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A USEFUL LEMMAS

We introduce the additional notation of

ξt =

t∑
s=1

eπs(xs − µπs), (24)

σti =

√
(V−1

t )ii, (25)

Nt = diag(nt), (26)

to be used in the proofs of our results. The following lemmas are proved in Section E.

Lemma A.1. With probability at least 1− δ, for any i ∈ [N ] and t ≥ 1,

|µ̂ti − µi| ≤ σti

(
R

γ

√
log

(
|Vt|
δ2|Lλ|

)
+ ‖µ‖Lλ

)
. (27)

Lemma A.2. For all i ∈ [N ] and t ≥ 0,

σti ≤

√
(σ0
i )2

1 + (σ0
i )2nti/γ

. (28)

Lemma A.3. Let dT be the effective dimension. Then

log
|VT |
|Lλ|

≤ 2dT log

(
1 +

T

γλ

)
. (29)

B PROOF OF PROPOSITION 2.2

For Algorithm 1 to succeed, it must be that µ̂i ≥ τ for each i such that µi ≥ τ + ε and µ̂i < τ for each i such
that µi < τ − ε (we can make this inequality strict or non-strict without changing probabilistic statements since
µ̂ is a continuous random variable). For a given i, this is satisfied if |µ̂i − µi| ≤ |µi − τ |. We show this for the
case that µi ≥ τ + ε. If µ̂i ≥ µi in this case, then the necessary condition is satisfied. If µ̂i < µi, then

µi − τ = |µi − τ | ≥ |µ̂i − µi| = µi − µ̂i (30)

=⇒ τ ≤ µ̂i. (31)

The case where µi ≤ τ − ε is analogous. Thus, a sufficient condition for the success of Algorithm 1 is that
|µ̂i − µi| ≤ |µi − τ | for all i such that |µi − τ | ≥ ε. If we use Lemmas A.1, A.2, and A.3, we know that with
probability at least 1− δ,

|µ̂ti − µi| ≤ σti

(
R

γ

√
log

(
|Vt|
δ2|Lλ|

)
+ ‖µ‖Lλ

)
(32)

≤

√
(σ0
i )2

1 + (σ0
i )2nti/γ

(
R

γ

√
2dT log

(
1 +

T

γλ

)
− 2 log δ + ‖µ‖Lλ

)
(33)

≤
√

γ

nti

(
R

γ

√
2dT log

(
1 +

T

γλ

)
− 2 log δ + ‖µ‖Lλ

)
. (34)

Thus Algorithm 1 succeeds with probability at least 1− δ if, for all i such that |µi − τ | ≥ ε,√
γ

nti

(
R

γ

√
2dT log

(
1 +

T

γλ

)
− 2 log δ + ‖µ‖Lλ

)
≤ |µi − τ |. (35)
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Because Algorithm 1 has an equal sampling allocation for each arm, for T = kN we have that nti = k = T/N .
Then since for each i the left-hand side of (35) is the same, we can write the complete sufficient condition as

√
γN

T

(
R

γ

√
2dT log

(
1 +

T

γλ

)
− 2 log δ + ‖µ‖Lλ

)
≤ min {|µi − τ | : |µi − τ | ≥ ε} . (36)

The smallest δ for which this inequality holds is

δ = exp

{
− γ2

2R2

(√
T

γH̃
− ‖µ‖Lλ

)2

+ dT log

(
1 +

T

γλ

)}
, (37)

provided ‖µ‖Lλ ≤
√

T

γH̃
, where H̃ , N/min {|µi − τ |2 : |µi − τ | ≥ ε}.

C PROOF OF THEOREM 3.1

The proof follows the same general strategy as that of Theorem 2 of Locatelli et al. (2016).

C.1 A Favorable Event

Let

δ = exp

{
− γ2

2R2

(
1

3M + 1

√
T

γH
− ‖µ‖Lλ

)2

+ dT log

(
1 +

T

γλ

)}
, (38)

and consider for the rest of the proof an event of probability at least 1 − δ that gives us the result of Lemma
A.1. On this event then, for all i ∈ [N ],

|µ̂ti − µi| ≤ σti

(
R

γ

√
log

(
|Vt|
δ2|Lλ|

)
+ ‖µ‖Lλ

)

≤ σti
(
R

γ

√
2dT log(1 + T/γλ)− 2 log δ + ‖µ‖Lλ

)
≤ σti

3M + 1

√
T

γH
, (39)

where the second inequality comes from Lemma A.3 and the third inequality comes from plugging in δ using the

fact that ‖µ‖Lλ ≤ 1
3M+1

√
T
γH .

C.2 A Helpful Arm

At time T , there must exist an arm k such that nTk ≥ T
H∆2

k
. If this were not true, then

T =

N∑
i=1

nTi <

N∑
i=1

T

H∆2
i

= T, (40)

which is a contradiction. Let t ≤ T be the last time this arm was pulled, and consider this time for the rest of
the proof. Note that ntk = nTk ≥ T

H∆2
k

.
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C.3 Bounding the Other Arms using the Helpful Arm

When nti ≥ 1, using Lemma A.2,

σti

√
nti + α ≤

√
(σ0
i )2(nti + α)

1 + (σ0
i )2nti/γ

≤

√
γ(nti + α)

nti

≤
√
γ(1 + α). (41)

So, including the case of nti = 0,

σti

√
nti + α ≤ max

{
σ0
i

√
α,
√
γ(1 + α)

}
≤ √γM, (42)

where the last inequality comes from the fact that σ0
i ≤ 1/

√
λ.

We know that

|µ̂ti − µi| ≥
∣∣|µ̂ti − τ | − |µi − τ |∣∣ = |∆̂t

i −∆i|, (43)

so we can find a lower bound:

ztk = ∆̂t
k

√
ntk + α

≥

(
∆k −

σtk
3M + 1

√
T

γH

)√
ntk

≥
√
T

H

3M

3M + 1
, (44)

where the last inequality comes from our bound on ntk and from (41) with α = 0. For the upper bound,

zti = ∆̂t
i

√
nti + α

≤

(
∆i +

σti
3M + 1

√
T

γH

)√
nti + α

≤ ∆i

√
nti + α+

M

3M + 1

√
T

H
. (45)

Since we pulled arm k on round t, ztk ≤ zti , so√
T

H

3M

3M + 1
≤ ∆i

√
nti + α+

M

3M + 1

√
T

H
, (46)

=⇒ 1

3M + 1

√
T

H
≤

∆i

√
nti + α

2M
. (47)

C.4 Wrapping Up

Finally, we have that

|µ̂Ti − µi| ≤
σTi

3M + 1

√
T

γH
≤

∆iσ
t
i

√
nti + α

2
√
γM

≤ ∆i

2
, (48)

where the second inequality comes from the fact that σti is decreasing in t and from (47). Now for i such that
µi ≥ τ + ε, we have

µ̂Ti ≥ µi −
∆i

2
= µi −

µi − τ + ε

2
=
τ + µi − ε

2
≥ τ. (49)
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For i such that µi ≤ τ − ε, we have

µ̂Ti ≤ µi +
∆i

2
= µi +

τ − µi + ε

2
=
τ + µi + ε

2
≤ τ. (50)

D PROOF OF PROPOSITION 3.6

The proof of this proposition is the same as the proof of proposition 2.2 until the choice of the sampling allocation
nti = βit. Continuing from (35), we must choose β such that, for all i such that |µi − τ | ≥ ε,√

γ

T

(
R

γ

√
2dT log

(
1 +

T

γλ

)
− 2 log δ + ‖µ‖Lλ

)
≤
√
βi|µi − τ |. (51)

To optimize this inequality such that it holds for the smallest possible δ, we must make the right-hand side as
large as possible. That is, we must choose β that maximizes

min
i:|µi−τ |≥ε

√
βi|µi − τ |. (52)

To maximize this minimum, we must choose β that makes all of the terms the same. With the constraint that∑
i βi = 1, this means that we must choose

βi =

{(
H∗|µi − τ |2

)−1
if |µi − τ | ≥ ε

0 otherwise,
(53)

where

H∗ =
∑

j:|µj−τ |≥ε

|µj − τ |−2. (54)

With this choice of β, the smallest δ for which the inequality holds is

δ = exp

{
− γ2

2R2

(√
T

γH∗
− ‖µ‖Lλ

)2

+ dT log

(
1 +

T

γλ

)}
, (55)

provided ‖µ‖Lλ ≤
√

T
γH∗

.

E PROOF OF LEMMAS

E.1 Proof of Lemma A.1

To prove Lemma A.1, we first need the following lemma, which is a direct consequence of Theorem 1 of Abbasi-
Yadkori et al. (2011):

Lemma E.1. For any δ > 0, with probability at least 1− δ, for all t ≥ 0,

‖ξt‖2V −1
t
≤ R2 log

(
|Vt|
δ2|Lλ|

)
. (56)

Using Lemma E.1, the proof of Lemma A.1 follows that of Lemma 3 of Valko et al. (2014). Let Nt = diag(nt),
and note that xt = (Ntµ + ξt)/γ. Then

|µ̂ti − µi| =
∣∣〈ei,V−1

t (Ntµ + ξt)/γ − µ〉
∣∣

=
∣∣〈ei,V−1

t ξt/γ −V−1
t (Vt −Nt/γ)µ〉

∣∣
≤
∣∣∣〈ei, ξt/γ〉V−1

t

∣∣∣+
∣∣∣〈ei,Lλµ〉V−1

t

∣∣∣
≤ σti

(
‖ξt/γ‖V−1

t
+ ‖Lλµ‖V−1

t

)
, (57)
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where the last inequality comes from Cauchy-Schwarz and the fact that σti = ‖ei‖V−1
t

. The first term is bounded

by Lemma E.1, and the second term is bounded as follows:

‖Lλµ‖2V−1
t

= µ>LλV
−1
t Lλµ

= µ>
(

Lλ −N
1/2
t

(
γI + N

1/2
t LλN

1/2
t

)−1

N
1/2
t

)
µ

≤ µ>Lλµ = ‖µ‖2Lλ , (58)

where the second equality comes from the Woodbury matrix identity, and the first inequality is from the subtra-
hend being positive semidefinite.

E.2 Proof of Lemma A.2

From the Sherman–Morrison formula, for t ≥ 1,

(σti)
2 = e>i

(
Vt−1 + eπte

>
πt/γ

)−1
ei

= e>i

(
V−1
t−1 −

V−1
t−1eπte

>
πtV

−1
t−1

γ + eπtV
−1
t−1eπt

)
ei

= (σt−1
i )2 −

(
e>i V−1

t−1eπt
)2

γ + (σt−1
πt )2

, (59)

so σti is decreasing in t. When πt = i, the update depends only on the previous value σt−1
i . Consider the setting

where πt = i ∀ t ≥ 1. Then (σti)
2 = γ(σ0

i )2/(γ + t(σ0
i )2), which can be shown by induction. It clearly holds for

t = 0. For t ≥ 1,

(σti)
2 = (σt−1

i )2

(
1− (σt−1

i )2

γ + (σt−1
i )2

)
=

γ(σt−1
i )2

γ + (σt−1
i )2

=
γ2(σ0

i )2

(γ + (t− 1)(σ0
i )2)

(
γ +

γ(σ0
i )2

γ+(t−1)(σ0
i )2

)
=

γ(σ0
i )2

γ + t(σ0
i )2

. (60)

In the setting where we do not have πt = i for all t ≥ 1, since σti is decreasing even when πt 6= i, we can upper
bound σti with what its value would be if at each time t such that πt 6= i we do not update σti . This would mean
that by time t, σti has been updated nti times, yielding the stated bound.

E.3 Proof of Lemma A.3

This lemma is derived from Lemma 6 of Valko et al. (2014). If QΛQ> is the eigendecomposition of Lλ, then let
VT and Λ in the notation of Valko et al. (2014) be equal to γQ>VTQ and γΛ, respectively, in our notation.
The result follows by the invariance of determinants under unitary transformations.


