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Abstract

Spectral algorithms operate on matrices or
tensors of word co-occurrence to learn latent
topics. These approaches remove the depen-
dence on the original documents and produce
substantial gains in efficiency with provable
inference, but at a cost: the models can no
longer infer any information about individ-
ual documents. Thresholded Linear Inverse
is developed to learn document-specific topic
compositions, but its linear characteristics
limit the inference quality without considering
any prior information on topic distributions.
We propose two novel estimation methods
that respect previously unclear prior struc-
tures of spectral topic models. Experiments
on a variety of synthetic to real collections
demonstrate that our Prior-Aware Dual De-
composition outperforms the baseline method,
whereas our Prior-Aware Manifold Iteration
performs even better on short realistic data.

1 Introduction

Mixed-membership models represent collections of dis-
crete objects in terms of topics and compositions
(Hofmann, 1999; Blei et al., 2003). The topics capture
underlying themes, common genres, and hidden com-
munities across the collections as distributions over the
objects (Lee et al., 2015; Liu et al., 2009), whereas
the compositions represent individual collections as dis-
tributions over topics, thus allowing users to retrieve
documents, playlists, and network snapshots relevant
to their topic queries (Blei and Lafferty, 2007; Steyvers
and Griffiths, 2008; Hall et al., 2008; Talley et al., 2011;
Goldstone and Underwood, 2014; Erlin, 2017). We use
the standard terms: words, documents, and topics, but
topic models are applicable to various data modalities.
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In recent years, spectral topic models have emerged
as alternatives to probabilistic counterparts due to
their transparent inference and optimality guarantees
(Arora et al., 2012, 2013; Bansal et al., 2014; Lee et al.,
2015; Huang et al., 2016; Anandkumar et al., 2012a,b,
2013; Wang and Zhu, 2014). Because the input to these
models is purely in terms of co-occurrence between word
pairs or triples, users can limit their interaction with the
training documents to a single trivially-parallelizable
aggregation of individual co-occurrence statistics.

But the efficiency advantage of factoring out the doc-
uments is also a weakness: we lose the ability to say
anything about the documents themselves. In practice,
users of spectral topic models must go back and apply
traditional inference on the original training data as
if these were new, held-out documents. That is, given
the learned topics and individual documents, they need
to infer the posterior topic compositions, with the as-
sumption of a sparse Dirichlet prior or a more complex
logistic-normal prior (Blei and Lafferty, 2007) on the
topic distributions. Estimating compositions with a
sparse Dirichlet prior can be NP-hard even for triv-
ial models (Sontag and Roy, 2011). Gibbs sampling
for composition inference is asymptotically unbiased,
but has no provable guarantees and may require many
sampler steps (Yao et al., 2009). Variational inference
methods may be faster than Gibbs sampling, but they
often get trapped in local minima, learning inconsistent
models as the number of topics varies (Yao et al., 2018).

Thresholded Linear Inverse (TLI) is the only available
method that infers document-specific topic composi-
tions for spectral topic models (Arora et al., 2016). TLI
tries to compute an unbiased and small variance ap-
proximate inverse of the word-topic matrix, and then
transforms the word distribution vector of a query
document into a latent topic composition vector by
a single matrix-vector product, which is later thresh-
olded for sparser estimation. Unfortunately, finding the
approximate inverse is computationally expensive and
numerically unstable. Thresholding parameters are not
intuitive and data-specific as well. Above all, linear
characteristics of TLI neglects correlations between the
topics encoded in the prior, working poorly on realistic
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documents. Though users could further improve the
inference quality by gradient updates with respect to
MLE/MAP objectives, such post-processing is limited
to specific parametric distributions at additional costs.

Topics are often strongly correlated in reality. Spectral
topic models can learn topic correlations (Arabshahi
and Anandkumar, 2017; Huang et al., 2016), and the
second-order models based on word-word co-occurrence
do not limit their prior correlations to a specific para-
metric family (Lee et al., 2015). By studying previously
unclear spectral structures of the prior, we propose two
novel composition inference methods that leverage the
learned correlations as well as the learned topics. In
Prior-Aware Dual Decomposition (PADD), each
sub-problem tries to find the best composition that
maximally fits the word vector of individual documents
in parallel, whereas the master-problem regularizes
overall compositions to be aligned with the learned
prior correlations like (Komodakis et al., 2011; Rush
and Collins, 2012). In contrast, the Prior-Aware
Manifold Iteration (PAMI) extracts an invariant
factor of individual compositions from the topic cor-
relations, and then keeps improving only the varying
part with respect to the manifold structures of the un-
derlying generative process by using recent advances in
Manifold Alternating Direction Methods of Multipliers
(MADMM) (Kovnatsky et al., 2016; Chen et al., 2018).

We evaluate our methods on various textual and non-
textual real corpora, but also on semi-synthetic and
semi-real corpora generated from uncorrelated and cor-
related topic models trained on the real data. Our
experiments show that TLI works moderately only if
the query document underlie a few synthetically sep-
arated topics with little correlations. In contrast, our
PADD performs competitively to benchmark Gibbs
sampling in almost every setting, while PAMI outper-
forms PADD especially on short realistic documents.
Providing theoretical and empirical rationales, we also
bridge the gap between spectral composition inference
and the corresponding probabilistic posterior inference.

2 Spectral Topic Modeling

We begin this section with a formal introduction to
spectral topic modeling. Consider a dataset ofM docu-
ments consisting of tokens drawn from a vocabulary of
N words. Topic models assume that K topics are used
to generate this dataset, where each topic is a distribu-
tion over the words; we summarize the latent topics by
the column-stochastic matrixB∈RN×K where each col-
umn bk ∈∆N−1 represents the distribution of the topic
k. For each document m, choose a topic composition
wm∈∆K−1 first from a certain prior f; we collect these
hidden compositions into another column-stochastic

matrix W ∈ RK×M . These models assume that each
of the nm tokens in the document m is then generated
independently from the categorical distribution given
by the word-probability vector Bwm ∈ RN .

Different models adopt different f such as f=Dir(α) for
Latent Dirichlet Allocation (LDA) (Blei et al., 2003);
f = LN (µ,Σ) or f = PN (µ,Σ) for Logistic/Probit-
Normal Correlated Topic Models (CTMs) (Blei and
Lafferty, 2007; Yu and Fokoue, 2014). Let H ∈RN×M
be the word-document matrix where the m-th column
vector hm counts the occurrences of each word in the
document m, and let H̃ be the column-normalized ver-
sion of H that specifies the relative frequencies of each
word rather than the raw counts. Then topic modeling
aims to learn latent topics B and hidden compositions
W given the observed collections of words H. Equiv-
alently, we seek a non-negative matrix factorization
H̃ ≈BW but with a prior to make individual topic
compositions {wm} coherent within a corpus.

Joint Stochastic Matrix Factorization The ma-
trix H̃ of word frequencies is sparse, noisy, and often
inconveniently large. Let us consider instead the word
co-occurrence matrix C ∈ RN×N , where Cij indicates
the joint probability of observing a pair of words (i, j).
Then topic modeling corresponds to a second-order
non-negative matrix factorization: C ≈BABT where
the column-stochastic matrix B ∈ RN×K represents
the topics as before and the joint-stochastic matrix
A∈RK×K represents the topic correlations. If the true
compositionsW ∗ that generate the data are known, we
can define the true correlations by A∗ := 1

MW
∗W ∗T

where A∗kl is the joint probability for a pair of latent
topics (k, l). By forming C as an unbiased estimator of
the underlying generative process, we can identify B
and A close to the true topics and their correlations.1

It is helpful to compare the matrix-based view of JSMF
to the generative view of standard topic models. For
each documentm, the generative view (Figure 1) begins
with the topic composition wm, focusing on how to
produce streams of tokens. We keep choosing a topic
z from wm and then a word x from bz for each of the
nm positions. The correlations between words that
wm∼ f induces are not explicitly modeled. In contrast,
the matrix-based view (Figure 2) starts with individual
topic correlations Am for each document m. Then
for each of the possible nm(nm − 1) position pairs, a
pair of topics (z1, z2) is selected first from Am, then a
pair of words (x1, x2) is chosen according to the topics
(bz1 , bz2), respectively. The word co-occurrence matrix
explicitly captures the resulting correlations induced
by the prior topic correlations A. This pair generation
view has the following two important implications:

1As the number of documents M grows, A converges to
the true A∗ and the prior Ew∼f[ww

T ] (Arora et al., 2012).
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Figure 1: LDA/CTMs assert a topic composition wm for
each document m. f = Dir(α), LN (µ,Σ), or PN (µ,Σ)
provides a parametric prior for the entire corpus.

• Topic correlation matrix A represents a flexible prior
f that does not specify any parametric family.

• Am is a rank-1 joint-stochastic matrix wmwT
m with

wm ∼ f, providing a fully generative process.

Recall that sharing the prior f for {wm}∼ f is the crux
of modern topic modeling (Asuncion et al., 2009), and
our flexible matrix prior A takes the role of f for JSMF.

3 Document-specific Inference

Probabilistic topic models infer the latent topics B
and the hidden compositions W together given the
observations H. In contrast, spectral topic models
recover the topics B and their correlations A given the
observationsC. Thus it is natural to formulate learning
of the composition W as an estimation problem given
the fixed B, A, and H. Beside running likelihood-
based inference on the original documents as if they are
unseen data, Thresholded Linear Inverse (TLI) is the
only algorithm we are aware of that has been designed
for composition inference in this setting (Arora et al.,
2016). We begin this section with a description of TLI,
then introduce our new prior-aware algorithms.

Since each document m is generated by nm multino-
mial choices, hm∼Mult(nm,Bwm), the frequency vec-
tor h̃m =hm / nm satisfies the conditional expectation
Ewm

[h̃m]=Bwm. IfB is full rank, there exist many left
inverses B† (i.e., matrices such that B†B = IK); and
for any left inverse, Ewm

[B†h̃m] =wm. However, not
every left-inverse is equivalent; for example, large en-
tries of B† increase the variance of the estimator. TLI
chooses an approximate left inverse B† that controls
the variance by minimizing its largest entry ‖B†‖∞
under the small bias constraint ‖B†B − IK‖∞ ≤ δ.

Let λδ(B) denote the optimal value ‖B†‖∞ of the
TLI; then one can bound the maximum violation
‖B†h̃m − wm‖∞ by δ + 2λδ(B)

√
(logK)/nm for an

arbitrary prior f from which wm ∼ f (Arora et al.,
2016). Thus the TLI algorithm first computes the best
approximate left-inverse B† of B for a given δ and
makes an initial prediction W =B†H̃ . Then for every

 

Figure 2: JSMF asserts a joint-stochastic matrix Am to
specify the correlations between two topics for each docu-
ment m. A serves as a generic prior for the entire corpus.

column wm of W , it removes unlikely topics whose
probability masses are smaller than a certain threshold:
τ = δ + 2λδ(B)

√
(logK)/nm. Despite the provable

guarantees, TLI becomes inaccurate in the presence
of correlated topics due to its linear estimation by a
single multiplication. Typically topics in a corpus cor-
relate each other unless its documents consist only of
few topics. In addition, since the algorithm provides
no guidance as to the optimal bias/variance trade-off,
users must evaluate various B† with different δ param-
eters. However we observe that this optimization is
numerically unstable, often yielding many NaN entries.
Above all, TLI never uses the learned A, the prior
correlations between the topics in latent compositions.

3.1 PADD: Prior-Aware Dual Decomposition

Many probabilistic algorithms, including Variational in-
ference and Gibbs sampling, differ only in the amount of
smoothing for updating B and W at each step (Asun-
cion et al., 2009). The choice of a proper prior f and
its hyper-parameters is critical to provide the inductive
bias needed for successful inference particularly with
short input documents (Wallach et al., 2009). Second-
order spectral topic models learn the prior f flexibly
in terms of the topics correlations A as it closely ap-
proximates the prevalent topics and their correlations
encoded in the true posterior A∗.2 Thus our Prior-
Aware Dual Decomposition (PADD) tries to find the
composition W = {wm} that best matches the overall
topic correlations (given in A) as well as the learned
topics (given in B) and individual word observations
(given in H) by solving the following optimization:

min

M∑
m=1

‖Bwm − h̃m‖22 (1)

subject to wm ∈∆K−1 and
1

M

M∑
m=1

wmw
T
m = A.

2If f = Dir(α) is the right prior, we can estimate α by
matching its second-moment Ew∼f[ww

T ] and A. PADD
might not find quality compositions if both M and nm are
small, because A could be far from A∗ and the prior. How-
ever, this problem is universal in probabilistic algorithms.
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Algorithm 1: PADD(H,B,A, τ)

Input: Word-document matrix H ∈ RN×M
Word-topic matrix B ∈ RN×K
Topic-topic matrix A ∈RK×K

Output: Topic-document matrix W ∈ RK×M
begin

H̃ ← column-normalize(H) (sparse matrix)
(B2,F )← (BTB,BT H̃)

(Λ(0),W 0)← (0K×K , B̆H̃)
repeat with t = 0, 1, 2, ...

for each m ∈ {1, ...,M} in parallel do
w̄m ←
CCP(B2, (1/M)Λ(t),F∗m,W

0
∗m)

end
Λ̄← Λ(t) − τ(A− 1

M

∑M
m=1

(
w̄mw̄

T
m)
)

Λ(t+1) ← max{0, (Λ̄ + Λ̄T )/2}
until until W̄ converges
W ← [w̄1|...|w̄M ]

end

Each solution composition wm from (1) tries to fit the
observed word-probability h̃m for each document m
(i.e., loss minimization), while simultaneously match-
ing the learned topic correlations A as a whole (i.e.,
regularization). Thus PADD shares the similar intu-
ition with the prior-based Bayesian inference, but with
more flexibility by not limiting the prior to a particular
family. Users of PADD can also decide the balance
between the loss and the regularizer more intuitively
than controlling the bias parameter δ of TLI. However,
it is not easy to solve (1) due to the non-linear coupling
constraint (1/M)

∑
wmw

T
m = A. We can construct

a Lagrangian3 by adding a symmetric matrix of dual
variables Λ ∈ RK×K , Then L(w1, ...,wM ,Λ) becomes

M∑
m=1

‖Bwm − h̃m‖22 + 〈Λ,
(

1

M

M∑
m=1

wmw
T
m

)
−A〉F

=

M∑
m=1

{
‖Bwm − h̃m‖22 +

1

M
〈Λ,wmwT

m −A〉F
}
.(2)

Since minimizing the Lagrangian can be decomposed
into M sub-problems given a dual Λ, we use the
dual decomposition (Komodakis et al., 2011; Rush
and Collins, 2012). For a fixed Λ, each sub-problem
finds the currently optimal w̄m ∈ ∆K−1 that mini-
mizes the m-th term in (2); then the master-problem
updates the dual matrix Λ based on its subgradient:

3We do not explicitly introduce the Lagrange multipliers
for the simplex constraint. Instead we later minimize the
Lagrangian explicitly with this constraint wm∈∆K−1. The
operation 〈·, ·〉F indicates the Frobenius inner product.

Algorithm 2: PAMI(H,B,A, ρ)

Input/Output: Same as Algorithm 1
begin

H̃ ← column-normalize(H) (sparse matrix)
R← Cholesky-factorize(MA)

F ← H̃TBRT

(Λ(0),Q(0))← (0K×K , H̃T B̆TR−1)
repeat with t = 0, 1, 2, ...

V ← Q(t) + Λ(t)

for each m ∈ {1, ...,M} in parallel do
w̄m ← SCLS(R−T ,V T

m∗)
end
P (t+1) ← [w̄1|...|w̄M ]TR−1

(ŪK , V̄K)← svd(F + ρP (t+1) − ρΛ(t))

Q(t+1) ← ŪKV̄
T
K

Λ(t+1) ← Λ(t) + (Q(t+1) − P (t+1))

until until Q converges
W ← RTQT

end

− 1
M (
∑M
m=1(w̄mw̄

T
m −A)) ∈ ∂(Λ). To maintain the

dual feasibility, we project the updated Λ̄ to the set of
symmetric non-negative matrices before redistributing
it back to the sub-problems as given in Algorithm 1.

Each sub-problem involves a non-convex quadratic pro-
gramming as the quadratic coefficient BTB+ (1/M)Λ
could be indefinite. By finding the smallest negative
eigenvalue λ of (1/M)Λ, we split Λ into the sum of the
positive semidefinite (1/M)Λ− λIK and the negative
semidefinite λIK , reformulating the objective function
of each sub-problem as a difference of the two convex
functions: g(w) = wT (BTB + (1/M)Λ − λIK)w −
2h̃TmBw and h(w) = −λwTw with the convex con-
straint w ∈ ∆K−1. We adopt the Convex-Concave
Programming (CCP) that quickly finds a quality mini-
mizer by approximating h(w) at each point w(t) into
an affine function −λw(t)Tw(t) − 2λw(t)T (w −w(t)T )
(Yuille and Rangarajan, 2002; Shen et al., 2016). As we
can easily serialize H into a stream of individual docu-
ments, PADD takes only O(K max(N,M)) space. By
our design, CCP can effectively solve each sub-problem
for every document m in parallel. The master-problem
needs at most O(K2) updates on the dual matrix Λ.

Note that spectral topic models first learn the per-word
topic distributions B̆ ∈ RK×N , then recovering the top-
ics B from B̆ via applying the Bayes rule (Arora et al.,
2013). Since B̆ki indicates the conditional probability
of the topic k given the word i, we set the initializer as
W 0 = B̆H̃ whoseW 0

km=
∑
i p(z=k|x=i)p(x=i;m)=

p(z=k;m). Users can also warm-start with the current
solution W̄∗m to further accelerate the convergence.
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3.2 Prior-Aware Manifold Iteration (PAMI)

The Prior-Aware Manifold Iteration (PAMI) again tries
to solve the optimization problem (1). Unlike PADD,
however, the PAMI algorithm re-parametrizes the prob-
lem to explicitly enforce the constraint (1/M)WW T =
A. Let W T = QR be the economy QR decomposi-
tion in which R has positive diagonal. Then WW T

=RT (QTQ)R=RTR, and hence we automatically sat-
isfy the constraintWW T =MA by writingW T =QR
where R is the Cholesky factor of MA.

Define J(W ) =
∑
m ‖Bwm − h̃m‖22. Say eK means a

K-dimensional vector of 1. Then J(W )= tr(BABT )
−2 tr(HTBW ) + tr(HTH) given

∑
mwmw

T
m =MA.

Since the first and the third terms do not depend
on the choice of W , solving (1) is equivalent to
maximizing J(W ) = tr(HTBW ) subject toWW T =
MA, eTKW = eTM , and W ≥ 0. The decomposition
W T =QR allows us to transform our optimization into
the following simplex-constrained Procrustes problem:

min g(Q) = − tr(QRBTH) (3)

subject to QTQ = IK , QReK = eM , QR ≥ 0.

Let Q denote the Stiefel manifold of M ×K matrices
with orthonormal columns, and let P = P(R) be the
(convex) set ofM×K matrices that satisfy PReK=eM
and PR≥ 0 for any P ∈P . Let f : RM×K → R be an
indicator (non-smooth but semi-continuous) function
that is 0 if P ∈ P or ∞ otherwise. Then we can
formulate a consensus version of the problem (3):

min
P∈P,Q∈Q

f(P ) + g(Q) subject to Q− P = 0. (4)

Using the matrix dual variables Λ′ ∈ RM×K , we con-
struct the augmented Lagrangian with the penalty
term ρ: Lρ(P ,Q,Λ′) = f(P ) + g(Q) + 〈Λ′,Q−P 〉F +
ρ
2‖Q−P ‖

2
F . If rescaling Λ := 1

ρΛ′, then Lρ(P ,Q,Λ)=
f(P ) + g(Q) + ρ

2‖F + 1
ρΛ′‖2F − 1

2ρ 〈Λ
′,Λ′〉F . Based on

the Manifold Alternating Direction Method of Multi-
pliers (MADMM) (Kovnatsky et al., 2016; Chen et al.,
2018), we can estimate the near-optimal primal Q∗,P ∗,
given our documents H , the learned topics B, and the
invariant factor R from the learned correlations A, by
iterating the following updates until the convergence.

P (t+1) := arg min
P∈P

Lρ(P ,Q
(t),Λ(t))

= arg min
P∈P

f(P ) +
ρ

2
‖Q(t) − P + Λ(t)‖2F

Q(t+1) := arg min
Q∈Q

Lρ(P
(t+1),Q,Λ(t)) (5)

= arg min
Q∈Q

g(Q) +
ρ

2
‖Q− P (t+1) + Λ(t)‖2F

Λ(t+1) := Λ(t) +Q(t+1) − P (t+1).

For scalable inference of (5), we need to efficiently
find the minimizers P and Q at every iteration.
Because f diverges to ∞ outside P, the first sub-
problem must choose P (t+1) as the orthogonal projec-
tion ΠP(Q(t) + Λ(t)). Note that P ∈ P is identical to
putting M independent constraints: Pm∗ReK = 1 and
Pm∗R≥0 for each row Pm∗. If defining w̄m :=RTP∗m
and V := Q(t) + Λ(t), finding ΠP(V ) is equivalent
to finding w̄m ∈ RK that minimizes ‖R−T w̄m −
Vm∗‖2 under the simplex constraint: eTKw̄m = 1 and
w̄m ≥ 0. This Simplex-Constrained Least Square
(SCLS) is a convex problem that can be efficiently
solved with machine precision for each document m
in parallel. For the second sub-problem, minimizing
g(Q) + ρ

2‖Q− P
(t+1) + Λ(t)‖2F is equivalent to max-

imizing tr(QT (HTBRT + ρP (t+1) − ρΛ(t))) on the
Stiefel manifold Q ∈ Q. One can easily get the Pro-
crustes closed-form solution Q(t+1) =UKV

T
K by find-

ing the K leading left-singular and right-singular vec-
tors UK and VK from just one economic SVD of
(HTBRT + ρP (t+1) − ρΛ(t)) ∈ RK×K .

4 Experimental Results

Evaluating the learned topic compositions W is not
easy for real data because no ground-truth composi-
tions W ∗ exist for quantitative comparison. Unlike
reading the topics from the word-topic matrix B, the
topic-document matrixW does not support qualitative
evaluations because the number of documents M is too
large, and because topics in each document may not
be obviously coherent or incoherent as words in each
topic (Chang et al., 2009). Synthesizing documents
from scratch is a popular option for theoreticians as
we can manipulate the ground-truth B∗ and W ∗, but
the resulting documents would not be realistic enough
to satisfy practitioners. Therefore we generate two cor-
pora from two distinct processes but both using topics
learned from real data.

The uncorrelated setting (Semi-Synthetic, SS ) sam-
ples W ∗ from a LDA model with a Dirichlet prior.
Given the training data H0 for each of the real cor-
pora, we first run JSMF to learn K topics B0 and
their correlations A0 with the AP-rectification.4 Next
we sample M columns of W ∗ from the Dir(α) with
α= (5/K)eK , generating a corpus HSS given B0 and
W ∗. SS is far from realistic as the underlying topics in
HSS barely correlate with each other. But this design
choice provides a fair comparison to the experiments
of TLI in (Arora et al., 2016). On the other hand, the

4Spectral topic models are known unable to learn quality
topics on real data that does not align with the model
assumptions. Rectifying C in advance with the Alternating
Projection is proven effective to learn competitive topics
comparable to probabilistic inference (Lee et al., 2015).
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Figure 3: Semi-Synthetic (SS) corpus with highly sparse topics and little correlation. x-axis: # topics K. y-axis: higher
numbers are better for the left three columns, lower numbers are better for the right five columns. PADD performs close to
Gibbs across all settings, whereas PAMI performs poorly due to little correlation. TLI generally fails except on small K’s.

correlated setting (Semi-Real, SR) samplesW ∗ from a
CTM model with the logistic-normal prior. Given the
real training data H0, we first run CTM-Gibbs (Chen
et al., 2013) to learn K topics B0 and the prior pa-
rameters (µ0,Σ0). Rather than artificially controlling
the prior hyper-parameters like HSS , we synthesize a
corpus HSR given B0 and W ∗ by sampling W ∗ from
the learned prior LN (µ0,Σ0). Thus SR involves non-
trivial correlation between topics, closely simulating
the characteristics of real-world document collections.

We also prepare real corpora (Fully-Real, FR) HFR,
which is the 10% held-out of the original data that
has never been used in training (i.e., H0 ∩HFR = ∅).
The training and held-out data H0 ∪HFR come from
the standard sources: NeurIPS papers and NYTimes
articles in the UCI repository. We also prepare Yelp
reviews from the academic dataset used in (Lee and
Mimno, 2014). These reviews are short, being difficult
to understand alone without a proper context. Be-
yond these textual datasets, each playlist in our Songs
dataset consists of a sequence of songs played in real
music stations (Chen et al., 2012). Different from the
burstiness of words in real texts, individual playlists
are less likely to repeat the same song multiples times,
creating another challenge. We curate the vocabu-
lary identically to the previous work that adopts these
datasets Lee et al. (2015). The precise statistics of
individual datasets are available in the result figures.

For thorough validation, we evaluate both information
retrieval performance and metric similarities. Given
the learned composition W , we extract the prominent
topics for each document by selecting the most con-
tributing topics first until their cumulative mass gets

close to 0.8 (Yao et al., 2009). Then we measure the
precision, recall, and F1-score against the prominent
topics of the truth compositions W ∗. Non-Prominent
captures how much probability mass W puts on the
non-prominent topics of W ∗. For metric similarities,
we report `1-error and `∞-error for fair comparison
to (Arora et al., 2016) as well as Hellinger and cosine
distances similar to (Blei and Lafferty, 2007).

Note that Gibbs in our synthetic experiments is not
a baseline that the two prior-aware algorithms try to
outperform, but the strongest benchmark designed to
guide the maximal performance. We run the collapsed
Gibbs sampling5 with the fixed ground-truth topics:
B0, the true prior distributions: Dir or LN , and their
ground-truth hyper-parameters: (5/K)eK or (µ0,Σ0)
that are used to generate the datasets, then updating
only the topic compositions W . In contrast, we run
TLI provided with B0 and PADD/PAMI provided with
B0 and A0 to leverage the topic correlations. Thus
the spectral algorithms access neither the specific prior
distributions nor their ground-truth hyper-parameters.

In the uncorrelated setting (SS ) in Figure 3, PADD per-
forms close to Gibbs in all dataset and model, whereas
PAMI works poorly as the number of topics K grows.
This is because the topics in SS barely have correlations
as the concentration parameter (5/K)eK gets close to
0. Thus PAMI cannot extract any useful invariant in-
formation from the topic correlations. Note that even
Gibbs sampling shows relatively high `1-error especially
for the models with large K. Dir((5/K)eK) generates

5We discard the initial 200 burn-in samples, then further
run Gibbs 1,000 iterations for collecting quality samples
more close to the posterior compositions.
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Figure 4: Semi-Real (SR) corpus with realistic topic correlations. x-axis: # topics K. y-axis: higher numbers are better
for the left three columns, lower numbers are better for the right five columns. PADD/PAMI both perform closely to Gibbs
on NeurIPS and NYTimes, but PAMI outperforms PADD on the small short dataset, Yelp. TLI fails except on tiny K’s.

extremely sparse compositions, so any variability in
other topics causes catastrophic errors even with Gibbs
sampling with the ground-truth hyper-parameters. In
contrast, the situation is quite different in the correlated
setting (SR) in Figure 4. Both PADD and PAMI are
now comparable to Gibbs on NeurIPS and NYTimes,
but only PAMI is close to Gibbs on Yelp dataset. This
result agrees with the algorithm of PAMI that relies
more aggressively on the prior information given in the
topic correlations. We also verify that our experiments
on SS and SR are not sensitive to the different numbers
(1k, 5k, 10k, 50k, 100k) of synthesized documents.

In the real setting (FR) in Figure 5, we only report
F1Score and Hellinger as they represent the overall be-
haviors. PADD/PAMI lose some precision comparing
to SS and SR settings, but this is because we pretend
that Gibbs provides the ground-truth compositions
W ∗.6 Overall, PADD and PAMI perform comparably
in NYTimes and Yelp, whereas they become separated
from K=50 in Songs. It motivates us to measure other
metrics for deeper understanding. LossDiff and Regu-
larizerDiff evaluate ‖BW ∗−H̃‖2F −‖BW −H̃‖2F and
‖(1/M)W ∗W ∗T −A0‖F −‖(1/M)WW T −A0‖F that
are the differences in the two parts of our objective (1)
against the true composition W ∗. It shows PAMI is
more afraid of deviating from the learned correlations
A, whereas PADD is more afraid of poorly fitting the
given observations H. Note also that PADD/PAMI
sometimes perform better than Gibbs in terms of To-
talDiff, the difference in our objective value (1).

6We run Dirichlet Gibbs with B0 and the best hyper-
parameters fitted by moment-matching with A0, which are
no longer ground-truth but the best accessible information.

What is going on? Probabilistic topic models (es-
pecially Bayesian) try to infer both latent topics B and
hidden compositions W that approximately maximize
the marginal likelihood of the observed documents H:

M∏
m=1

∫
wm

p(wm|f)
N∏
i=1

(Bwm)hmi
i dwm. (6)

They consider all possible compositions wm ∈ ∆K−1

under the prior f. However, if the learned topics B
and correlations A (which takes the role of f) are
provided, the MAP estimator wm that maximizes
p(wm;A)

∏N
i=1(Bwm)hmi

i is a reasonable pointwise
choice.7 Recall that the MLE of wm — that maximizes
the likelihood of the multinomially chosen words hm
— is the composition that makes the word-probability
parameters Bwm equal to the empirical frequencies
h̃m. The loss function of our objective (1) tries to find
the best wm that makes Bwm≈ h̃m, thereby maximiz-
ing the likelihood term

∏N
i=1(Bwm)hmi

i . LogLikeliDiff
measures an average difference of the log-likelihood∑
i hmi log(Bwm)i −

∑
i hmi log(Bw∗m)i against the

true composition w∗. The similar trends between Log-
LikeliDiff and LossDiff support this observation.8

When we try to regularize individual compositions wm
based on the learned topic correlations A, our spectral
algorithms adopt the Frobenius norm to measure the de-
viation, whereas a specific prior f regulates wm in prob-
abilistic inference. As we are not aware of any method

7It is proven that Bayesian posterior is concentrated
in the ε-ball of the best pointwise estimator with high
probability (Arora et al., 2016).

8We keep denoting m-th column vector of H by hm.
Thus hmi means (i,m)-entry Him of H.
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Figure 5: Fully-Real (FR) corpus consisting of real documents held-out from the training data. x-axis: # topics K.
y-axis: higher numbers are better for every column except the second column. Pretending Gibbs provides the ground-truth.
PADD and PAMI split on Songs from K ≥ 50, showing difference in their underlying behaviors. TLI fails completely.

that samples a rank-1 correlation matrix Am =wmw
T
m

directly from A, we introduce a generic metric: LogPri-
orDiff that measures the average difference in log priors
log(1−HD(wmw

T
m‖A0))− log(1−HD(w∗mw

∗T
m ‖A0))

against the true composition w∗m. This metric is in-
duced by Hellinger Distance under the assumption:
p(wm|A) ∝ 1 − HD(wmw

T
m‖A).9 The disagreement

between RegularizerDiff and LogPriorDiff implies that
we can further improve PADD/PAMI by finding a bet-
ter weighting scheme rather than measuring the prior
deviation uniformly for all entry by the Frobenius norm.

Although we are optimizing for accuracy rather than
speed, PADD and PAMI are both competitive in their
time complexities. Running PADD and PAMI on our
largest NYTimes dataset with K = 50 takes 6804.5
and 7117.9 seconds in Matlab without using the per-
document parallelism. TLI takes 6780.3 seconds to
learn the inverse of B with the 8-core parallelism in
Python codes provided by the original authors (Arora
et al., 2016). Running Gibbs with 8-cores in parallel
takes 3,420 seconds in the optimized Java Mallet. It is
worth mentioning that TLI often produces NaN entries
due to the numerical instability of the matrix inversion.
AP-rectification (Lee et al., 2015) vastly improves this
problem, but many data points for TLI in Figure 5
are still missing.10 AP-rectification also helps PAMI
ensure the positive semidefiniteness of A. Throughout
the experiment, we run 50 iterations of PADD with
τ = 0.05 and 50 iterations of PAMI with ρ= 0.01.

9Hellinger Distance is normalized to [0, 1], allowing us
to come up with a generic unnormalized potential.

10We try our best to ignore NaN entries, but diverging
to ±∞ drops the data points in Loss/Regularizer panels.

5 Conclusion

Fast and accurate composition inference for new docu-
ments is a vital component of a topic-based workflow,
especially for spectral algorithms that do not by them-
selves produce topic compositions, even for training
documents. Putting a prior on these compositions is
the crux for learning coherent topics, but its identity
has been unclear for spectral topic models. We show
that topic correlations serve as a flexible parameter-free
prior, and we design two novel algorithms that take the
advantage of these correlations to infer quality compo-
sitions. Our Prior-Aware Dual Decomposition (PADD)
performs close to the benchmark Gibbs sampling across
nearly all settings, whereas Prior-Aware Manifold It-
eration (PAMI) shows its excellence in learning from
short real documents by leveraging the topic correla-
tions more aggressively than PADD. Both algorithms
fit the workflow of modern distributed systems, being
easily scalable on streaming document collections.

With the robust composition inference that is aware
of topic correlations latent in the data, we can now fill
out the necessary tools to make spectral topic models
a full competitor to likelihood-based methods. Our
prior-aware algorithms require neither a specific prior
distribution nor its proper hyper-parameters, which
are often difficult to know a priori. Users in our algo-
rithms can better control the trade-off between loss-
minimization and regularization, gaining additional
flexibility. Although the benefits of our composition
inference are mostly relevant in second-order spectral
models, they are widely applicable in any setting that
involves inferring mixture proportions or, more broadly,
finding MAP estimates with the matrix-induced priors.
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