
Bingcong Li, Meng Ma, Georgios B. Giannakis

Appendix
A Useful Lemmas and Facts

Lemma 7. [Nesterov, 2004, Theorem 2.1.5]. If f is convex and has L-Lipschitz gradient, then the following inequalities
are true

f(x)− f(y) ≤ 〈∇f(y),x− y〉+
L

2
‖x− y‖2 (9a)

f(x)− f(y) ≥ 〈∇f(y),x− y〉+
1

2L

∥∥∇f(x)−∇f(y)
∥∥2

(9b)

〈∇f(x)−∇f(y),x− y〉 ≥ 1

L

∥∥∇f(x)−∇f(y)
∥∥2
. (9c)

Note that inequality (9a) does not require the convexity of f .

Lemma 8. [Nesterov, 2004]. If f is µ-strongly convex and has L-Lipschitz gradient, with x∗ := arg minx f(x), the
following inequalities are true

2µ
(
f(x)− f(x∗)

)
≤ ‖∇f(x)‖2 ≤ 2L

(
f(x)− f(x∗)

)
(10a)

µ‖x− x∗‖ ≤ ‖∇f(x)‖ ≤ L‖x− x∗‖ (10b)

µ

2
‖x− x∗‖2 ≤ f(x)− f(x∗) ≤ L

2
‖x− x∗‖2 (10c)〈

∇f(x)−∇f(y),x− y
〉
≥ µ‖x− y‖2. (10d)

Proof. By definition f(x∗) − f(x) ≥ 〈∇f(x),x∗ − x〉 + µ
2 ‖x − x∗‖, minimizing over x − x∗ on the RHS results in

(10a). Inequality (10b) follows from [Nesterov, 2004, Theorem 2.1.9] and the fact ∇f(x∗) = 0. Inequality (10c) is from
[Nesterov, 2004, Theorem 2.1.7]; and, (10d) is from [Nesterov, 2004, Theorem 2.1.9]

Proof of Lemma 3:

Proof. If t1 6= t2, Nt1:t and Nt2:t are disjoint by definition, since the most recent calculated snapshot gradient can only
appear at either t1 or t2. Since {Bt} are i.i.d., one can find the probability of Nt1:t as

P(Nt1:t) =

1
m

(
1− 1

m

)t−t1 if 1 ≤ t1 ≤ t(
1− 1

m

)t
if t1 = 0.

(11)

Hence one can verify that

t∑
t1=0

P(Nt1:t) =
(

1− 1

m

)t
+

t−1∑
t1=1

1

m

(
1− 1

m

)t−t1
+

1

m

(
1− 1

m

)t
+

1

m

1− 1
m − (1− 1

m)t

1− (1− 1
m)

+
1

m
= 1

which completes the proof.

B Technical Proofs in Section 3.1

B.1 Proof of Lemma 4

The following lemmas are needed for the proof.

Lemma 9. The following equation is true for t > t1

E
[
‖∇F (xt)− vt‖2|Nt1:t

]
=

t∑
τ=t1+1

E
[
‖vτ − vτ−1‖2|Nt1:t

]
−

t∑
τ=t1+1

E
[
‖∇F (xτ)−∇F (xτ−1)‖2|Nt1:t

]
.

On the Convergence of SARAH and Beyond

Proof. Consider that

E
[
‖∇F (xt)− vt‖2|Ft−1, Nt1:t

]
=E
[
‖∇F (xt)−∇F (xt−1) +∇F (xt−1)− vt−1 + vt−1 − vt‖2|Ft−1, Nt1:t

]
=‖∇F (xt)−∇F (xt−1)‖2 + E

[
‖vt − vt−1‖2|Ft−1, Nt1:t

]
+ ‖∇F (xt−1)− vt−1‖2

+ 2
〈
∇F (xt)−∇F (xt−1),∇F (xt−1)− vt−1

〉
+ 2E

[〈
∇F (xt)−∇F (xt−1),vt−1 − vt

〉
|Ft−1, Nt1:t

]
+ 2E

[〈
∇F (xt−1)− vt−1,vt−1 − vt

〉
|Ft−1, Nt1:t

]
=E
[
‖vt − vt−1‖2|Ft−1, Nt1:t

]
− ‖∇F (xt)−∇F (xt−1)‖2 + ‖∇F (xt−1)− vt−1‖2 (12)

where the last equation is because E[vt − vt−1|Ft−1, Nt1:t] = ∇F (xt) − ∇F (xt−1). We can expand E[‖∇F (xt−1) −
vt−1‖2|Ft−2, Nt1:t] using the same argument. Note that we have∇F (xt1) = vt1 , which suggests

E
[
‖∇F (xt1+1)− vt1+1‖2|Ft1 , Nt1:t

]
= E

[
‖vt1+1−vt1‖2|Ft1 , Nt1:t

]
−‖∇F (xt1+1)−∇F (xt1)‖2.

Then taking expectation w.r.t. Ft−1 and expanding E[‖∇F (xt−1)− vt−1‖2] in (12), the proof is completed.

Proof of Lemma 4: The implication of this Lemma 3 is that law of total probability [Gubner, 2006] holds. Specifically,
for a random variable Ct that happens in iteration t, the following equation holds

E
[
Ct
]

=

t∑
t1=0

E
[
Ct|Nt1:t

]
P{Nt1:t}. (13)

Now we turn to prove Lemma 4. To start with, consider that when t1 6= t

E
[
‖vt‖2|Ft−1, Nt1:t

]
= E

[
‖vt − vt−1 + vt−1‖2|Ft−1, Nt1:t

]
= ‖vt−1‖2 + E

[
‖vt − vt−1‖2|Ft−1, Nt1:t

]
+ 2E

[
〈vt−1,vt − vt−1〉|Ft−1, Nt1:t

]
(a)
= ‖vt−1‖2 + E

[
‖vt − vt−1‖2 +

2

η

〈
xt−1 − xt,∇fit(xt)−∇fit(xt−1)

〉∣∣∣Ft−1, Nt1:t

]
(b)

≤ ‖vt−1‖2 + E
[
‖vt − vt−1‖2 −

2

ηL
‖∇fit(xt)−∇fit(xt−1)‖2

∣∣∣Ft−1, Nt1:t

]
= ‖vt−1‖2 + E

[
‖vt − vt−1‖2 −

2

ηL
‖vt − vt−1‖2

∣∣∣Ft−1, Nt1:t

]
= ‖vt−1‖2 + E

[(
1− 2

ηL

)
‖vt − vt−1‖2

∣∣∣Ft−1, Nt1:t

]
where (a) follows from (2) and the update xt = xt−1 − ηvt−1; and (b) is the result of (9c). Then by choosing η such that
1− 2

ηL < 0, i.e., η < 2/L, we have

E
[∥∥vt − vt−1‖2|Ft−1, Nt1:t

]
≤ ηL

2− ηL

(
‖vt−1‖2 − E

[
‖vt‖2|Ft−1, Nt1:t

])
. (14)

Plugging (14) into Lemma 9, we have

E
[
‖∇F (xt)− vt‖2|Ft1−1, Nt1:t

]
≤

t∑
τ=t1+1

E
[
‖vτ − vτ−1‖2|Ft1−1, Nt1:t

]
=

ηL

2− ηL
E
[
‖vt1‖2|Ft1−1, Nt1:t

]
=

ηL

2− ηL
‖∇F (xt1)‖2

where the last equation is because conditioning on Nt1:t, vt1 = ∇F (xt1). Note that when t1 = t, this inequality automat-
ically holds since the LHS equals to 0. Because the randomness of ∇F (xt1) is irrelevant to Bt1 (thus Nt1:t), after taking
expectation w.r.t. Ft1−1, we have

E
[
‖∇F (xt)− vt‖2|Nt1:t

]
≤ ηL

2− ηL
E
[
‖∇F (xt1)‖2|Nt1:t

]
=

ηL

2− ηL
E
[
‖∇F (xt1)‖2

]

Bingcong Li, Meng Ma, Georgios B. Giannakis

which proves the first part of Lemma 4.

For the second part of Lemma 4, by calculating the probability of Nt1:t as in (11), we have

E
[
‖∇F (xt)− vt‖2

] (c)
=

t−1∑
t1=0

E
[
‖∇F (xt)− vt‖2|Nt1:t

]
P{Nt1:t}

≤
t−1∑
t1=0

ηL

2− ηL
E
[
‖∇F (xt1)‖2

]
P{Nt1:t}

=
ηL

2− ηL

[
1

m

t−1∑
τ=1

(
1− 1

m

)t−τ
E
[
‖∇F (xτ)‖2

]
+
(

1− 1

m

)t
‖∇F (x0)‖2

]

where (c) uses (13), and E
[
‖∇F (xt)− vt‖2|Nt:t

]
= 0. The proof is thus completed.

B.2 Proof of Theorem 1

Following Assumption 1, we have

F (xt+1)− F (xt) ≤
〈
∇F (xt),xt+1 − xt

〉
+
L

2
‖xt+1 − xt‖2

= −η
〈
∇F (xt),vt

〉
+
η2L

2
‖vt‖2

= −η
2

[
‖∇F (xt)‖2 + ‖vt‖2 − ‖∇F (xt)− vt‖2

]
+
η2L

2
‖vt‖2 (15)

where the last equation is because 〈a,b〉 = 1
2 [‖a‖2 + ‖b‖2 − ‖a− b‖2]. Rearranging the terms, we arrive at

‖∇F (xt)‖2 ≤
2
[
F (xt)− F (xt+1)

]
η

+ ‖∇F (xt)− vt‖2 −
(
1− ηL

)
‖vt‖2

≤
2
[
F (xt)− F (xt+1)

]
η

+ ‖∇F (xt)− vt‖2

where the last inequality holds since η < 1/L. Taking expectation and summing over t = 1, . . . , T , we have

T∑
t=1

E
[
‖∇F (xt)‖2

]
≤

2
[
F (x1)− F (xT+1)

]
η

+

T∑
t=1

E
[
‖∇F (xt)− vt‖2

]
(a)

≤
2
[
F (x1)− F (xT+1)

]
η

+
ηL

2− ηL
1

m

T∑
t=1

t−1∑
τ=1

(
1− 1

m

)t−τ
E
[
‖∇F (xτ)‖2

]
+

ηL

2− ηL

T∑
t=1

(
1− 1

m

)t
‖∇F (x0)‖2

(b)

≤
2
[
F (x1)− F (xT+1)

]
η

+
ηL

2− ηL
1

m

T−1∑
t=1

[T−t∑
τ=1

(
1− 1

m

)τ]
E
[
‖∇F (xt)‖2

]
+

mηL

2− ηL
‖∇F (x0)‖2

(c)

≤
2
[
F (x1)− F (xT+1)

]
η

+
ηL

2− ηL

T∑
t=1

E
[
‖∇F (xt)‖2

]
+

mηL

2− ηL
‖∇F (x0)‖2

On the Convergence of SARAH and Beyond

where (a) is the result of Lemma 4; (b) is by changing the order of summation, and
∑T
t=1(1− 1

m)t ≤ m; and, (c) is again
by
∑T−t
τ=1(1− 1

m)τ ≤ m. Rearranging the terms and dividing both sides by T , we have

(
1− ηL

2− ηL

)
1

T

T∑
t=1

E
[
‖∇F (xt)‖2

]
≤

2
[
F (x1)− F (xT+1)

]
ηT

+
ηL

2− ηL
m

T
‖∇F (x0)‖2

≤
2
[
F (x1)− F (x∗)

]
ηT

+
ηL

2− ηL
m

T
‖∇F (x0)‖2. (16)

Finally, since v0 = ∇F (x0), we have

F (x1)− F (x0) ≤
〈
∇F (x0),x1 − x0

〉
+
L

2
‖x1 − x0‖2

= −η‖∇F (x0)‖2 +
η2L

2
‖∇F (x0)‖2 ≤ 0 (17)

where the last inequality follows from η < 1/L. Hence we have F (x1) ≤ F (x0), which is applied to (16) to have

(
1− ηL

2− ηL

)
1

T

T∑
t=1

E
[
‖∇F (xt)‖2

]
≤

2
[
F (x0)− F (x∗)

]
ηT

+
ηL

2− ηL
m

T
‖∇F (x0)‖2.

Now if we choose η < 1/L such that 1− ηL
2−ηL ≥ Cη with Cη being a positive constant, then we have

E
[
‖∇F (xa)‖2

]
=

1

T

T∑
t=1

E
[
‖∇F (xt)‖2

]
= O

(
F (x0)− F (x∗)

ηTCη
+
mηL‖∇F (x0)‖2

TCη

)
.

B.3 Proof of Corollaries 1 and 2

From Theorem 1, it is clear that upon choosing η = O(1/L), we have E
[
‖∇F (xa)‖2

]
= O(m/T). This means that

T = O(m/ε) iterations are needed to guarantee E
[
‖∇F (xa)‖2

]
= ε.

Per iteration requires n
m + 2(1− 1

m) IFO calls in expectation. And n IFO calls are required when computing v0.

Combining these facts together, we have that E
[
‖∇F (xa)‖2

]
= O(

√
n/T) if m = Θ(

√
n). And the IFO complexity is

n+
[
n
m + 2(1− 1

m)
]
T = O(n+ n/ε).

Similarly, if m = Θ(n), we have E
[
‖∇F (xa)‖2

]
= O(n/T). And the IFO complexity in this case becomes O(n+ n/ε).

B.4 Proof of Corollary 3

From Theorem 1, it is clear that with a large m, choosing η = O(1/
√
mL) leads to Cη ≥ 0.5. Thus we have

E
[
‖∇F (xa)‖2

]
= O(

√
m/T). This translates to the need of T = O(

√
m/ε) iterations to guarantee E

[
‖∇F (xa)‖2

]
= ε.

Choosing m = Θ(n), we have E
[
‖∇F (xa)‖2

]
= O(

√
n/T). And the number of IFO calls is n +

[
n
m + 2(1 − 1

m)
]
T =

O(n+
√
n/ε).

C Technical Proofs in Section 3.2

Using the Bernoulli random variable Bt introduced in (4), L2S (Alg. 2) can be rewritten in an equivalent form as Alg. 4.

Bingcong Li, Meng Ma, Georgios B. Giannakis

Algorithm 4 L2S Equivalent Form

1: Initialize: x0, η, m, T
2: Compute v0 = ∇F (x0)
3: x1 = x0 − ηv0

4: for t = 1, 2, . . . , T do
5: Randomly generate Bt: Bt = 1 w.p. 1

m , and Bt = 0 w.p. 1− 1
m

6: if Bt = 1 then,
7: vt = ∇F (xt)
8: else
9: vt = ∇fit(xt)−∇fit(xt−1) + vt−1

10: end if
11: xt+1 = xt − ηvt
12: end for
13: Output: randomly chosen from {xt}Tt=1

Recall that a known Nt1:t is equivalent to Bt1 = 1, Bt1+1 = 0, · · · , Bt = 0. Now we are ready to prove Lemma 5.

C.1 Proof of Lemma 5

It can be seen that Lemma 9 still holds for nonconvex problems, thus we have

E
[
‖∇F (xt)− vt‖2|Nt1:t

]
≤

t∑
τ=t1+1

E
[
‖vτ − vτ−1‖2|Nt1:t

]
=

t∑
τ=t1+1

E
[
‖∇fiτ (xτ)−∇fiτ (xτ−1)‖2|Nt1:t

]
≤ η2L2

t∑
τ=t1+1

E
[
‖vτ−1‖2|Nt1:t

]
= η2L2

t−1∑
τ=t1

E
[
‖vτ‖2|Nt1:t

]
(18)

where the last inequality follows from Assumption 1 and xτ = xτ−1 − ηvτ−1. The first part of this lemma is thus proved.
Next, we have

E
[
‖∇F (xt)− vt‖2

] (a)
=

t−1∑
t1=0

E
[
‖∇F (xt)− vt‖2|Nt1:t

]
P
{
Nt1:t

}
(b)

≤ η2L2
t−1∑
t1=0

t−1∑
τ=t1

E
[
‖vτ‖2|Nt1:t

]
P
{
Nt1:t

} (c)
= η2L2

t−1∑
τ=0

[τ∑
t1=0

E
[
‖vτ‖2|Nt1:t

]
P
{
Nt1:t

}]
(d)
= η2L2

t−1∑
τ=0

[
E
[
‖vτ‖2

]
−

t∑
t1=τ+1

E
[
‖vτ‖2|Nt1:t

]
P
{
Nt1:t

}]
(e)
= η2L2

t−1∑
τ=0

[
E
[
‖vτ‖2

]
−

t∑
t1=τ+1

E
[
‖vτ‖2

]
P
{
Nt1:t

}]

= η2L2
t−1∑
τ=0

[τ∑
t1=0

P
{
Nt1:t

}]
E
[
‖vτ‖2

]
= η2L2

t−1∑
τ=0

(
1− 1

m

)t−τ
E
[
‖vτ‖2

]
where (a) is by Lemma 3 (or law of total probability) and E[‖∇F (xt) − vt‖2|Nt:t] = 0; (b) is obtained by plugging (18)
in; (c) is established by changing the order of summation; (d) is again by Lemma 3 (or law of total probability); and (e)
is because of the independence of vτ and Nt1:t when t1 > τ , that is, E[‖vτ‖2|Nt1:t] = E[‖vτ‖2|Bt1 = 1, Bt1+1 =
0, . . . , Bt = 0] = E[‖vτ‖2]. To be more precise, given t1 > τ , the randomness of vτ comes from B1, B2, . . . Bτ and
i1, i2, · · · , iτ , thus is independent with Bt1 , Bt1+1, . . . , Bt.

On the Convergence of SARAH and Beyond

C.2 Proof of Theorem 2

Following the same steps of (15) in Theorem 1, we have

‖∇F (xt)‖2 ≤
2
[
F (xt)− F (xt+1)

]
η

+ ‖∇F (xt)− vt‖2 −
(
1− ηL

)
‖vt‖2.

Taking expectation and summing over t, we have

T∑
t=1

E
[
‖∇F (xt)‖2

]
≤

2
[
F (x1)− F (x∗)

]
η

+

T∑
t=1

E
[
‖∇F (xt)− vt‖2

]
−
(
1− ηL

) T∑
t=1

E
[
‖vt‖2

]
(a)

≤
2
[
F (x1)− F (x∗)

]
η

+ η2L2
T∑
t=1

t−1∑
τ=0

(
1− 1

m

)t−τ
E
[
‖vτ‖2

]
−
(
1− ηL

) T∑
t=1

E
[
‖vt‖2

]
(b)

≤
2
[
F (x1)− F (x∗)

]
η

+ η2L2
T∑
t=1

t−1∑
τ=0

(
1− 1

m

)t−τ
E
[
‖vτ‖2

]
−
(
1− ηL

) T−1∑
t=1

E
[
‖vt‖2

]
(c)

≤
2
[
F (x1)− F (x∗)

]
η

+mη2L2
T−1∑
t=0

E
[
‖vt‖2

]
−
(
1− ηL

) T−1∑
t=1

E
[
‖vt‖2

]
=

2
[
F (x1)− F (x∗)

]
η

+mη2L2‖v0‖2 +
(
mη2L2 + ηL− 1

) T−1∑
t=1

E
[
‖vt‖2

]
(19)

where (a) is by Lemma 5; (b) holds when 1 − ηL ≥ 0; and (c) is by exchanging the order of summation and
∑T−1
t=1 (1 −

1
m)t ≤ m. Upon choosing η such that mη2L2 + ηL − 1 ≤ 0, i.e., η ∈ (0,

√
4m+1−1
2mL] = O

(
1

L
√
m

)
, we can eliminate the

last term in (19). Plugging m in and dividing both sides by T , we arrive at

E
[
‖∇F (xa)‖2

]
=

1

T

T∑
t=1

E
[
‖∇F (xt)‖2

]
≤

2
[
F (x1)− F (x∗)

]
ηT

+
mη2L2

T
‖∇F (x0)‖2

(d)

≤
2
[
F (x0)− F (x∗)

]
ηT

+
mη2L2

T
‖∇F (x0)‖2

= O
(
L
√
m
[
F (x0)− F (x∗)

]
T

+
‖∇F (x0)‖2

T

)
where (d) is because F (x0) ≥ F (x1) when η ≤ 2/L, which we have already seen from (17). The proof is thus completed.

C.3 Proof of Corollary 5

From Theorem 2, choosing η = O(1/L
√
m), we have E

[
‖∇F (xa)‖2

]
= O(

√
m/T). This means that T = O(

√
m/ε)

iterations are required to ensure E
[
‖∇F (xa)‖2

]
= ε.

Per iteration it takes in expectation n
m + 2(1− 1

m) IFO calls. And n IFO calls are required for computing v0

Hence choosing m = Θ(n), the IFO complexity is n+
[
n
m + 2(1− 1

m)
]
T = O(n+

√
n/ε).

D Technical Proofs in Section 3.3

D.1 Proof of Lemma 6

We borrow the following lemmas from [Nguyen et al., 2017] and summarize them below.

Lemma 10. [Nguyen et al., 2017, Theorem 1a] Suppose that Assumptions 1 - 3 hold. Choosing step size η ≤ 2/L in
SARAH (Alg. 1), then for a particular inner loop s and any t ≥ 1, we have

E
[
‖vst‖2

]
≤
[
1−

(
2

ηL
− 1

)
µ2η2

]t
E
[
‖∇F (x̃s−1)‖2

]
.

Bingcong Li, Meng Ma, Georgios B. Giannakis

Lemma 11. [Nguyen et al., 2017, Theorem 1b] Suppose that Assumptions 1 and 4 hold. Choosing step size η < 2/(µ+L)
in SARAH (Alg. 1), then for a particular inner loop s and any t ≥ 1, we have

E
[
‖vst‖2

]
≤
[
1− 2µLη

µ+ L

]t
E
[
‖∇F (x̃s−1)‖2

]
.

Now we are ready to prove Lemma 6.

Case 1: Assumptions 1 – 3 hold. Following Assumption 1, we have

F (xst+1)− F (xst) ≤ −
η

2

[
‖∇F (xst)‖2 + ‖vst‖2 − ‖∇F (xst)− vst‖2

]
+

(η)2L

2
‖vst‖2. (20)

The derivation is exactly the same as (15), so we do not repeat it here. Rearranging the terms and dividing both sides with
η/2, we have

‖∇F (xst)‖2 ≤
2
[
F (xst)− F (xst+1)

]
η

+ ‖∇F (xst)− vst‖2 −
(
1− ηL

)
‖vst‖2

(a)

≤
2
〈
∇F (xst),x

s
t − xst+1

〉
η

+ ‖∇F (xst)− vst‖2 −
(
1− ηL

)
‖vst‖2

(b)

≤ 2

η

[
δ‖∇F (xst)‖2

2
+
‖xst − xst+1‖2

2δ

]
+ ‖∇F (xst)− vst‖2 −

(
1− ηL

)
‖vst‖2

where (a) follows from the convexity of F ; (b) uses Young’s inequality with δ > 0 to be specified later. Since xst+1 =
xst − ηvst , rearranging the terms we have(

1− δ

η

)
‖∇F (xst)‖2 ≤ ‖∇F (xst)− vst‖2 −

(
1− ηL− η

δ

)
‖vst‖2.

Choosing δ = 0.5η, we have

1

2
‖∇F (xst)‖2 ≤ ‖∇F (xst)− vst‖2 +

(
1 + ηL

)
‖vst‖2. (21)

Then, taking expectation w.r.t. Ft−1, applying Lemma 1 to E[‖∇F (xst)− vst‖2] and Lemma 10 to E[‖vst‖2], with t = m
we have

1

2
E
[
‖∇F (xsm)‖2

]
≤ ηL

2− ηL
‖∇F (x̃s−1)‖2 +

(
1 + ηL

)[
1−

(
2

ηL
− 1

)
µ2η2

]m
E
[
‖∇F (x̃s−1)‖2

]
.

Multiplying both sides by 2 completes the proof.

Case 2: Assumptions 1 and 4 hold. Using exactly same arguments as Case 1 we can arrive at (21). Now applying Lemma
11, we have

1

2
E
[
‖∇F (xsm)‖2

]
≤ ηL

2− ηL
‖∇F (x̃s−1)‖2 +

(
1 + ηL

)(
1− 2µLη

µ+ L

)m
E
[
‖∇F (x̃s−1)‖2

]
=

ηL

2− ηL
‖∇F (x̃s−1)‖2 +

(
1 + ηL

)(
1− 2Lη

1 + κ

)m
E
[
‖∇F (x̃s−1)‖2

]
.

Multiplying both sides by 2 completes the proof.

D.2 Proof of Theorem 3

We will only analyze case 1 where Assumptions 1 – 3 hold. The other case where Assumptions 1 and 4 are true can be
analyzed in the same manner.

For analysis, let sequence {0, t1, t2, . . . , tN}, be the iteration indices where Bti = 1 (0 is automatically contained since
at the beginning of L2S-SC, v0 is calculated). For a given sequence {0, t1, t2, . . . , tS}, it can be seen that due to the step

On the Convergence of SARAH and Beyond

back in Line 7 of Alg. 3, xti−1 plays the role of the starting point of an inner loop of SARAH; while xti+1−1 is analogous
to xsm of SARAH’s inner loop. Define x−1 = x0 and

λi+1 :=

{
2ηL

2− ηL
+
(
2 + 2ηL

)[
1−

(
2

ηL
− 1

)
µ2η2

]ti+1−ti}
. (22)

Using similar arguments of Lemma 6, when η ≤ 2/(3L), it is guaranteed to have

E
[
‖∇F (xtS−1)‖2

∣∣{0, t1, t2, . . . , tS}] ≤ λSE[‖∇F (xtS−1
)‖2
∣∣{0, t1, t2, . . . , tS}]

= λSE
[
‖∇F (xtS−1−1)‖2

∣∣{0, t1, t2, . . . , tS}]
≤ λSλS−1 . . . λ1‖∇F (x0)‖2. (23)

For convenience, let us define

θ := 1−
(

2

ηL
− 1

)
µ2η2.

Note that choosing η properly we can have θ < 1. Now it can be seen that

E[θti+1−ti |ti] ≤
∞∑
j=1

1

m

(
1− 1

m

)j−1

θj ≤ 1

m− 1

θ(1− 1
m)

1− θ(1− 1
m)

.

Note that this inequality is irrelevant with ti. Thus if we further take expectation w.r.t. ti, we arrive at

E[θti+1−ti] ≤ 1

m− 1

θ(1− 1
m)

1− θ(1− 1
m)

. (24)

Plugging (24) into (22) we have

E[λi] ≤
2ηL

2− ηL
+

2 + 2ηL

m− 1

θ(1− 1
m)

1− θ(1− 1
m)

:= λ,∀i.

Note that the randomness of λi+1 comes from ti+1 − ti, which is the length of the interval between the calculation of
two snapshot gradient. Since P{ti+1 − ti = u, ti+2 − ti+1 = v} = P{ti+1 − ti = u}P{ti+2 − ti+1 = v} for positive
integers u and v, it can be seen {ti+1 − ti} are mutually independent, which further leads to the mutual independence of
λ1, λ2, . . . , λS . Therefore, taking expectation w.r.t. {0, t1, t2, . . . , tS} on both sides of (23), we have

E
[
‖∇F (xtS−1)‖2

]
= E[λSλS−1 . . . λ1]‖∇F (x0)‖2 ≤ λS‖∇F (x0)‖2

which completes the proof.

D.3 When to Use An n-dependent Step Size in Convex Problems

0 10 20 30 40 50
#grad/n

10 2

10 1

100

gr
ad

 n
or

m

 a9a, n=10

SVRG
SARAH
SVRG - n dependent step size
SARAH - n dependent step size
SARAH diff
SVRG diff

0 10 20 30 40 50
#grad/n

10 2

10 1

100

gr
ad

 n
or

m

 a9a, n=100

SVRG
SARAH
SVRG - n dependent step size
SARAH - n dependent step size
SARAH diff
SVRG diff

0 10 20 30 40 50
#grad/n

10 3

10 2

10 1

100

gr
ad

 n
or

m

a9a, n=1000

SVRG
SARAH
SVRG - n dependent step size
SARAH - n dependent step size
SARAH diff
SVRG diff

0 10 20 30 40 50
#grad/n

10 5

10 4

10 3

10 2

10 1

100

101

102

gr
ad

 n
or

m

 a9a, n = 32, 561

SVRG
SARAH
SVRG - n dependent step size
SARAH - n dependent step size
SARAH diff
SVRG diff

0 10 20 30 40 50
#grad/n

10 3

10 2

10 1

gr
ad

 n
or

m

rcv1, n=10

SVRG
SARAH
SVRG - n dependent step size
SARAH - n dependent step size
SARAH diff
SVRG diff

0 10 20 30 40 50
#grad/n

10 4

10 3

10 2

10 1

gr
ad

 n
or

m

 rcv1, n = 1,000

SVRG
SARAH
SVRG - n dependent step size
SARAH - n dependent step size
SARAH diff
SVRG diff

0 10 20 30 40 50
#grad/n

10 4

10 3

10 2

10 1

gr
ad

 n
or

m

 rcv1, n = 5,000

SVRG
SARAH
SVRG - n dependent step size
SARAH - n dependent step size
SARAH diff
SVRG diff

0 10 20 30 40 50
#grad/n

10 4

10 3

10 2

10 1

gr
ad

 n
or

m

rcv1, n=10000

SVRG
SARAH
SVRG - n dependent step size
SARAH - n dependent step size
SARAH diff
SVRG diff

Figure 4: Performances of n-dependent step size and n-independent step size under on subsample datasets rcv1 and a9a.

Bingcong Li, Meng Ma, Georgios B. Giannakis

We perform SVRG and SARAH with n-dependent/independent step sizes to solve logistic regression problems on sub-
sampled rcv1 and a9a. The results can be found in Fig. 4. It can be seen that n-independent step sizes perform better than
those of n-dependent step sizes in all the tests. In addition, as n increases, i) the gradient norm of solutions obtained via
n-dependent step sizes becomes smaller; and ii) the performance gap between n-dependent and n-independent step sizes
reduces. These observations suggest n-dependent step sizes can reveal their merits when n is extremely large (at least it
should be larger than the size of a9a, which is n = 32561).

E Boosting the Practical Merits of SARAH

Algorithm 5 D2S

1: Initialize: x̃0, η, m, S
2: for s = 1, 2, . . . , S do
3: xs0 = x̃s−1

4: vs0 = ∇F (xs0)
5: xs1 = xs0 − ηvs0
6: for t = 1, 2, . . . ,m do
7: Sample it according to pst in (26)
8: Compute vst via (27)
9: xst+1 = xst − ηvst

10: end for
11: x̃s uniformly rnd. chosen from {xst}mt=0

12: end for
13: Output: x̃S

Assumption 5. Each fi : Rd → R has Li-Lipchitz gradient, and F has LF -Lipchitz gradient; that is, ‖∇fi(x) −
∇fi(y)‖ ≤ Li‖x− y‖, and ‖∇F (x)−∇F (y)‖ ≤ LF ‖x− y‖,∀x,y ∈ Rd.

This section presents a simple yet effective variant of SARAH to enable a larger step size. The improvement stems from
making use of the data dependent Li in Assumption 5. The resultant algorithm that we term Data Dependent SARAH
(D2S) is summarized in Alg. 5. For simplicity D2S is developed based on SARAH, but it generalizes to L2S as well.

Intuitively, each fi provides a distinct gradient to be used in the updates. The insight here is that if one could quantify the
“importance” of fi (or the gradient it provides), those more important ones should be used more frequently. Formally, our
idea is to draw it of outer loop s according to a probability mass vector pst ∈ ∆n, where ∆n := {p ∈ Rn+|〈1,p〉 = 1}.
With pst = 1/n, D2S boils down to SARAH.

Ideally, finding pst should rely on the estimation error as optimality crietrion. Specifically, we wish to minimize E[‖vst −
∇F (xst)‖2|Ft−1] in Lemma 1. Writing the expectation explicitly, the problem can be posed as

min
pst∈∆n

1

n2

∑
i∈[n]

‖∇fi(xst)−∇fi(xst−1)‖2

pst,i
⇒ (pst,i)

∗ =
‖∇fi(xst)−∇fi(xst−1)‖∑

j∈[n] ‖∇fj(xst)−∇fj(xst−1)‖
(25)

where the (pst,i)
∗ denotes the optimal solution. Though finding out pst via (25) is optimal, it is intractable to implement

because∇fi(xst−1) and∇fi(xst) for all i ∈ [n] must be computed, which is even more expensive than computing∇F (xst)
itself. However, (25) implies that a larger probability should be assigned to those {fi} whose gradients on xst and xst−1

change drastically. The intuition behind this observation is that a more abrupt change of the gradient suggests a larger
residual to be optimized. Thus, ‖∇fi(xst)−∇fi(xst−1)‖2 in (25) can be approximated by its upper bound L2

i ‖xst−xst−1‖2,
which inaccurately captures gradient changes. The resultant problem and its optimal solution are

min
pst∈∆n

1

n2

∑
i∈[n]

L2
i ‖xst − xst−1‖2

pst,i
⇒ (pst,i)

∗ =
Li∑

j∈[n] Lj
,∀t,∀s. (26)

Choosing pst according to (26) is computationally attractive not only because it eliminates the need to compute gradients,
but also because Li is usually cheap to obtain in practice (at least for linear and logistic regression losses). Knowing

On the Convergence of SARAH and Beyond

L = maxi∈[n] Li is critical for SARAH [Nguyen et al., 2017]; hence, finding pst only introduces negligible overhead
compared to SARAH. Accounting for pst , the gradient estimator vst is also modified to an importance sampling based one
to compensate for those less frequently sampled {fi}

vst =
∇fit(xst)−∇fit(xst−1)

npst,it
+ vst−1. (27)

Note that vst is still biased, since E[vst |Ft−1] =∇F (xst)−∇F (xst−1)+vst−1 6=∇F (xst). As asserted next, with pst as in
(26) and vst computed via (27), D2S indeed improves SARAH’s convergence rate.
Theorem 4. If Assumptions 5, 2, and 3 hold, upon choosing η < 1/L̄ and a large enough m such that σm := 1

µη(m+1) +
ηL̄

2−ηL̄ < 1, D2S convergences linearly; that is,

E
[
‖∇F (x̃s)‖2

]
≤ (σm)s‖∇F (x̃0)‖2,∀s.

Compared with SARAH’s linear convergence rate σ̃m = 1
µη(m+1) + ηL

2−ηL [Nguyen et al., 2017], the improvement on the
convergence constant σm is twofold: i) if η andm are chosen the same in D2S and SARAH, it always holds that σm ≤ σ̃m,
which implies D2S converges faster than SARAH; and ii) the step size can be chosen more aggressively with η < 1/L̄,
while the standard SARAH step size has to be less than 1/L. The improvements are further corroborated in terms of the
number of IFO calls, especially for ERM problems that are ill-conditioned.
Corollary 7. If Assumptions 5, 2, and 3 hold, to find x̃s such that E

[
‖∇F (x̃s)‖2

]
≤ ε, D2S requires O

(
(n+ κ̄) ln(1/ε)

)
IFO calls, where κ̄ := L̄/µ.

E.1 Optimal Solution of (25)

The optimal solution of (25) can be directly obtained from the partial Lagrangian

L(pst , λ) =
1

n2

∑
i∈[n]

‖∇fi(xst)−∇fi(xst−1)‖2

pst,i
+ λ

∑
i∈[n]

pst,i − λ.

Taking derivative w.r.t. pst and set it to 0, we have

pst,i =
‖∇fi(xst)−∇fi(xst−1)‖

√
λn

.

Note that if λ > 0, it automatically satisfies pst,i ≥ 0. Then let
∑
i∈[n] p

s
t,i = 1, it is not hard to find the value of λ and

obtain (25). The solution of (26) can be derived in a similar manner.

E.2 Proof of Theorem 4

The proof generalizes the original proof of SARAH for strongly convex problems [Nguyen et al., 2017, Theorem 2]. Notice
that the importance sampling based gradient estimator enables the fact Eit

[
vst |Ft−1

]
= ∇F (xst)−∇F (xst−1) +vst−1. By

exploring this fact, it is not hard to see that the following lemmas hold. The proof has almost the same steps as those in
[Nguyen et al., 2017], except for the expectation now is w.r.t. a nonuniform distribution pst .
Lemma 12. [Nguyen et al., 2017, Lemma 1] In any outer loop s, if η ≤ 1/LF , we have

m∑
t=0

E
[
‖∇F (xst)‖2

]
≤ 2

η
E
[
F (xs0)− F (x∗)

]
+

m∑
t=0

E
[
‖∇F (xst)− vst‖

]
.

Lemma 13. The following equation is true

E
[
‖∇F (xst)− vst‖2

]
=

t∑
τ=1

E
[
‖vsτ − vsτ−1‖2

]
−

t∑
τ=1

E
[
‖∇F (xsτ)−∇F (xsτ−1)‖2

]
.

Lemma 14. In any outer loop s, if η is chosen to satisfy 1− 2
ηL̄

< 0, we have

E
[∥∥vst − vst−1‖2|Ft−1

]
≤ ηL̄

2− ηL̄

(
‖vst−1‖2 − E

[
‖vst‖2|Ft−1

])
,∀t ≥ 1.

Bingcong Li, Meng Ma, Georgios B. Giannakis

Proof. Consider that for any t ≥ 1

Eit
[
‖vst‖2|Ft−1

]
= Eit

[
‖vst − vst−1 + vst−1‖2|Ft−1

]
= ‖vst−1‖2 + E

[
‖vst − vst−1‖2|Ft−1

]
+ 2E

[
〈vst−1,v

s
t − vst−1〉|Ft−1

]
(a)
= ‖vst−1‖2 + E

[
‖vst − vst−1‖2 +

2

η

〈
xst−1 − xst ,

∇fit(xst)−∇fit(xst−1)

npst,it

〉∣∣∣Ft−1

]
(b)

≤ ‖vst−1‖2 + E
[
‖vst − vst−1‖2 −

2

ηLitnp
s
t,it

‖∇fit(xst)−∇fit(xst−1)‖2
∣∣∣Ft−1

]
(c)
= ‖vst−1‖2 + E

[
‖vst − vst−1‖2 −

2npst,it
ηLit

‖vst − vst−1‖2
∣∣∣Ft−1

]
(d)
= ‖vst−1‖2 + E

[(
1− 2

ηL̄

)
‖vst − vst−1‖2

∣∣∣Ft−1

]
where (a) follows from (27) and the update xst = xst−1 − ηvst ; (b) is the result of (9c); (c) is by the definition of vst ; and
(d) is by plugging (26) in. By choosing η such that 1− 2

ηL̄
< 0, we have

E
[∥∥vst − vst−1‖2|Ft−1

]
≤ ηL̄

2− ηL̄

(
‖vst−1‖2 − E

[
‖vst‖2|Ft−1

])
which concludes the proof.

Proof of Theorem 4: Using Lemmas 13 and 14 we have

E
[
‖∇F (xst)− vst‖2

]
=

t∑
τ=1

E
[
‖vsτ − vsτ−1‖2

]
−

t∑
τ=1

E
[
‖∇F (xsτ)−∇F (xsτ−1)‖2

]
≤ ηL̄

2− ηL̄
E
[
‖vs0‖2

]
. (28)

If we further let η ≤ 1/LF , plugging (28) into Lemma 12, we have
m∑
t=0

E
[
‖∇F (xst)‖2

]
≤ 2

η
E
[
F (xs0)− F (x∗)

]
+

(m+ 1)ηL̄

2− ηL̄
E
[
‖vs0‖2

]
.

Since x̃s is uniformly randomized chosen from {xst}mt=0, by exploiting the fact vs0 = ∇F (x̃s−1) and xs0 = x̃s−1, we have
that

E
[
‖∇F (x̃s)‖2

]
≤ 2

η(m+ 1)
E
[
F (x̃s−1)− F (x∗)

]
+

ηL̄

2− ηL̄
E
[
‖∇F (x̃s−1)‖2

]
≤
(

2

µη(m+ 1)
+

ηL̄

2− ηL̄

)
E
[
‖∇F (x̃s−1)‖2

]
(29)

where the last inequality follows from (10a). Unrolling E
[
‖∇F (x̃s−1)‖2

]
in (29), Theorem 4 can be proved.

E.3 Proof of Corollary 7

The proof is modified from [Nguyen et al., 2017, Corollary 3]. By choosing η = 0.5/(L̄) and m = 4.5κ̄, we have σm in
Theorem 4 bounded by

σm =
1

1
2κ̄ (4.5κ̄+ 1)

+
0.5

1.5
<

7

9
.

Then by Theorem 4, by choosing S as

S ≥
ln
(
‖∇F (x̃0)‖2/ε

)
ln(9/7)

≥ log7/9(‖∇F
(
x̃0)‖2/ε

)
we have E

[
‖∇F (x̃S)‖2

]
≤ (σm)2‖∇F

(
x̃0)‖2 ≤ ε. Thus the number of IFO calls is

(n+ 2m)S = O
(
(n+ κ̄) ln(1/ε)

)
.

On the Convergence of SARAH and Beyond

Table 1: A summary of datasets used in numerical tests

Dataset d n (train) density n (test) L λ
a9a 123 32, 561 11.28% 16, 281 3.4672 0.0005
rcv1 47, 236 20, 242 0.157% 677, 399 0.25 0.0001
w7a 300 24, 692 3.89% 25, 057 2.917 0.005

F Numerical Experiments

Experiments for (strongly) convex cases are performed using python 3.7 on an Intel i7-4790CPU @3.60 GHz (32 GB
RAM) desktop. The details of the used datasets are summarized in Table 1. The smoothness parameter Li can be calculated
via Li = ‖ai‖2/4 by checking the Hessian matrix.

L2S. Since we are considering the convex case, we set λ = 0 in (8). SVRG, SARAH and SGD are chosen as benchmarks,
where SGD is modified with step size ηk = 1/

(
L̄(k + 1)

)
on the k-th epoch. For both SARAH and SVRG, the length

of inner loop is chosen as m = n. For a fair comparison, we use the same m for L2S [cf. (3)]. The step sizes of
SARAH and SVRG are selected from {0.01/L̄, 0.1/L̄, 0.2/L̄, 0.3/L̄, 0.4/L̄, 0.5/L̄, 0.6/L̄, 0.7/L̄, 0.8/L̄, 0.9/L̄, 0.95/L̄}
and those with best performances are reported. Note that the SVRG theory only effects when η < 0.25/L̄. The step size
of L2S is the same as that of SARAH for fairness.

L2S-SC. The parameters are chosen in the same manner as the test of L2S.

L2S for on Nononvex Problems We perform classification on MNIST dataset using a 784× 128× 10 feedforward neural
network through Pytorch. The activation function used in hidden layer is sigmoid. SGD, SVRG, and SARAH are adopted
as benchmarks. In all tested algorithms the batch sizes are b = 32. The step size of SGD is O(

√
b/(k+ 1)), where k is the

index of epoch; the step size is chosen as b/(Ln2/3) for SVRG [Reddi et al., 2016a]; and the step sizes are
√
b/(2
√
nL)

for SARAH [Nguyen et al., 2019] and L2S. The inner loop lengths are selected to be m = n/b for SVRG and SARAH,
while the same m is used for L2S.

