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A USEFUL LEMMAS

The following two lemmas will be useful in deriving the bias and variance terms of the ensemble risk. Their
proofs can be found in Section F.

Lemma A.1. Let S ⊆ [p] be a subset with corresponding selection matrix S, and let Sc be the selection matrix
corresponding to Sc. Then for a random matrix X ∈ Rn×p with rows independently drawn from N (0, Ip) such
that n > |S|, and for any random function f : Rn×|S| → Rn×|S| that f(XS) and XSc are independent,

EXSc

[
S>X†

]
= (XS)

†
(44)

and

EXSc

[
Sc>X>f(XS)S>X†

]
= 0. (45)

Lemma A.2. Let T1, T2 ⊆ [n] be independent random subsets with corresponding selection matrices T1,T2 such

that E
[
TjT

>
j

]
=
|Tj |
n In. Then for random matrices X ∈ Rn×pX ,Y ∈ Rn×pY independent of T1 and T2 with

independent and identically distributed rows such that X>TjT
>
j X and Y>TjT

>
j Y are invertible, and for any

matrix A ∈ RpX×pY ,

ET1,T2

[(
T>1 X

)†
T>1

((
T>2 X

)†
T>2

)>]
=
(
X>X

)†
(46)

and

ET1,T2

[((
T>1 X

)†
T>1

)>
A
(
T>2 Y

)†
T>2

]
=
(
X†
)>

AY†. (47)

B PROOF OF LEMMA 3.2 (BIAS)

To compute the bias, we need to evaluate terms of the form

EX,S,T

〈
ββ>,

(
Ip − Si

(
T>i XSi

)†
T>i X

)> (
Ip − Sj

(
T>j XSj

)†
T>j X

)〉
. (48)

First, we note that since SiS
>
i + SciS

c
i
> = Ip,

Ip − Si
(
T>i XSi

)†
T>i X = Ip − Si

(
T>i XSi

)†
T>i X

(
SiS

>
i + SciS

c
i
>
)

(49)

= Ip − SiS
>
i − Si

(
T>i XSi

)†
T>i XSciS

c
i
> (50)

=
(
Ip − Si

(
T>i XSi

)†
T>i X

)
SciS

c
i
>. (51)

So, we can equivalently evaluate

EX,S,T

〈
ββ>,SciS

c
i
>
[
Ip −X>Ti

(
S>i X>Ti

)†
S>i

] [
Ip − Sj

(
T>j XSj

)†
T>j X

]
ScjS

c
j
>
〉
. (52)

It suffices to evaluate the expectation of the second argument of the inner product:

EX,S,T

[
SciS

c
i
>
[
Ip −X>Ti

(
S>i X>Ti

)†
S>i

] [
Ip − Sj

(
T>j XSj

)†
T>j X

]
ScjS

c
j
>
]

= EX,S,T

[
SciS

c
i
>X>Ti

(
S>i X>Ti

)†
S>i Sj

(
T>j XSj

)†
T>j XS>i ScjS

c
j
>

− SciS
c
i
>X>Ti

(
S>i X>Ti

)†
S>i − Sj

(
T>j XSj

)†
T>j XScjS

c
j
> + SciS

c
i
>ScjS

c
j
>
]
. (53)
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The second and third terms are zero in expectation. To see this for the second term, observe that Sci
>X> and

S>i X> are independent and each zero-mean. An analogous argument applies to the third term. The fourth term
is equal to

|Sci ∩ Scj |
p

Ip. (54)

We now consider the case where i 6= j. To evaluate the first term, we first apply Lemma A.2. This simplifies the
expression to

EX,S

[
SciS

c
i
>X>

(
S>i X>

)†
S>i Sj (XSj)

†
XS>i ScjS

c
j
>
]
. (55)

Now let Si∩j , Si\j , Sj\i, and Sci∪j denote the selection matrices corresponding to the sets Si∩Sj , Si \Sj , Sj \Si,
and Sci ∩Scj , respectively. Without loss of generality, consider when Sci =

[
Sj\i Sci∪j

]
and Scj =

[
Si\j Sci∪j

]
. Then

the matrix inside this expectation is of the form

Sci

[
A B
C D

]
Scj
>, (56)

where

A = S>j\iX
> (S>i X>

)†
S>i Sj (XSj)

†
XSi\j (57)

B = S>j\iX
> (S>i X>

)†
S>i Sj (XSj)

†
XSci∪j (58)

C = Sci∪j
>X>

(
S>i X>

)†
S>i Sj (XSj)

†
XSi\j (59)

D = Sci∪j
>X>

(
S>i X>

)†
S>i Sj (XSj)

†
XSci∪j . (60)

In the case of B and C, because XSci∪j is independent of the remainder of the factors, EX [B] and EX [C] are
equal to 0. By applying the second claim of Lemma A.1, we observe that EX [A] is also equal to 0. This leaves

EX [D] = EX

[
Sci∪j

>X>EXSj\i

[(
S>i X>

)†
S>i Si∩j

]
EXSj\i

[
S>i∩jSj (XSj)

†
]

XSci∪j

]
(61)

= EX

[
Sci∪j

>X>
(
XSi∩jS

>
i∩jX

>)†XSci∪j

]
. (62)

We can evaluate the expectation of the pseudoinverse on its own since XSi∩j and XSci∪j are independent. This
matrix has a generalized inverse Wishart distribution with scale matrix In and |Si ∩ Sj | degrees of freedom,
which yields

EX

[(
XSi∩jS

>
i∩jX

>)†] =
|Si ∩ Sj |

n(n− |Si ∩ Sj | − 1)
In. (63)

This leaves

EX

[
Sci∪j

>X>
( |Si ∩ Sj |
n(n− |Si ∩ Sj | − 1)

In

)
XSci∪j

]
=

|Si ∩ Sj |
n− |Si ∩ Sj | − 1

I|Sc
i∩Sc

j |. (64)

Then the expectation in (55) becomes

ES
[ |Si ∩ Sj |

(n− |Si ∩ Sj | − 1)
Sci

[
0 0
0 I|Sc

i∩Sc
j |

]
Scj
>
]

=
|Si ∩ Sj ||Sci ∩ Scj |
p(n− |Si ∩ Sj | − 1)

Ip, (65)

and combing with (54), we have that the bias is equal to

|Sci ∩ Scj |
p

(
1 +

|Si ∩ Sj |
n− |Si ∩ Sj | − 1

)
‖β‖22. (66)

When i = j, by a similar argument, without the need to apply Lemma A.2, it follows that the bias is equal to

|Sci |
p

(
1 +

|Si|
|Ti| − |Si| − 1

)
‖β‖22. (67)
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C PROOF OF LEMMA 3.3 (VARIANCE)

To compute the variance, we need to evaluate the terms of the form

EX,T

〈
Si
(
T>i XSi

)†
T>i ,Sj

(
T>j XSj

)†
T>j

〉
. (68)

Let S be the selection matrix corresponding to the set Si ∩ Sj . Then

E
〈
Si
(
T>i XSi

)†
T>i ,Sj

(
T>j XSj

)†
T>j

〉

= E
〈
S>Si

(
T>i XSi

)†
T>i ,S

>Sj
(
T>j XSj

)†
T>j

〉
(69)

= E
〈
E
XSi\Sj

[
S>Si

(
T>i XSi

)†]
T>i ,EXSj\Si

[
S>Sj

(
T>j XSj

)†]
T>j

〉
(70)

= E
〈(

T>i XS
)†

T>i ,
(
T>j XS

)†
T>j

〉
. (71)

The equality (71) is the result of two applications of Lemma A.1.

In the case that i 6= j, an application of Lemma A.2 simplifies the above to

tr
(
EX

[(
S>X>XS

)−1
])

=
|Si ∩ Sj |

n− |Si ∩ Sj | − 1
. (72)

The equality comes from
(
S>X>XS

)−1
having an inverse Wishart distribution with scale matrix I|Si∩Sj | and n

degrees of freedom.

When i = j, we obtain a similar result directly without needing Lemma A.2. The above simplifies to

tr
(
EX

[(
S>i X>TiT

>
i XSi

)−1
])

=
|Si|

|Ti| − |Si| − 1
. (73)

D PROOF OF THEOREM 3.6

We first introduce the result due to Dobriban and Wager (2018). We note again, as we noted in the main text,
that in the setting of Σ = Ip, where the optimal ridge regression risk is equal to the estimation error of the
minimum mean squared error (MMSE) estimator, results on the value of this quantity predate the result of
Dobriban and Wager (2018). We refer the reader, for example, to the wireless communication literature (see,
e.g., Tulino and Verdú, 2004). However, Dobriban and Wager (2018) have developed the first results on ridge
regression risk for general Σ, and their clean theorem statement is simple and straightforward to use, even in
the Σ = Ip case.

Proposition D.1 (from Dobriban and Wager, 2018, Theorem 2.1). Assume that Σ = Ip and β ∼ N (0, p−1Ip).
Then in the limit as n, p→∞ with p/n→ γ, we have almost surely that

inf
λ
R(β̂ridge

λ ) =
1

2


γ − 1

γ
− σ2 +

√(
σ2 − γ − 1

γ

)2

+ 4σ2


 . (74)

We note that this expression is equal to σ2(R∗(1/σ2, γ) − 1) in the notation of Dobriban and Wager (2018),
where this transformation is necessary because we assume ‖β‖2 = 1 rather than σ = 1 and because we evaluate
the noise-free risk.

The minimizer of the large ensemble risk should satisfy the first-order optimality condition, so we begin by taking
its derivative.

dRens
α

dα
=

(−2(1− α) + 2σ2αγ)(1− α2γ)− ((1− α)2 + σ2α2γ)(−2αγ)

(1− α2γ)2
(75)

=
−α2γ + (γ(σ2 + 1) + 1)− 1

(1− α2γ)2
. (76)
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Thus the minimizer α∗ should satisfy

α2
∗γ − α∗(γ(σ2 + 1) + 1) + 1 = 0. (77)

From here, it is simply a matter of cumbersome algebra to show that the choice

α∗ =
γ(σ2 + 1) + 1−

√
(γ(σ2 + 1) + 1)2 − 4γ

2γ
(78)

is the valid root of this quadratic expression and is such that Rens
α∗ = infλR(β̂ridge

λ ). We here show a slightly
more interesting approach, leading to Corollary 3.7. First, we start from (77) and add a root of α∗ = 0, and
then we proceed to manipulate the resulting equation.

α∗(α
2
∗γ − α∗(γ(σ2 + 1) + 1) + 1) = 0 (79)

α∗ − α2
∗(γ(σ2 + 1) + 1) = −α3

∗γ (80)

2α∗ − α2
∗(γ(σ2 + 1) + 1) = α∗(1− α2

∗γ) (81)

2α∗ − α2
∗(γ(σ2 + 1) + 1)

1− α2
∗γ

= α∗. (82)

Continuing from this last equation,

α∗ =
2α∗ − α2

∗(γ(σ2 + 1) + 1)

1− α2
∗γ

(83)

=
2α∗ − σ2α2

∗γ − α2γ − α2 + 1− 1

1− α2
∗γ

(84)

=
1− α2γ − (1− 2α∗ + α2

∗)− σ2α2
∗γ

1− α2
∗γ

(85)

= 1− (1− α∗)2 + σ2α2
∗γ

1− α2
∗γ

(86)

= 1−Rens
α∗ . (87)

Thus, if α∗ is a root of (77) or α∗ = 0, then Rens
α∗ = 1− α∗. We proceed by checking the larger root of (77), but

before doing so, we derive the following equality:

(γ(σ2 + 1) + 1)2 − 4γ = (γ(σ2 + 1) + 1)2 − (4γ2(σ2 + 1) + 4γ) + 4γ2 + 4σ2γ2 (88)

= (γ(σ2 + 1) + 1− 2γ)2 + 4σ2γ2 (89)

= (γ(σ2 − 1) + 1)2 + 4σ2γ2. (90)

Now, we observe for the larger root (which we denote as α′∗) that

α′∗ =
γ(σ2 + 1) + 1 +

√
(γ(σ2 − 1) + 1)2 + 4σ2γ2

2γ
(91)

≥ 1

2

(
σ2 + 1 +

1

γ
+

∣∣∣∣σ2 − 1 +
1

γ

∣∣∣∣
)

(92)

=

{
σ2 + 1

γ if 1
γ > 1− σ2

1 if 1
γ ≤ 1− σ2.

(93)

Thus the only case where α′∗ is a valid hyperparameter choice (that is, α∗ ≤ min
{

1, γ−1
}

) is when σ2 = 0 and
γ = 1, in which case α∗ = 1 is a double root of (77). So it suffices to evaluate the smaller root even in that case.
Now that we know that α′∗ is not conatined in [0,min

{
1, γ−1

}
] (except in the aforementioned special case) and

that by inspection of Rens
α the asymptote at α = γ−1/2 is not contained in this interval, if we can show that the

smaller root (which we denote simply as α∗) of (77) is contained in this interval, then we know that it is the
minimizer of Rens

α .
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For the smaller root, it is clear from (78) that α∗ ≥ 0. We show by a series of equivalences that α∗ ≤ 1/γ:

α∗ =
1

2


σ2 + 1 +

1

γ
−
√(

σ2 − 1 +
1

γ

)2

+ 4σ2


 ≤ 1

γ
(94)

⇐⇒ σ2 + 1− 1

γ
≤
√(

σ2 − 1 +
1

γ

)2

+ 4σ2 (95)

⇐⇒
(
σ2 + 1− 1

γ

)2

≤
(
σ2 − 1 +

1

γ

)2

+ 4σ2 (96)

⇐⇒
(
σ2 − 1 +

1

γ

)2

+ 4σ2 − 4
σ2

γ
≤
(
σ2 − 1 +

1

γ

)2

+ 4σ2 (97)

⇐⇒
(
σ2 − 1 +

1

γ

)2

+ 4σ2 − 4
σ2

γ
≤
(
σ2 − 1 +

1

γ

)2

+ 4σ2 (98)

⇐⇒ 0 ≤ σ2

γ
. (99)

The last inequality is always true. Further, we note that every equivalence here still holds under strict inequalities,
so for σ > 0, we have that α∗ < γ−1. By a similar argument, we can show that α∗ ≤ 1 and that α∗ < 1 if and
only if σ > 0. By the form of the derivative in (76), we know that α∗, as the smaller root, is a local minimum,
and therefore it must be the minimum of Rens

α on [0,min
{

1, γ−1
}

]. Evaluating the risk at α∗, we have

Rens
α∗ = 1− α∗ (100)

= 1− 1

2


σ2 + 1 +

1

γ
−
√(

σ2 − 1 +
1

γ

)2

+ 4σ2


 (101)

=
1

2


1− σ2 − 1

γ
+

√(
σ2 − 1 +

1

γ

)2

+ 4σ2


 (102)

=
1

2


γ − 1

γ
− σ2 +

√(
σ2 − γ − 1

γ

)2

+ 4σ2


 (103)

= inf
λ
R(β̂ridge

λ ). (104)

E PROOFS OF DISCUSSION RESULTS

E.1 Proof of Equation (35) (µ-scaled Risk)

Under the assumption that Σ = Ip, the µ-scaled risk is given by

R(µβ̂ens) =
∥∥∥β − µβ̂ens

∥∥∥
2

2
(105)

=
∥∥∥(1− µ)β + µ(β − β̂ens)

∥∥∥
2

2
(106)

= (1− µ)2‖β‖22 + 2(1− µ)µ
〈
β,β − β̂ens

〉
+ µ2

∥∥∥β − β̂ens
∥∥∥

2

2
(107)

Examining the inner product, we find that

EX,z,S,T

[〈
β,β − β̂ens

〉]
=
〈
β,EX,z,S,T

[
β − β̂ens

]〉
(108)

=

〈
β,EX,S,T

[
Ip −

1

k

k∑

i=1

Si
(
T>i XSi

)†
T>i X

]
β

〉
, (109)
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where the equation (109) holds because E[z] = 0. Because the subsamplings are identically distributed, we have

EX,S,T

[
Ip −

1

k

k∑

i=1

Si
(
T>i XSi

)†
T>i X

]
= Ip − EX,S,T

[
Si
(
T>i XSi

)†
T>i X

]
(110)

= Ip − EX,S,T

[
Si
(
T>i XSi

)†
T>i X

(
SiS

>
i + SciS

c
i
>
)]

(111)

= Ip − ES
[
Si
(
T>i XSi

)†
T>i XSiS

>
i

]
(112)

= Ip − ES
[
SiS

>
i

]
(113)

= (1− α)Ip, (114)

where the equation (112) holds because E[XSci ] = 0. Thus

EX,z,S,T [R(µβ̂ens)] = (1− µ)2‖β‖22 + 2(1− µ)µEX,z,S,T

[〈
β,β − β̂ens

〉]
+ µ2EX,z,S,T

[∥∥∥β − β̂ens
∥∥∥

2

2

]
(115)

= (1− µ)2 + 2(1− µ)µ(1− α) + µ2Rens
α , (116)

where the last equality holds because 〈β,β〉 = ‖β‖22 = 1.

E.2 Proof of Equation (38) (Generalized Dropout)

For k →∞, dropout minimizes the expected loss:

ESi [`i(β
′)] = ESi

[∥∥XSiS
>
i β
′ − y

∥∥2

2

]
. (117)

The expected loss is convex in β′, so we can find its minimizer by the first order optimality condition:

∇β′ESi
[`i(β

′)] = ESi

[
SiS

>
i X>

(
XSiS

>
i β
′ − y

)]
= 0 (118)

Thus,

β̂ =
(
ESi

[
SiS

>
i X>XSiS

>
i

])−1 ESi

[
SiS

>
i

]
X>y. (119)

Turning first to the inverse, consider that

[
ESi

[
SiS

>
i X>XSiS

>
i

]]
j`

=
[
X>X

]
j`

Pr(j ∈ Si, ` ∈ Si), (120)

and that

Pr(j ∈ Si, ` ∈ Si) =

{
αj if j = `,

αjα` otherwise.
(121)

This gives us

ESi

[
SiS

>
i X>XSiS

>
i

]
= AX>XA + diag(X>X)(A−A2), (122)

where A = diag(α). By a similar and simpler argument,

ESi

[
SiS

>
i

]
= A, (123)

which all together yields

β̂ =
(
AX>XA + diag(X>X)(Ip −A)A

)−1
AX>y (124)

= A−1
(
X>X + A−1diag(X>X)(Ip −A)

)−1
X>y. (125)
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F PROOFS OF LEMMAS A.1 and A.2

F.1 Proof of Lemma A.1

Without loss of generality, let
[
X1 X2

]
= X, such that X2 = XS. Let

[
Y1

Y2

]
= X† be a partitioning of the

pseudo-inverse of X in the same manner, such that Y2 = S>X† = S>
(
X>X

)−1
X>. Then the Gram matrix

can be written as

X>X =

[
X>1 X1 X>1 X2

X>2 X1 X>2 X2

]
, (126)

and using block matrix inversion, the inverse admits the form
(
X>X

)−1
=

[
A B
C D

]
. The relevant quantities are

C = −DX>2 X1

(
X>1 X1

)−1
(127)

D =
(
X>2 X2 −X>2 X1

(
X>1 X1

)−1
X>1 X2

)−1

(128)

=
(
X>2 ΠNull(X>1 )X2

)−1

, (129)

Where ΠNull(X>1 ) , In −
(
X>1
)†

X>1 denotes the projection onto the column space of X1. This gives

Y2 = CX>1 + DX>2 (130)

= DX>2

(
In −X1

(
X>1 X1

)−1
X>1

)
(131)

= DX>2 ΠNull(X>1 )

(
X2X

†
2 + ΠNull(X>2 )

)
(132)

= X†2 + DX>2 ΠNull(X>1 )ΠNull(X>2 ). (133)

Let U, U∗, and V be the matrices containing the left singular vectors of X2, ΠNull(X>2 ), and ΠNull(X>1 ), respec-
tively. Because the rows of X are independently drawn from a spherical Gaussian distribution, V has a uniform
distribution over orthogonal matrices in Rn×|Sc|. As such, EV

[
V>U∗|V>U

]
= 0. Then

EX1

[
DX>2 ΠNull(X>1 )ΠNull(X>2 )

]
= EV

[(
X>2 VV>X2

)−1
X>2 VV>U∗U

>
∗

]
(134)

= EV

[(
X>2 VV>X2

)−1
X>2 VEV

[
V>U∗

∣∣∣V>U
]

U>∗

]
(135)

= 0, (136)

which combined with (133) yields the first claim.

For the second claim, let V∗ denote the left singular vectors of X1, and observe that
EV

[
V>U∗|V>U,V∗

]
= 0. Then using similar arguments,

EX1

[
X>1 f(X2)S>X†

]

= EX1

[
X>1 f(X2)S>

(
X†2 + DX>2 ΠNull(X>1 )ΠNull(X>2 )

)]
(137)

= EX1

[
X>1 f(X2)S>

(
X†2 +

(
X>2 VV>X2

)−1
X>2 VEV

[
V>U∗

∣∣∣V>U,V∗

]
U>∗

)]
(138)

= EX1

[
X>1 f(X2)S>X†2

]
(139)

= 0. (140)
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F.2 Proof of Lemma A.2

Define ΠNull(X>) , In−
(
X>
)†

X>, the projection operator onto the null space of X>. Then for the first claim,

ET1,T2

[(
T>1 X

)†
T>1

((
T>2 X

)†
T>2

)>]

= ET1,T2

[(
X>T1T

>
1 X
)−1

X>T1T
>
1 T2T

>
2 X

(
X>T2T

>
2 X
)−1
]

(141)

= ET1,T2

[(
X>T1T

>
1 X
)−1

X>T1T
>
1

(
X
(
XX>

)†
X> + ΠNull(X>)

)
T2T

>
2 X

(
X>T2T

>
2 X
)−1
]

(142)

=
(
XX>

)†
+ ET1,T2

[(
X>T1T

>
1 X
)−1

X>T1T
>
1 ΠNull(X>)T2T

>
2 X

(
X>T2T

>
2 X
)−1
]

(143)

=
(
XX>

)†
+
|T1||T2|
n2

(
X>T1T

>
1 X
)−1

X>ΠNull(X>)X
(
X>T2T

>
2 X
)−1

(144)

=
(
X>X

)†
. (145)

The equality (144) follows due the fact that, because of the distributional assumption on the rows of
X, X>TjT

>
j X and TjT

>
j are conditionally independent given |Tj |. The equality (145) follows because

X>ΠNull(X>) = 0.

For the second claim,

ET1,T2

[((
T>1 X

)†
T>1

)>
A
(
T>2 Y

)†
T>2

]

= ET1,T2

[
T1T

>
1 X

(
X>T1T

>
1 X
)−1

A
(
Y>T2T

>
2 Y
)−1

Y>T2T
>
2

]
(146)

= ET1,T2

[((
X>
)†

X> + ΠNull(X>)

)
T1T

>
1 X

(
X>T1T

>
1 X
)−1

A
(
Y>T2T

>
2 Y
)−1

Y>T2T
>
2

]
(147)

= EΠ(T2)

[(
X†
)>

A
(
Y>T2T

>
2 Y
)−1

Y>T2T
>
2

]
(148)

= EΠ(T2)

[(
X†
)>

A
(
Y>T2T

>
2 Y
)−1

Y>T2T
>
2

(
YY† + ΠNull(Y>)

)]
(149)

=
(
X†
)>

AY†, (150)

where the equations (148) and (150) follow by similar arguments to those used to show the first claim.


