see that the boundary case has a worse bound O(
√

T log T) than the non-boundary case
O(log T). Hence, with (8) and Lemma 5, we have the worst-case regret bound of C3T-Budget-E in the theorem
with

M =
∑
s∈S

∑
k:ps ,k (a

∗
s )≤ζ

c

∆
(s)
s,k

+

s̃(ρ)−1∑
s=1

∑
k∈K

27

2gb
s̃(ρ)

[
∆
(s)

s̃(ρ),k

]2
+

S∑
s=s̃+1

∑
k∈K

27

2gbs

[
∆
(s̃)
s,k

]2
+ 2S(K + ∆̄),

and gbs = min

{
πs,

1

2
(ρ − ηs̃(ρ)−1),

1

2
(ηs̃(ρ)+1 − ρ)

}
.

�



E DESCRIPTION OF C3T-Budget-E

For C3T-Budget-E, we consider the following formulation:

maximize EΠ(T,B)

subject to P
[
SΠ,s(T,B) ≤ ζ

]
≥ 1 − δs, ∀s ∈ S∑T

t=1 Zt ≤ B.

where we have simply substituted the objective function DΠ(T,B) in the limited-budget C3T problem (See (2)
in our main paper) with EΠ(T,B). With this formulation, the agent tries to achieve high efficacies (rather than
low dose recommendation error), which results in focusing on subgroups with high efficacies. We now provide a
detailed description of C3T-Budget-E to solve the above problem.

Algorithm 1 C3T-Budget-E

1: Input: Time-horizon T , budget B, and subgroup arrival distributions πs’s
2: Initialize: τ = T , b = B, t = 1
3: while t ≤ T do

4: âs(t) ←
∑K

k=1 âs ,k (t−1)Ns ,k (t−1)

Ns (t−1)
,∀s ∈ S

5: Ks(t) = {k ∈ K : ps,k(âs(t) + αs(t)) ≤ ζ },∀s ∈ S
6: if b > 0 then
7: if NH(t)(t) ≤ K then
8: Sample each dose once I(t) = NH(t)(t)
9: else

10: k∗s(t) ← argmaxk∈Ks
q̂s,k(t),∀s ∈ S

11: q̂∗s(t) ← maxk∈Ks
q̂s,k(t),∀s ∈ S

12: Obtain ψ̂ (b/τ)’s by solving the LP problem (See (3) in our main paper) with ordered q̂∗s(t)’s

13: Allocate dose I(t)=
{

k∗
H(t)
(t), with probability ψ̂H(t)(b/τ),

0, otherwise.
14: end if
15: end if
16: Observe the efficacy Xt and toxicity Yt
17: Update τ, b, Ns(t), Ns,k(t), q̄s,k(t), p̄s,k(t)
18: âs,k(t) ← argmina |ps,I (t)(a) − p̄s,I (t)(t)|,∀s ∈ S,∀k ∈ K
19: t ← t + 1
20: end while

F DESCRIPTION OF BASELINE ALGORITHMS

To evaluate the performance of C3T-Budget and C3T-Budget-R, we implement the following baseline algorithms:

• Contextual UCB (C-UCB) (Auer et al., 2002; Varatharajah et al., 2018): C-UCB is an extended version
of a traditional UCB algorithm in Auer et al. (2002) for a contextual bandits. We implement it by running S
instances of the tradition UCB algorithm for each subgroup as introduced in Zhou (2015). In the algorithm,
the safety and budget constraints are not considered. The algorithm updates the empirical expected efficacy
of each dose for each subgroup and its confidence bound. It also updates the empirical toxicities, but they are
used only for the recommendation. In each round, the algorithm chooses the dose having the highest UCB
index for the subgroup arrived in the round. At the end of trial, it recommends a dose for each subgroup as:
d̄s = argmaxk:p̂s ,k ≤ζ ,q̄s ,k (t)≥θ q̄s,k , where p̂s,k and q̂s,k are the empirical expected toxicity and efficacy of dose
k for subgroup s.

• Contextual KL-UCB (C-KL-UCB) (Garivier and Cappé, 2011; Varatharajah et al., 2018): C-KL-UCB
is an extended version of a KL-UCB algorithm in Garivier and Cappé (2011) for a contextual bandits. Similar
to C-UCB, we implement it by using S instances of KL-UCB. The algorithm is same with C-UCB except for



using the KL-UCB index instead of the UCB index, which is given by

q̂s,k(t) = sup{q ≥ q̄s,k(t) : Ns,k(t − 1)I(q̄s,k),q) ≤ log Ns(t) + log log Ns(t)},

where I(p,q) = p log p
q + (1 − p) log 1−p

1−q is the Kullback-Leibler divergence.

• Contextual independent Thompson sampling (C-Indep-TS) (Aziz et al., 2019): C-Indep-TS is an
extended version of an Indep-TS algorithm in Aziz et al. (2019); Thompson (1933) for a contextual bandits.
Similar to other extended algorithms, we implement it by using S instances of Indep-TS. In Indep-TS, a
Bayesian approach is used to estimate the efficacy and toxicity as follows:

q̂s,k(t) ∼ Beta(α
q
s,k
(t), βq

s,k
(t)) and p̂s,k(t) ∼ Beta(α

p
s,k
(t), βp

s,k
(t)),

where α
q
s,k
(t) = Xs,k(t) + 1, β

q
s,k
(t) = Ns,k(t) − Xs,k(t) + 1, Xs,k(t) =

∑t
τ=1 I{H(τ) = s, I(τ) = k}X(τ), αp

s,k
(t) =

Ys,k(t) + 1, β
p
s,k
(t) = Ns,k(t) − Ys,k(t) + 1, and Ys,k(t) =

∑t
τ=1 I{H(τ) = s, I(τ) = k}Y (τ). In each round t, the

efficacy and toxicity for subgroup H(t) is realized based on the posterior distribution as above equation,
and then, the dose k that has the maximum realized efficacy q̂H(t),k is chosen. At the end of the trial, it
recommends a dose for each subgroup as: d̄s = argmaxk:p̂s ,k (t)≤ζ ,q̂s ,k (t)≥θ q̂s,k(t).

• Contextual 3+3 (C-3+3) (Storer, 1989): C-3+3 is an extended version of a 3+3 clinical trial design in
Storer (1989) for a contextual model. Similar to other extended algorithms, we implement it by using S
instances of 3+3 design. In 3+3 design, for each subgroup, the lowest dose is treated to 3 patients. Then,
it observes the toxicity of the patients. If the agent observes the toxicity from none of patients, then the
next dose is treated to another 3 patients. If the agent observes only one toxicity, the same dose is treated
to additional 3 patients. If the agent still observes only one toxicity among the 6 patients, then the next
dose is treated to another 3 patients. Otherwise, the trial is stopped and the dose treated before stopping is
recommended. If the instance of 3+3 design for a subgroup is stopped once, then the patients in the subgroup
are skipped.
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