A USEFUL LEMMAS

We introduce the additional notation of

$$
\begin{gather*}
\boldsymbol{\xi}_{t}=\sum_{s=1}^{t} \mathbf{e}_{\pi_{s}}\left(x_{s}-\mu_{\pi_{s}}\right) \tag{24}\\
\sigma_{i}^{t}=\sqrt{\left(\mathbf{V}_{t}^{-1}\right)_{i i}} \tag{25}\\
\mathbf{N}_{t}=\operatorname{diag}\left(\mathbf{n}_{t}\right) \tag{26}
\end{gather*}
$$

to be used in the proofs of our results. The following lemmas are proved in Section E.
Lemma A.1. With probability at least $1-\delta$, for any $i \in[N]$ and $t \geq 1$,

$$
\begin{equation*}
\left|\widehat{\mu}_{i}^{t}-\mu_{i}\right| \leq \sigma_{i}^{t}\left(\frac{R}{\gamma} \sqrt{\log \left(\frac{\left|\mathbf{V}_{t}\right|}{\delta^{2}\left|\mathbf{L}_{\lambda}\right|}\right)}+\|\boldsymbol{\mu}\|_{\mathbf{L}_{\lambda}}\right) \tag{27}
\end{equation*}
$$

Lemma A.2. For all $i \in[N]$ and $t \geq 0$,

$$
\begin{equation*}
\sigma_{i}^{t} \leq \sqrt{\frac{\left(\sigma_{i}^{0}\right)^{2}}{1+\left(\sigma_{i}^{0}\right)^{2} n_{i}^{t} / \gamma}} \tag{28}
\end{equation*}
$$

Lemma A.3. Let d_{T} be the effective dimension. Then

$$
\begin{equation*}
\log \frac{\left|\mathbf{V}_{T}\right|}{\left|\mathbf{L}_{\lambda}\right|} \leq 2 d_{T} \log \left(1+\frac{T}{\gamma \lambda}\right) \tag{29}
\end{equation*}
$$

B PROOF OF PROPOSITION 2.2

For Algorithm 1 to succeed, it must be that $\widehat{\mu}_{i} \geq \tau$ for each i such that $\mu_{i} \geq \tau+\varepsilon$ and $\widehat{\mu}_{i}<\tau$ for each i such that $\mu_{i}<\tau-\varepsilon$ (we can make this inequality strict or non-strict without changing probabilistic statements since $\widehat{\boldsymbol{\mu}}$ is a continuous random variable). For a given i, this is satisfied if $\left|\widehat{\mu}_{i}-\mu_{i}\right| \leq\left|\mu_{i}-\tau\right|$. We show this for the case that $\mu_{i} \geq \tau+\varepsilon$. If $\widehat{\mu}_{i} \geq \mu_{i}$ in this case, then the necessary condition is satisfied. If $\widehat{\mu}_{i}<\mu_{i}$, then

$$
\begin{gather*}
\mu_{i}-\tau=\left|\mu_{i}-\tau\right| \geq\left|\widehat{\mu}_{i}-\mu_{i}\right|=\mu_{i}-\widehat{\mu}_{i} \tag{30}\\
\Longrightarrow \tau \leq \widehat{\mu}_{i} \tag{31}
\end{gather*}
$$

The case where $\mu_{i} \leq \tau-\varepsilon$ is analogous. Thus, a sufficient condition for the success of Algorithm 1 is that $\left|\widehat{\mu}_{i}-\mu_{i}\right| \leq\left|\mu_{i}-\tau\right|$ for all i such that $\left|\mu_{i}-\tau\right| \geq \varepsilon$. If we use Lemmas A.1, A.2, and A.3, we know that with probability at least $1-\delta$,

$$
\begin{align*}
\left|\widehat{\mu}_{i}^{t}-\mu_{i}\right| & \leq \sigma_{i}^{t}\left(\frac{R}{\gamma} \sqrt{\log \left(\frac{\left|\mathbf{V}_{t}\right|}{\delta^{2}\left|\mathbf{L}_{\lambda}\right|}\right)}+\|\boldsymbol{\mu}\|_{\mathbf{L}_{\lambda}}\right) \tag{32}\\
& \leq \sqrt{\frac{\left(\sigma_{i}^{0}\right)^{2}}{1+\left(\sigma_{i}^{0}\right)^{2} n_{i}^{t} / \gamma}}\left(\frac{R}{\gamma} \sqrt{2 d_{T} \log \left(1+\frac{T}{\gamma \lambda}\right)-2 \log \delta}+\|\boldsymbol{\mu}\|_{\mathbf{L}_{\lambda}}\right) \tag{33}\\
& \leq \sqrt{\frac{\gamma}{n_{i}^{t}}}\left(\frac{R}{\gamma} \sqrt{2 d_{T} \log \left(1+\frac{T}{\gamma \lambda}\right)-2 \log \delta}+\|\boldsymbol{\mu}\|_{\mathbf{L}_{\lambda}}\right) \tag{34}
\end{align*}
$$

Thus Algorithm 1 succeeds with probability at least $1-\delta$ if, for all i such that $\left|\mu_{i}-\tau\right| \geq \varepsilon$,

$$
\begin{equation*}
\sqrt{\frac{\gamma}{n_{i}^{t}}}\left(\frac{R}{\gamma} \sqrt{2 d_{T} \log \left(1+\frac{T}{\gamma \lambda}\right)-2 \log \delta}+\|\boldsymbol{\mu}\|_{\mathbf{L}_{\lambda}}\right) \leq\left|\mu_{i}-\tau\right| \tag{35}
\end{equation*}
$$

Because Algorithm 1 has an equal sampling allocation for each arm, for $T=k N$ we have that $n_{i}^{t}=k=T / N$. Then since for each i the left-hand side of (35) is the same, we can write the complete sufficient condition as

$$
\begin{equation*}
\sqrt{\frac{\gamma N}{T}}\left(\frac{R}{\gamma} \sqrt{2 d_{T} \log \left(1+\frac{T}{\gamma \lambda}\right)-2 \log \delta}+\|\boldsymbol{\mu}\|_{\mathbf{L}_{\lambda}}\right) \leq \min \left\{\left|\mu_{i}-\tau\right|:\left|\mu_{i}-\tau\right| \geq \varepsilon\right\} \tag{36}
\end{equation*}
$$

The smallest δ for which this inequality holds is

$$
\begin{equation*}
\delta=\exp \left\{-\frac{\gamma^{2}}{2 R^{2}}\left(\sqrt{\frac{T}{\gamma \widetilde{H}}}-\|\boldsymbol{\mu}\|_{\mathbf{L}_{\lambda}}\right)^{2}+d_{T} \log \left(1+\frac{T}{\gamma \lambda}\right)\right\} \tag{37}
\end{equation*}
$$

provided $\|\boldsymbol{\mu}\|_{\mathbf{L}_{\lambda}} \leq \sqrt{\frac{T}{\gamma \widetilde{H}}}$, where $\widetilde{H} \triangleq N / \min \left\{\left|\mu_{i}-\tau\right|^{2}:\left|\mu_{i}-\tau\right| \geq \varepsilon\right\}$.

C PROOF OF THEOREM 3.1

The proof follows the same general strategy as that of Theorem 2 of Locatelli et al. (2016).

C. 1 A Favorable Event

Let

$$
\begin{equation*}
\delta=\exp \left\{-\frac{\gamma^{2}}{2 R^{2}}\left(\frac{1}{3 M+1} \sqrt{\frac{T}{\gamma H}}-\|\boldsymbol{\mu}\|_{\mathbf{L}_{\lambda}}\right)^{2}+d_{T} \log \left(1+\frac{T}{\gamma \lambda}\right)\right\} \tag{38}
\end{equation*}
$$

and consider for the rest of the proof an event of probability at least $1-\delta$ that gives us the result of Lemma A.1. On this event then, for all $i \in[N]$,

$$
\begin{align*}
\left|\widehat{\mu}_{i}^{t}-\mu_{i}\right| & \leq \sigma_{i}^{t}\left(\frac{R}{\gamma} \sqrt{\log \left(\frac{\left|\mathbf{V}_{t}\right|}{\delta^{2}\left|\mathbf{L}_{\lambda}\right|}\right)}+\|\boldsymbol{\mu}\|_{\mathbf{L}_{\lambda}}\right) \\
& \leq \sigma_{i}^{t}\left(\frac{R}{\gamma} \sqrt{2 d_{T} \log (1+T / \gamma \lambda)-2 \log \delta}+\|\boldsymbol{\mu}\|_{\mathbf{L}_{\lambda}}\right) \\
& \leq \frac{\sigma_{i}^{t}}{3 M+1} \sqrt{\frac{T}{\gamma H}} \tag{39}
\end{align*}
$$

where the second inequality comes from Lemma A.3 and the third inequality comes from plugging in δ using the fact that $\|\boldsymbol{\mu}\|_{\mathbf{L}_{\lambda}} \leq \frac{1}{3 M+1} \sqrt{\frac{T}{\gamma H}}$.

C. 2 A Helpful Arm

At time T, there must exist an arm k such that $n_{k}^{T} \geq \frac{T}{H \Delta_{k}^{2}}$. If this were not true, then

$$
\begin{equation*}
T=\sum_{i=1}^{N} n_{i}^{T}<\sum_{i=1}^{N} \frac{T}{H \Delta_{i}^{2}}=T \tag{40}
\end{equation*}
$$

which is a contradiction. Let $t \leq T$ be the last time this arm was pulled, and consider this time for the rest of the proof. Note that $n_{k}^{t}=n_{k}^{T} \geq \frac{T}{H \Delta_{k}^{2}}$.

C. 3 Bounding the Other Arms using the Helpful Arm

When $n_{i}^{t} \geq 1$, using Lemma A.2.

$$
\begin{align*}
\sigma_{i}^{t} \sqrt{n_{i}^{t}+\alpha} & \leq \sqrt{\frac{\left(\sigma_{i}^{0}\right)^{2}\left(n_{i}^{t}+\alpha\right)}{1+\left(\sigma_{i}^{0}\right)^{2} n_{i}^{t} / \gamma}} \\
& \leq \sqrt{\frac{\gamma\left(n_{i}^{t}+\alpha\right)}{n_{i}^{t}}} \\
& \leq \sqrt{\gamma(1+\alpha)} \tag{41}
\end{align*}
$$

So, including the case of $n_{i}^{t}=0$,

$$
\begin{equation*}
\sigma_{i}^{t} \sqrt{n_{i}^{t}+\alpha} \leq \max \left\{\sigma_{i}^{0} \sqrt{\alpha}, \sqrt{\gamma(1+\alpha)}\right\} \leq \sqrt{\gamma} M \tag{42}
\end{equation*}
$$

where the last inequality comes from the fact that $\sigma_{i}^{0} \leq 1 / \sqrt{\lambda}$.
We know that

$$
\begin{equation*}
\left|\widehat{\mu}_{i}^{t}-\mu_{i}\right| \geq\left|\left|\widehat{\mu}_{i}^{t}-\tau\right|-\left|\mu_{i}-\tau\right|\right|=\left|\widehat{\Delta}_{i}^{t}-\Delta_{i}\right| \tag{43}
\end{equation*}
$$

so we can find a lower bound:

$$
\begin{align*}
z_{k}^{t} & =\widehat{\Delta}_{k}^{t} \sqrt{n_{k}^{t}+\alpha} \\
& \geq\left(\Delta_{k}-\frac{\sigma_{k}^{t}}{3 M+1} \sqrt{\frac{T}{\gamma H}}\right) \sqrt{n_{k}^{t}} \\
& \geq \sqrt{\frac{T}{H}} \frac{3 M}{3 M+1} \tag{44}
\end{align*}
$$

where the last inequality comes from our bound on n_{k}^{t} and from 41 with $\alpha=0$. For the upper bound,

$$
\begin{align*}
z_{i}^{t} & =\widehat{\Delta}_{i}^{t} \sqrt{n_{i}^{t}+\alpha} \\
& \leq\left(\Delta_{i}+\frac{\sigma_{i}^{t}}{3 M+1} \sqrt{\frac{T}{\gamma H}}\right) \sqrt{n_{i}^{t}+\alpha} \\
& \leq \Delta_{i} \sqrt{n_{i}^{t}+\alpha}+\frac{M}{3 M+1} \sqrt{\frac{T}{H}} . \tag{45}
\end{align*}
$$

Since we pulled arm k on round $t, z_{k}^{t} \leq z_{i}^{t}$, so

$$
\begin{gather*}
\sqrt{\frac{T}{H}} \frac{3 M}{3 M+1} \leq \Delta_{i} \sqrt{n_{i}^{t}+\alpha}+\frac{M}{3 M+1} \sqrt{\frac{T}{H}} \tag{46}\\
\Longrightarrow \frac{1}{3 M+1} \sqrt{\frac{T}{H}} \leq \frac{\Delta_{i} \sqrt{n_{i}^{t}+\alpha}}{2 M} \tag{47}
\end{gather*}
$$

C. 4 Wrapping Up

Finally, we have that

$$
\begin{equation*}
\left|\widehat{\mu}_{i}^{T}-\mu_{i}\right| \leq \frac{\sigma_{i}^{T}}{3 M+1} \sqrt{\frac{T}{\gamma H}} \leq \frac{\Delta_{i} \sigma_{i}^{t} \sqrt{n_{i}^{t}+\alpha}}{2 \sqrt{\gamma} M} \leq \frac{\Delta_{i}}{2} \tag{48}
\end{equation*}
$$

where the second inequality comes from the fact that σ_{i}^{t} is decreasing in t and from 47). Now for i such that $\mu_{i} \geq \tau+\varepsilon$, we have

$$
\begin{equation*}
\widehat{\mu}_{i}^{T} \geq \mu_{i}-\frac{\Delta_{i}}{2}=\mu_{i}-\frac{\mu_{i}-\tau+\varepsilon}{2}=\frac{\tau+\mu_{i}-\varepsilon}{2} \geq \tau \tag{49}
\end{equation*}
$$

For i such that $\mu_{i} \leq \tau-\varepsilon$, we have

$$
\begin{equation*}
\widehat{\mu}_{i}^{T} \leq \mu_{i}+\frac{\Delta_{i}}{2}=\mu_{i}+\frac{\tau-\mu_{i}+\varepsilon}{2}=\frac{\tau+\mu_{i}+\varepsilon}{2} \leq \tau \tag{50}
\end{equation*}
$$

D PROOF OF PROPOSITION 3.6

The proof of this proposition is the same as the proof of proposition 2.2 until the choice of the sampling allocation $n_{i}^{t}=\beta_{i} t$. Continuing from (35), we must choose $\boldsymbol{\beta}$ such that, for all i such that $\left|\mu_{i}-\tau\right| \geq \varepsilon$,

$$
\begin{equation*}
\sqrt{\frac{\gamma}{T}}\left(\frac{R}{\gamma} \sqrt{2 d_{T} \log \left(1+\frac{T}{\gamma \lambda}\right)-2 \log \delta}+\|\boldsymbol{\mu}\|_{\mathbf{L}_{\lambda}}\right) \leq \sqrt{\beta_{i}}\left|\mu_{i}-\tau\right| \tag{51}
\end{equation*}
$$

To optimize this inequality such that it holds for the smallest possible δ, we must make the right-hand side as large as possible. That is, we must choose $\boldsymbol{\beta}$ that maximizes

$$
\begin{equation*}
\min _{i:\left|\mu_{i}-\tau\right| \geq \varepsilon} \sqrt{\beta_{i}}\left|\mu_{i}-\tau\right| \tag{52}
\end{equation*}
$$

To maximize this minimum, we must choose $\boldsymbol{\beta}$ that makes all of the terms the same. With the constraint that $\sum_{i} \beta_{i}=1$, this means that we must choose

$$
\beta_{i}= \begin{cases}\left(H_{*}\left|\mu_{i}-\tau\right|^{2}\right)^{-1} & \text { if }\left|\mu_{i}-\tau\right| \geq \varepsilon \tag{53}\\ 0 & \text { otherwise }\end{cases}
$$

where

$$
\begin{equation*}
H_{*}=\sum_{j:\left|\mu_{j}-\tau\right| \geq \varepsilon}\left|\mu_{j}-\tau\right|^{-2} \tag{54}
\end{equation*}
$$

With this choice of $\boldsymbol{\beta}$, the smallest δ for which the inequality holds is

$$
\begin{equation*}
\delta=\exp \left\{-\frac{\gamma^{2}}{2 R^{2}}\left(\sqrt{\frac{T}{\gamma H_{*}}}-\|\boldsymbol{\mu}\|_{\mathbf{L}_{\lambda}}\right)^{2}+d_{T} \log \left(1+\frac{T}{\gamma \lambda}\right)\right\} \tag{55}
\end{equation*}
$$

provided $\|\boldsymbol{\mu}\|_{\mathbf{L}_{\lambda}} \leq \sqrt{\frac{T}{\gamma H_{*}}}$.

E PROOF OF LEMMAS

E. 1 Proof of Lemma A. 1

To prove Lemma A.1. we first need the following lemma, which is a direct consequence of Theorem 1 of AbbasiYadkori et al. (2011):
Lemma E.1. For any $\delta>0$, with probability at least $1-\delta$, for all $t \geq 0$,

$$
\begin{equation*}
\left\|\boldsymbol{\xi}_{t}\right\|_{V_{t}^{-1}}^{2} \leq R^{2} \log \left(\frac{\left|\mathbf{V}_{t}\right|}{\delta^{2}\left|\mathbf{L}_{\lambda}\right|}\right) \tag{56}
\end{equation*}
$$

Using Lemma E.1. the proof of Lemma A.1 follows that of Lemma 3 of Valko et al. (2014). Let $\mathbf{N}_{t}=\operatorname{diag}\left(\mathbf{n}_{t}\right)$, and note that $\mathbf{x}_{t}=\left(\mathbf{N}_{t} \boldsymbol{\mu}+\boldsymbol{\xi}_{t}\right) / \gamma$. Then

$$
\begin{align*}
\left|\widehat{\mu}_{i}^{t}-\mu_{i}\right| & =\left|\left\langle\mathbf{e}_{i}, \mathbf{V}_{t}^{-1}\left(\mathbf{N}_{t} \boldsymbol{\mu}+\boldsymbol{\xi}_{t}\right) / \gamma-\boldsymbol{\mu}\right\rangle\right| \\
& =\left|\left\langle\mathbf{e}_{i}, \mathbf{V}_{t}^{-1} \boldsymbol{\xi}_{t} / \gamma-\mathbf{V}_{t}^{-1}\left(\mathbf{V}_{t}-\mathbf{N}_{t} / \gamma\right) \boldsymbol{\mu}\right\rangle\right| \\
& \leq\left|\left\langle\mathbf{e}_{i}, \boldsymbol{\xi}_{t} / \gamma\right\rangle_{\mathbf{V}_{t}^{-1}}\right|+\left|\left\langle\mathbf{e}_{i}, \mathbf{L}_{\lambda} \boldsymbol{\mu}\right\rangle_{\mathbf{v}_{t}^{-1}}\right| \\
& \leq \sigma_{i}^{t}\left(\left\|\boldsymbol{\xi}_{t} / \gamma\right\|_{\mathbf{V}_{t}^{-1}}+\left\|\mathbf{L}_{\lambda} \boldsymbol{\mu}\right\|_{\mathbf{V}_{t}^{-1}}\right) \tag{57}
\end{align*}
$$

where the last inequality comes from Cauchy-Schwarz and the fact that $\sigma_{i}^{t}=\left\|\mathbf{e}_{i}\right\|_{\mathbf{V}_{t}^{-1}}$. The first term is bounded by Lemma E.1, and the second term is bounded as follows:

$$
\begin{align*}
\left\|\mathbf{L}_{\lambda} \boldsymbol{\mu}\right\|_{\mathbf{V}_{t}^{-1}}^{2} & =\boldsymbol{\mu}^{\top} \mathbf{L}_{\lambda} \mathbf{V}_{t}^{-1} \mathbf{L}_{\lambda} \boldsymbol{\mu} \\
& =\boldsymbol{\mu}^{\top}\left(\mathbf{L}_{\lambda}-\mathbf{N}_{t}^{1 / 2}\left(\gamma \mathbf{I}+\mathbf{N}_{t}^{1 / 2} \mathbf{L}_{\lambda} \mathbf{N}_{t}^{1 / 2}\right)^{-1} \mathbf{N}_{t}^{1 / 2}\right) \boldsymbol{\mu} \\
& \leq \boldsymbol{\mu}^{\top} \mathbf{L}_{\lambda} \boldsymbol{\mu}=\|\boldsymbol{\mu}\|_{\mathbf{L}_{\lambda}}^{2} \tag{58}
\end{align*}
$$

where the second equality comes from the Woodbury matrix identity, and the first inequality is from the subtrahend being positive semidefinite.

E. 2 Proof of Lemma A. 2

From the Sherman-Morrison formula, for $t \geq 1$,

$$
\begin{align*}
\left(\sigma_{i}^{t}\right)^{2} & =\mathbf{e}_{i}^{\top}\left(\mathbf{V}_{t-1}+\mathbf{e}_{\pi_{t}} \mathbf{e}_{\pi_{t}}^{\top} / \gamma\right)^{-1} \mathbf{e}_{i} \\
& =\mathbf{e}_{i}^{\top}\left(\mathbf{V}_{t-1}^{-1}-\frac{\mathbf{V}_{t-1}^{-1} \mathbf{e}_{\pi_{t}} \mathbf{e}_{\pi_{t}}^{\top} \mathbf{V}_{t-1}^{-1}}{\gamma+\mathbf{e}_{\pi_{t}} \mathbf{V}_{t-1}^{-1} \mathbf{e}_{\pi_{t}}}\right) \mathbf{e}_{i} \\
& =\left(\sigma_{i}^{t-1}\right)^{2}-\frac{\left(\mathbf{e}_{i}^{\top} \mathbf{V}_{t-1}^{-1} \mathbf{e}_{\pi_{t}}\right)^{2}}{\gamma+\left(\sigma_{\pi_{t}}^{t-1}\right)^{2}} \tag{59}
\end{align*}
$$

so σ_{i}^{t} is decreasing in t. When $\pi_{t}=i$, the update depends only on the previous value σ_{i}^{t-1}. Consider the setting where $\pi_{t}=i \forall t \geq 1$. Then $\left(\sigma_{i}^{t}\right)^{2}=\gamma\left(\sigma_{i}^{0}\right)^{2} /\left(\gamma+t\left(\sigma_{i}^{0}\right)^{2}\right)$, which can be shown by induction. It clearly holds for $t=0$. For $t \geq 1$,

$$
\begin{align*}
\left(\sigma_{i}^{t}\right)^{2} & =\left(\sigma_{i}^{t-1}\right)^{2}\left(1-\frac{\left(\sigma_{i}^{t-1}\right)^{2}}{\gamma+\left(\sigma_{i}^{t-1}\right)^{2}}\right) \\
& =\frac{\gamma\left(\sigma_{i}^{t-1}\right)^{2}}{\gamma+\left(\sigma_{i}^{t-1}\right)^{2}} \\
& =\frac{\gamma^{2}\left(\sigma_{i}^{0}\right)^{2}}{\left(\gamma+(t-1)\left(\sigma_{i}^{0}\right)^{2}\right)\left(\gamma+\frac{\gamma\left(\sigma_{i}^{0}\right)^{2}}{\gamma+(t-1)\left(\sigma_{i}^{0}\right)^{2}}\right)} \\
& =\frac{\gamma\left(\sigma_{i}^{0}\right)^{2}}{\gamma+t\left(\sigma_{i}^{0}\right)^{2}} . \tag{60}
\end{align*}
$$

In the setting where we do not have $\pi_{t}=i$ for all $t \geq 1$, since σ_{i}^{t} is decreasing even when $\pi_{t} \neq i$, we can upper bound σ_{i}^{t} with what its value would be if at each time t such that $\pi_{t} \neq i$ we do not update σ_{i}^{t}. This would mean that by time t, σ_{i}^{t} has been updated n_{i}^{t} times, yielding the stated bound.

E. 3 Proof of Lemma A. 3

This lemma is derived from Lemma 6 of Valko et al. (2014). If $\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{\top}$ is the eigendecomposition of \mathbf{L}_{λ}, then let \mathbf{V}_{T} and $\boldsymbol{\Lambda}$ in the notation of Valko et al. (2014) be equal to $\gamma \mathbf{Q}^{\top} \mathbf{V}_{T} \mathbf{Q}$ and $\gamma \boldsymbol{\Lambda}$, respectively, in our notation. The result follows by the invariance of determinants under unitary transformations.

