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Figure 7: Strength of the main effect of X; implied by the coefficients of the multiplication model (3) for various settings
of «, B. The setting a = 8 = 0 mean-centers the main effects, but does not mean-center the interaction effect. In contrast,
the four settings with a8 = —px, x, also mean-center (X; — o)(X2 — ). Strength of the main effect of X is measured
as b+ df. In all experiment settings,a = 0,b=c=d = 1.

A Multiplication Model

The challenge of selecting «, 8 in the multiplication model (3) is not overcome by simply mean-centering all of the effects.
For correlated X7, X5 with E[X ] = 0,E[X5] = 0, we have E[(X; — a)(X2 — 8)] = px,.x, + @f. Thus, if we would
want the intercept a to represent E[Y], we must carefully select «v, 5 such that 8 = —px, x,. This selection process has
a degree of freedom. As shown in Fig. 7, different choices of «, 5 lead to very different conclusions about the strengths of
the main effects. Thus, we need rules to pick particular coefficients from this equivalence class of models.

B Algorithm Intuition

Fig. 8 is an illustration of applying the mass-moving algorithm (Alg. 2) to purify an “OR” model into the canonical “XOR”
representation. Each row in this figure represents a step in the mass-moving process, beginning with the representation in
Fig. 1a and finishing with the representation in Fig. 1d.
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Figure 8: An illustration of applying Alg. 2 to transform the representation in Fig. 1b into the canonical form in Fig. 1d.
In each row, we have an overall intercept fj, main effects f; and fs, and an interaction effect f5. Red indicates a positive
and blue a negative effect. To move from representation (1) to representation (2), we move the row-means of f3 into the
corresponding entries in f;. To move from representation (2) to representation (3), we move the column-means of f3 into
the corresponding entries in f2. In representation (3), there is no more mass to move from fs, so turn our attention to f;
and f;. We move these means into the overall intercept fj, resulting in representation (4). At this point, there is no mass

to move in any function, so we have achieved the canonical form with pure interaction effects.
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C Analysis

We will prove the rate of convergence by setting an upper-bound on M*:

Lemma 3. Forany T, 3, w, ), if iteration t set the column means to be zero, then

M <=3 min > (22 — ¢;) (min > (wik — iw g)ch ) (16)

je 7 lie, P Wi ke

C.1 Proof of Lemma 3

Proof. Let us consider a matrix 7" representing the interaction effect of variables X, and X;. Let X, take on values from
the set €2,,, and X}, take on values from the set 2, with m = |Q,|, n = |Q]. Let w be a density defined on ), and Q,
normalized such that Zz‘eﬂa > jeq, Wi,; = 1. Without loss of generality, we assume that 7" is mean-centered such that
> icq, 2jeq, Wi, Ti,; = 0. For clarity, we also use the shorthand:

w= > wi (17a)
1€Q,

wi. =Y wi (17b)
JEQ

Without loss of generality, we can assume that iteration ¢ set all of the column-means to zero. Then iteration ¢ 4 1 will set
the row means to zero, and:

MY =3 " w |t (18a)
JEQ
=D w, L > wigrt (18b)
FEQ Wij i€Q,
= Z Z wmrf (18C)
e 1i€Qq
1
=2 | 2w (D wine) (18d)
FEQ lieQ, ke
1
= min Z (wi,j — (bjwz,)—( Z wi,kc’,i_l) (18e)
JEQ % i, Wi, peq,
= Z min Z (& —¢;)( Z wi,kc’;—l) (18f)
jeQy 7 lieQ, Wi,- ke,
= Z min Z (& — (bj)(min Z (Wi — Q/Jiw.’k)cfjl) (18g)
jea, ¥ liea, Wir Vi o,

where (18e) holds because Zieﬂa > ke, Wi, kcz_l is the overall mean of the matrix, which is zero. O
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C.2 Proof of Theorem 1

Proof. Under the assumptions of Lemma 3,

ML <Y min > (w ¢J)(H$.n > (wig — iw k) ) by Lemma 3 (19a)
je, 7 lieQa v " keQ,
’LUZ‘,]‘ 1 . 1
= Z Z (—= - *)(mm Z (wi ) — Yw.g)cy ) (19b)
FEQ lieQ, Wi, no ke,
= Z Z (0)(min Z (wi ke — piw.k)ch ) for uniform w (19¢)
jey lieQ, Vi e,
=0 (19d)
O

C.3 Proof of Theorem 2

Proof. For any normalized w,

M= min | S (= — ) (min Y (wi — Yigw.)e ) by Lemma 3 (202)
JEQ %5 i€, i ke,
. Wy j . Wik Vi -
=2 min| D (=g minw, D (0 = M )d ! (200)
jeq, 7 lien, Y o7 ke, " b
. w;
= min (0 X e 20
JEQ i i€, ke, 1#i
. Wi, 5 _
< min Z (w—j — ¢;) Z w. ekt (20d)
JEQ 7 lieQq Y ke
< > min Z(%—@ > wore ! T={ke:g >0} (200)
JEQ % |ica, Wi kEK+
< 3 min| 0 (4 g Ly (201
jey 7 lie, Y
1 _ .
< GMTH S min Z(w — &) (20g)
jey, ¥ licq,
1
< 2Mt 1 Z Z mm — ¢, (20h)
ica, jeo, P 1 Wir
1
< 2Mt P w (20i)
i€Q,
1
= 2M -1 (209)

So the divergence from the fANOVA decomposition is cut in half each iteration. This is a loose bound which could be
tightened by examining the dispersion of the density. O
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D Empirically Measuring Purification Convergence

Purification by the mass-moving algorithm converges in a very small number of iterations. We examine this behavior
empirically by generating tensors 7' ~ N (0, cI) with weight values either: (1) uniform distribution: w o 1 or (2) drawn
from a multivariate normal distribution: w ~ N (0, 0I) of dimension P. Results for a variety of settings of o and P are
shown in Figures 9 and 10. In all cases, we see that the mass-moving algorithm moves almost all of the mass in the first
iteration. In the case of the uniform weight distribution, we confirm that the mass-moving algorithm takes only a single
iteration (per row/column) to convergence. These results show that the mass-moving algorithm can scale to purify large
models.
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Figure 9: Convergence of the mass-moving algorithm under uniform weight distributions. In all settings, the unpurified
effect matrix is drawn from N(0,07) of dimension P while the weighting is uniform. In all settings, the algorithm
converges in a single iteration.
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Figure 10: Convergence of the mass-moving algorithm under random weight distributions. In all settings, In all settings,
the unpurified effect matrix is drawn from N (0, o) of dimension P while the weighting is drawn from a P-dimensional
normal distribution N (0, T). Errorbars indicate the mean + stddev. over 100 experiments. In all settings, the algorithm
converges in a small number of iterations.
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Method ‘ XOR ‘ OR AND ‘ Mean ‘ % Improvement
GAM 60+4 | 7244 60L5 64+4 -
GA2M-Purified | 36 +5 | 64+5 63+£10 | Hb4£7 15.6
XGB 15+9 | 132£10 | 256+6 | 134£8 -
XGB2-Purified | 1£1 | 1168 | 114+22 | 77£10 42.5

Table 3: Total squared error of the recovery of pure main effects from simulation data, where the outcome is generated
according to the column title. Values displayed are the (mean =+ std) over five runs.

E Recovery of Main Effects from Simulation Data

We evaluate the effectiveness of our purification algorithm to generate the fANOVA decomposition by comparing recovery
error of main effects from simulation data. We test the following continuous versions of the bitwise logical operators:

° AND(Xl,XQ) :min(Xl,Xg)
o OR(Xl, XQ) = max(Xl,Xg)
e XOR(X),Xs) = —AND(X1, X5) + 0.5X, +0.5X,

where X1, X5 are N(0,1). In addition to these two variables, we generate P nuisance variables with linear main effects.
Mean squared error of the implied main effects are shown in Table 3 for P = 5 and 100 training samples and purification

with respect to the Laplace-smoothed empirical distribution. The reduced squared error of the purified models indicates
that this algorithm recovers the correct decomposition, even surpassing additive models without interactions in some cases.

F COMPAS

Shown in Fig. 11 are main effects effects implied by purification of models to predict the ground-truth recidivism label in
the COMPAS dataset.
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Figure 11: Main effects of additive models with interactions trained on the COMPAS dataset for ground-truth recidivism.
We see that the implications of the main effects depends on both the model trained and the distribution used for purification.
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G Interactions Studied in Wright, Ziegler, and Konig 2016

The data generators studied in Wright, Ziegler, and Konig 2016 are depicted in Fig. 12. Please refer to Section 7.1 of the
main text for a discussion of the implications of these models.
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Figure 12: Several models of genetic interaction effects. (Left) Representations presented in Wright, Ziegler, and Konig
(2016) (Right) Representations purified according to a uniform distribution. For visual clarity, we have removed the overall
intercept.

H The Mystery of log( X, X5)

To test that our mass-moving procedure recovers the correct decomposition, we generate data according to the model:

Y = (1-X)log(X1X3) + AM(X:1X,), 210
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which allows us to control how much the function applied to X; X5 behaves like log() for A &~ 0 vs. multiplicative
interaction for A ~ 1. By varying A € [0, 1], we can examine the ability of Alg. 2 to distinguish these effects.
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Figure 13: Pure Main Effects of the log model (21). The purification algorithm recovers the transition from logarithmic to
linear main effects.

As shown in Fig. 13, the main effects recovered at A = 0 are logarithmic, and the interaction effect completely disappears.
As ) increases, the main effects transition toward linearity, and the interaction effect returns, becoming the continuous
variant of XOR. In fact, for any A # 0, the pattern of the pure interaction effect is the same, and the overall strength of
the interaction effect increases as A — 1.*

*The base of the logarithm does not alter the shape of the interaction, but does affect how rapidly C' varies with \.



