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A USEFUL LEMMAS

The following two lemmas will be useful in deriving the bias and variance terms of the ensemble risk. Their
proofs can be found in Section F.

Lemma A.1. Let S C [p] be a subset with corresponding selection matriz S, and let S¢ be the selection matriz
corresponding to S¢. Then for a random matriz X € R™*P with rows independently drawn from N(0,1,) such
that n > |S|, and for any random function f : R™*ISI — R**IS| that f(XS) and XS¢ are independent,

Exs- [STX!] = (XS)' (44)

and
Exs- [SCTXT f(XS)STXT} —o0. (45)
Lemma A.2. Let Ty, Ty C [n] be independent random subsets with corresponding selection matrices T1, To such
that E [TjT;r] = e—JlIn Then for random matrices X € R™*PX Y € R"*PY independent of T1 and Ty with

independent and identically distributed rows such that XTTJ-T;-'—X and YTTjT;'—Y are invertible, and for any
matriz A € RPX*PY

Er, 1, {(TIX)TTI ((TQT X)TT;)T = (x'x) (46)
and

Er, 1, [((TIX)T T]) "A(mY) TQT] = (xH)" Ay, (47)

B PROOF OF LEMMA 3.2 (BIAS)

To compute the bias, we need to evaluate terms of the form
-
Ex.s.7 <ﬂBT, (1, - si (T7x8,) ' T7X) (1, - 8; (T X8;)’ TJ-TX)> . (48)

First, we note that since SiSiT + SfoT =1,

I, -8 (T)X8) T/ X =1, - 8, (T/ X8,) ' T] X (SZ-SZ-T + sgng) (49)
=1,-S:S; — S (T Xx8;) 7] x8e8¢7 (50)
- (I,, —s; (1) x8,) TIX) seseT. (51)

So, we can equivalently evaluate
Ex.s.7 <ﬁﬁT, seseT [I,, —XTT; (8] X)) sﬂ [Ip — s, (1] x8;)" TJTX} s;s;T> . (52)
It suffices to evaluate the expectation of the second argument of the inner product:
Ex.sT {sgsf L - XTT (87X )" 87| [1, - 8; (1] X8;) T/ X s;sﬂ
= Ex.s,7 [SSSSTXTTi (STXTT,)' sTs,; (T7Xs,) T/ XS] 8587

—ses¢TX T (8] XTT) ST —8; (T XS,) T xsseT + sgsfs;sﬂ . (53)
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The second and third terms are zero in expectation. To see this for the second term, observe that S¢'X T and
S,/ XT are independent and each zero-mean. An analogous argument applies to the third term. The fourth term
is equal to

S¢Sl

P (54)

We now consider the case where i # j. To evaluate the first term, we first apply Lemma A.2. This simplifies the
expression to

Exs [S8¢TXT (STXT)'sTs; (x8;) xs7s58¢7] . (55)

Now let Sin;, Si\j: Sj\i, and Sf;; denote the selection matrices corresponding to the sets S;N.Sj, S; \S;, S;\ S,
and S§N.SY, respectively. Without loss of generality, consider when S{ = [Sj\i Sfuj] and S§ = [Si\j Sfuj] Then
the matrix inside this expectation is of the form

([A BJ .t
S [c D] seT, (56)

where

A=8] X" (s7X7)'s]s; (XS, XS,
B=5/ X' (s/X")'s]s; (xs;) X85,
C=s5, X" (s/X7)" 878, (X8,)' XS,
D=5, X" (8]X")"sTs; (xs;)! XS5

g+

In the case of B and C, because XS ; is independent of the remainder of the factors, Ex [B] and Ex [C] are
equal to 0. By applying the second claim of Lemma A.1, we observe that Ex [A] is also equal to 0. This leaves

Ex [D] = Ex [ngjTXTEXSJ_V [(SIXT)TSJSW} Exs,, [S;jsj (ij)q nguj} (61)
= Ex [S5, X (XSin;ST,XT) X85, ] (62)

We can evaluate the expectation of the pseudoinverse on its own since XS;n; and XSf,; are independent. This

matrix has a generalized inverse Wishart distribution with scale matrix I,, and [S; N S;| degrees of freedom,
which yields

SN S|
E XS;n; T xT ] _ |Si J L,.
This leaves
, SN S| . 8 N S|
Ex [S¢,. "X T [9: 05, L, | XSS, | = — "7 Toergel 64
X[ <n<n|smsj|1> ) ] T o

Then the expectation in (55) becomes

S5 N S5 C{O 0 ] CT] |Si 0 81195 N S5

: | = I
(n—15nS;|—1)7" [0 Tsense] ™7 p(n—|S;NS;|—1)"" (65)

Es {
and combing with (54), we have that the bias is equal to

|5¢Cﬂ5§|< S; N S| ) 2
1+ 3 18I13- (66)
p n—|SiﬂSj|—1 2

When i = j, by a similar argument, without the need to apply Lemma A.2; it follows that the bias is equal to

|55 ( S| ) 2
1+ . 67




Daniel LeJeune, Hamid Javadi, Richard G. Baraniuk

C PROOF OF LEMMA 3.3 (VARIANCE)
To compute the variance, we need to evaluate the terms of the form

Ex.r (Si (T7X8) T] .S, (T]X8;) T/ ). (68)
Let S be the selection matrix corresponding to the set S; N.S;. Then

E(S: (T/X8:)' T].8; (T]X8;)' T])

—E(STs; (T7x8,) T],87s; (T]X8;) T] ) (69)
—E(Exsns, [STS: (T7X8)'| TT Eycs,s [STS; (T]X8))"| TT ) (70)
=E((T/x8)' ], (T]X8)"T] ). (71)

The equality (71) is the result of two applications of Lemma A.1.

In the case that ¢ # j, an application of Lemma A.2 simplifies the above to

—1 |Sl ns |
tr (Ex [(STXTX8) ' |) = — 2 72
' X ( ) n—‘SiﬂSﬂ—]. ( )
The equality comes from (STXTXS) ! having an inverse Wishart distribution with scale matrix I|g;ns,) and n
degrees of freedom.

When i = j, we obtain a similar result directly without needing Lemma A.2. The above simplifies to

tr (EX {(SZXTTZ«TIXS,-)”D - |T|—|k|gs||—1

D PROOF OF THEOREM 3.6

We first introduce the result due to Dobriban and Wager (2018). We note again, as we noted in the main text,
that in the setting of 3 = I,,, where the optimal ridge regression risk is equal to the estimation error of the
minimum mean squared error (MMSE) estimator, results on the value of this quantity predate the result of
Dobriban and Wager (2018). We refer the reader, for example, to the wireless communication literature (see,
e.g., Tulino and Verdd, 2004). However, Dobriban and Wager (2018) have developed the first results on ridge
regression risk for general X, and their clean theorem statement is simple and straightforward to use, even in
the ¥ =1, case.

Proposition D.1 (from Dobriban and Wager, 2018, Theorem 2.1). Assume that ¥ =1, and B ~ N(0,p~1L,).
Then in the limit as n,p — oo with p/n — -, we have almost surely that

. 1[{y-1 - 1\?
. ridge _ = L, 2 2777 2
lIifR( V) 5 5 o +\/<0 5 ) + 4o ) . (74)

We note that this expression is equal to o?(R*(1/02,~) — 1) in the notation of Dobriban and Wager (2018),
where this transformation is necessary because we assume ||3||, = 1 rather than ¢ =1 and because we evaluate
the noise-free risk.

The minimizer of the large ensemble risk should satisfy the first-order optimality condition, so we begin by taking
its derivative.

dRS"s _ (—2(1 — a) + 20%a7)(1 — a?y) — (1 — a)? + 02a2v)(—2a7)
do (1 —a?y)?
—a?y+ (y(o? +1)+1) — L

(1—a%)?

(75)

(76)
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Thus the minimizer a, should satisfy
a2y —au(y(e*+ 1)+ 1) +1=0. (77)

From here, it is simply a matter of cumbersome algebra to show that the choice

o — y(e?+1)+1— \/(21(02 +1)+1)2 -4y (78)

is the valid root of this quadratic expression and is such that R{® = infy R(Ag\idge). We here show a slightly
more interesting approach, leading to Corollary 3.7. First, we start from (77) and add a root of «, = 0, and

then we proceed to manipulate the resulting equation.

a.(@fy —a(y(e® + 1)+ 1) +1) =0 (79)
a. —al(y(0® +1) +1) = —aly (80)
2. — a2(3(0* + 1) + 1) = (1 - a2y) (s1)
2 2
1—azy
Continuing from this last equation,
20, — a2(y(0? +1) + 1)
= : 83
@ 1— a2y (83)
20, -2y —a*y—aP+1-1 (34)
N 1— a2y
1—a?y — (1 -2, +a?) — o%ay
= — (85)
1—agy
1— a)? + o202
_q,_ (d-a) +o%aly (86)
1—ady
=1-Ry™. (87)

Thus, if o, is a root of (77) or o, = 0, then R = 1 — .. We proceed by checking the larger root of (77), but
before doing so, we derive the following equality:

(Y(0% +1) +1)? —dy = (y(0® + 1) + 1)® — (492 (02 + 1) + 4y) + 497 + do?? (88)
= (y(o? +1)+1—27) + 4029 (89)
= (7(02 - 1)+ 1)2 + 40242, (90)

Now, we observe for the larger root (which we denote as ) that

_ NP+ D) +1+V(0(0° — 1) +1)* + 407y

r_ 91
o, o (91)
1 1 1
2(02+1++ 02—1+’> (92)
2 ¥ gl
2 1 el 2
+=- ifs>1-
e VR R (93)

Thus the only case where o, is a valid hyperparameter choice (that is, o, < min {1, ’y‘l}) is when 02 = 0 and
~ =1, in which case «, = 1 is a double root of (77). So it suffices to evaluate the smaller root even in that case.
Now that we know that «, is not conatined in [0, min {1,77}] (except in the aforementioned special case) and
that by inspection of RS the asymptote at o = ~~1/2 is not contained in this interval, if we can show that the
smaller root (which we denote simply as «,) of (77) is contained in this interval, then we know that it is the

minimizer of RY™.
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For the smaller root, it is clear from (78) that a, > 0. We show by a series of equivalences that a,, < 1/7:

1 1 1\? 1
ay = = 02+1+—\/(02—1+> +402 | < = (94)
2 g v Y
1 1\?
— o? —|—1—7< 02—14—5 + 402 (95)
1 ) 1\? )
— |(o? —|—1—— g o°—14+—) +4o (96)
gl
o? 1\?
— ( +> +402—4§<02—1+) + 40? (97)
gl ¥
L1 2 1\?
= ( > +4024J§<021+> + 402 (98)
gl gl
— go— (99)
gl

The last inequality is always true. Further, we note that every equivalence here still holds under strict inequalities,
so for o > 0, we have that a, < 7*1. By a similar argument, we can show that o, <1 and that o, < 1 if and
only if ¢ > 0. By the form of the derivative in (76), we know that a., as the smaller root, is a local minimum,
and therefore it must be the minimum of RZ™ on [0, min {17 7_1}]. Evaluating the risk at o, we have

R =1 —q, (100)

1 1 1\?
=l--|o®+1+-— (021+> + 402 (101)
2 o v
1 1 1\?
== 102+\/<021+) + 402 (102)
2 vy o
1[{~=-1 —1\?
B A e <027) + 402 (103)
2 ol 0l

= inf R(B59e). (104)

E PROOFS OF DISCUSSION RESULTS

E.1 Proof of Equation (35) (u-scaled Risk)

Under the assumption that 3 = I,, the p-scaled risk is given by

R(uB™) = |6~ nf (105)
I (00
= (1= P81+ 20~ w {B.8 — B + 128 B (107)

Examining the inner product, we find that
B [(8:8 - 87 = (8. Exsir |8 - 5] (108
<ﬂ Ex.s1 l ii (T XS)) frrx ,3> , (109)
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where the equation (109) holds because E[z] = 0. Because the subsamplings are identically distributed, we have

k
Ex.s.7 % Z (T7X8,) T/ X| =1, - Ex.s.+ {si (T x8;)" TIX} (110)
7 =1,-E [s T/ xS,) T/ X (szsT egeT
=1, - Exs7 |Si (T XS;) T, iS; +SiS; (111)
~1, - Es [si (T7x8,)" zjsisﬂ (112)
=1, - Es [S:S/] (113)
=1 -a)l, (114)

where the equation (112) holds because E[XS¢] = 0. Thus

- N ~ 2
Bx s [RGB = (1= w2815 + 20~ Wby [(8.6 - B™)] 4 1By |6~ 5[] 1)
= (1= w)® +2(1 = wp(l — o) + RS, (116)
where the last equality holds because (3, 3) = ||,6'H§ =1.
E.2 Proof of Equation (38) (Generalized Dropout)
For k — oo, dropout minimizes the expected loss:
2
Es, [6:(8)] = Es, [|[X8:878' vl (117)

The expected loss is convex in (', so we can find its minimizer by the first order optimality condition:
VaEs, [t:(8)] = Es, [S;S{ X" (X8,8{/ 8 —y)] =0 (118)
Thus,
B = (Es, [$:S/XTX8,;8]]) " Es, [S:8/]XTy. (119)

Turning first to the inverse, consider that

[Es, [SiS{XTXS;S]]],, = [X"X],, Pr(j € Si,L € Sy), (120)
and that
Pr(j €Site Si) - {Zjaz ic)ftiejvfi’se. (121)
This gives us
Es, [S:S/X"XS;S] = AX XA + diag(X " X)(A — A?), (122)
where A = diag(a). By a similar and simpler argument,
Es, [SiS/] = A, (123)
which all together yields
= (AXTXA + diag(XX)(I, - A)A) ' AX Ty (124)
= A (XTX + A 'diag(XX)(I, - A)) " X y. (125)
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F PROOFS OF LEMMAS A.1 and A.2

F.1 Proof of Lemma A.1
Y
Y,

pseudo-inverse of X in the same manner, such that Yo = STXI = ST (XTX)_1 XT. Then the Gram matrix
can be written as

Without loss of generality, let [Xl Xg} = X, such that X, = XS. Let { ] = X' be a partitioning of the

XX, X/X
XX = |Jhoh or? 126
[ngl X{ X, (126)

. .. . . . Ty -1 A B .
and using block matrix inversion, the inverse admits the form (X X) =lc bl The relevant quantities are
C=-DXJX; (X/X;)"' (127)
D= (XQTX2 ~XIX, (X7X) 7 x{xz)_ (128)
-1

= (X;HNull(XI)XQ) ; (129)

Where IynxT) 21, — (XI)T X/ denotes the projection onto the column space of X;. This gives

Y, = CX{ + DX, (130)
- DX/ (In ~ X, (X7X) 7 XI) (131)
= DX;HNuu(xlT) (X2X£ + HNuu(X;)) (132)
=X+ DXzTHNun(xlT)HNun(x;)' (133)

Let U, U,, and V be the matrices containing the left singular vectors of X, Myan(xg ), and iy x7), respec-
tively. Because the rows of X are independently drawn from a spherical Gaussian distribution, V has a uniform
distribution over orthogonal matrices in R"*15°. As such, Ev [VTU*\VTU] = 0. Then

Ex, DX;HNull(XI)HNuH(X;)} =Ev [(X;VVTXQY1 XQTVVTU*U*T} (134)
=Ev [(X]VVTXs) ' X]VEv [VTU.[VTU| U]] (135)
=0, (136)

which combined with (133) yields the first claim.

For the second claim, let V, denote the left singular vectors of X;, and observe that
Ev [VTU,|V'U,V,] =0. Then using similar arguments,

Ex, [X;—f(XﬁSTXT]

=Ex, [Xff(XﬂST (X; + DX;HNull(XI)HNuH(X;))} (137)
— Ex, [XI F(X2)ST (X; +(XIVVTX,) ' X] VEy [VTU* VTU,V*} UI)] (138)
= Ex, [X] /(X2)SX]] (139)

=0. (140)
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F.2 Proof of Lemma A.2

Define Iy jx ) L1, - (XT)T X T, the projection operator onto the null space of X . Then for the first claim,

B, | (07%)' 7] (070" 77|

= Er, 1, [(XTTlTIX)’1 XTT,T] T, T} X (XTTQTJX)“] (141)
- [(XTTlTlTX)_l X'T, T, (X (xx")'xT + HNHH(XT)) T,T] X (XTTQTQTX)_l} (142)
= (XX +Ep 1 [(XTTlTlTX)_l XT3 T Ty x ) Ta T3 X (XTTzTgx)‘l} (143)
= (xxN)'+ |T17‘L|2T2‘ (X T T X) " X Tyyxr)X (X ToTX) (144)
= (x™x)". (145)

The equality (144) follows due the fact that, because of the distributional assumption on the rows of
X, XTT]-T;»'—X and TjT;»'— are conditionally independent given |T;|. The equality (145) follows because

X HyynxT) = 0.

For the second claim,

.
Er, 1, [((TIx)T T]) A(T]Y)' TQT]

=B, [TTX (X T X) A (YT, Y) T YT TLT] (146)
=B, [(X1)' X7+ Ty ) TV X (X T X) A (YTT,T]Y) T YT, (147)
— Enery (X)) A (Y TTY) " YT | (148)
= Enery [(X7) T A (YTTTIY) T YT (VY + Ty (149)
= (x") " aYf, (150)

where the equations (148) and (150) follow by similar arguments to those used to show the first claim.



