Appendix

A Useful Lemmas and Facts

Lemma 7. [Nesterov, 2004, Theorem 2.1.5]. If f is convex and has L-Lipschitz gradient, then the following inequalities are true

$$
\begin{gather*}
f(\mathbf{x})-f(\mathbf{y}) \leq\langle\nabla f(\mathbf{y}), \mathbf{x}-\mathbf{y}\rangle+\frac{L}{2}\|\mathbf{x}-\mathbf{y}\|^{2} \tag{9a}\\
f(\mathbf{x})-f(\mathbf{y}) \geq\langle\nabla f(\mathbf{y}), \mathbf{x}-\mathbf{y}\rangle+\frac{1}{2 L}\|\nabla f(\mathbf{x})-\nabla f(\mathbf{y})\|^{2} \tag{9b}\\
\langle\nabla f(\mathbf{x})-\nabla f(\mathbf{y}), \mathbf{x}-\mathbf{y}\rangle \geq \frac{1}{L}\|\nabla f(\mathbf{x})-\nabla f(\mathbf{y})\|^{2} \tag{9c}
\end{gather*}
$$

Note that inequality (9a) does not require the convexity of f.
Lemma 8. [Nesterov, 2004]. If f is μ-strongly convex and has L-Lipschitz gradient, with $\mathbf{x}^{*}:=\arg \min _{\mathbf{x}} f(\mathbf{x})$, the following inequalities are true

$$
\begin{gather*}
2 \mu\left(f(\mathbf{x})-f\left(\mathbf{x}^{*}\right)\right) \leq\|\nabla f(\mathbf{x})\|^{2} \leq 2 L\left(f(\mathbf{x})-f\left(\mathbf{x}^{*}\right)\right) \tag{10a}\\
\mu\left\|\mathbf{x}-\mathbf{x}^{*}\right\| \leq\|\nabla f(\mathbf{x})\| \leq L\left\|\mathbf{x}-\mathbf{x}^{*}\right\| \tag{10b}\\
\frac{\mu}{2}\left\|\mathbf{x}-\mathbf{x}^{*}\right\|^{2} \leq f(\mathbf{x})-f\left(\mathbf{x}^{*}\right) \leq \frac{L}{2}\left\|\mathbf{x}-\mathbf{x}^{*}\right\|^{2} \tag{10c}\\
\langle\nabla f(\mathbf{x})-\nabla f(\mathbf{y}), \mathbf{x}-\mathbf{y}\rangle \geq \mu\|\mathbf{x}-\mathbf{y}\|^{2} \tag{10d}
\end{gather*}
$$

Proof. By definition $f\left(\mathbf{x}^{*}\right)-f(\mathbf{x}) \geq\left\langle\nabla f(\mathbf{x}), \mathbf{x}^{*}-\mathbf{x}\right\rangle+\frac{\mu}{2}\left\|\mathbf{x}-\mathbf{x}^{*}\right\|$, minimizing over $\mathbf{x}-\mathbf{x}^{*}$ on the RHS results in (10a). Inequality (10b) follows from [Nesterov, 2004, Theorem 2.1.9] and the fact $\nabla f\left(\mathbf{x}^{*}\right)=0$. Inequality (10c) is from [Nesterov, 2004, Theorem 2.1.7]; and, (10d) is from [Nesterov, 2004, Theorem 2.1.9]

Proof of Lemma 3:

Proof. If $t_{1} \neq t_{2}, N_{t_{1}: t}$ and $N_{t_{2}: t}$ are disjoint by definition, since the most recent calculated snapshot gradient can only appear at either t_{1} or t_{2}. Since $\left\{B_{t}\right\}$ are i.i.d., one can find the probability of $N_{t_{1}: t}$ as

$$
\mathbb{P}\left(N_{t_{1}: t}\right)= \begin{cases}\frac{1}{m}\left(1-\frac{1}{m}\right)^{t-t_{1}} & \text { if } 1 \leq t_{1} \leq t \tag{11}\\ \left(1-\frac{1}{m}\right)^{t} & \text { if } t_{1}=0\end{cases}
$$

Hence one can verify that

$$
\sum_{t_{1}=0}^{t} \mathbb{P}\left(N_{t_{1}: t}\right)=\left(1-\frac{1}{m}\right)^{t}+\sum_{t_{1}=1}^{t-1} \frac{1}{m}\left(1-\frac{1}{m}\right)^{t-t_{1}}+\frac{1}{m}\left(1-\frac{1}{m}\right)^{t}+\frac{1}{m} \frac{1-\frac{1}{m}-\left(1-\frac{1}{m}\right)^{t}}{1-\left(1-\frac{1}{m}\right)}+\frac{1}{m}=1
$$

which completes the proof.

B Technical Proofs in Section 3.1

B. 1 Proof of Lemma 4

The following lemmas are needed for the proof.
Lemma 9. The following equation is true for $t>t_{1}$

$$
\mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{v}_{t}\right\|^{2} \mid N_{t_{1}: t}\right]=\sum_{\tau=t_{1}+1}^{t} \mathbb{E}\left[\left\|\mathbf{v}_{\tau}-\mathbf{v}_{\tau-1}\right\|^{2} \mid N_{t_{1}: t}\right]-\sum_{\tau=t_{1}+1}^{t} \mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{\tau}\right)-\nabla F\left(\mathbf{x}_{\tau-1}\right)\right\|^{2} \mid N_{t_{1}: t}\right]
$$

Proof. Consider that

$$
\begin{align*}
& \mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{v}_{t}\right\|^{2} \mid \mathcal{F}_{t-1}, N_{t_{1}: t}\right] \\
= & \mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t}\right)-\nabla F\left(\mathbf{x}_{t-1}\right)+\nabla F\left(\mathbf{x}_{t-1}\right)-\mathbf{v}_{t-1}+\mathbf{v}_{t-1}-\mathbf{v}_{t}\right\|^{2} \mid \mathcal{F}_{t-1}, N_{t_{1}: t}\right] \\
= & \left\|\nabla F\left(\mathbf{x}_{t}\right)-\nabla F\left(\mathbf{x}_{t-1}\right)\right\|^{2}+\mathbb{E}\left[\left\|\mathbf{v}_{t}-\mathbf{v}_{t-1}\right\|^{2} \mid \mathcal{F}_{t-1}, N_{t_{1}: t}\right]+\left\|\nabla F\left(\mathbf{x}_{t-1}\right)-\mathbf{v}_{t-1}\right\|^{2} \\
& +2\left\langle\nabla F\left(\mathbf{x}_{t}\right)-\nabla F\left(\mathbf{x}_{t-1}\right), \nabla F\left(\mathbf{x}_{t-1}\right)-\mathbf{v}_{t-1}\right\rangle \\
& +2 \mathbb{E}\left[\left\langle\nabla F\left(\mathbf{x}_{t}\right)-\nabla F\left(\mathbf{x}_{t-1}\right), \mathbf{v}_{t-1}-\mathbf{v}_{t}\right\rangle \mid \mathcal{F}_{t-1}, N_{t_{1}: t}\right] \\
& +2 \mathbb{E}\left[\left\langle\nabla F\left(\mathbf{x}_{t-1}\right)-\mathbf{v}_{t-1}, \mathbf{v}_{t-1}-\mathbf{v}_{t}\right\rangle \mid \mathcal{F}_{t-1}, N_{t_{1}: t}\right] \\
= & \mathbb{E}\left[\left\|\mathbf{v}_{t}-\mathbf{v}_{t-1}\right\|^{2} \mid \mathcal{F}_{t-1}, N_{t_{1}: t}\right]-\left\|\nabla F\left(\mathbf{x}_{t}\right)-\nabla F\left(\mathbf{x}_{t-1}\right)\right\|^{2}+\left\|\nabla F\left(\mathbf{x}_{t-1}\right)-\mathbf{v}_{t-1}\right\|^{2} \tag{12}
\end{align*}
$$

where the last equation is because $\mathbb{E}\left[\mathbf{v}_{t}-\mathbf{v}_{t-1} \mid \mathcal{F}_{t-1}, N_{t_{1}: t}\right]=\nabla F\left(\mathbf{x}_{t}\right)-\nabla F\left(\mathbf{x}_{t-1}\right)$. We can expand $\mathbb{E}\left[\| \nabla F\left(\mathbf{x}_{t-1}\right)-\right.$ $\left.\mathbf{v}_{t-1} \|^{2} \mid \mathcal{F}_{t-2}, N_{t_{1}: t}\right]$ using the same argument. Note that we have $\nabla F\left(\mathbf{x}_{t_{1}}\right)=\mathbf{v}_{t_{1}}$, which suggests

$$
\mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t_{1}+1}\right)-\mathbf{v}_{t_{1}+1}\right\|^{2} \mid \mathcal{F}_{t_{1}}, N_{t_{1}: t}\right]=\mathbb{E}\left[\left\|\mathbf{v}_{t_{1}+1}-\mathbf{v}_{t_{1}}\right\|^{2} \mid \mathcal{F}_{t_{1}}, N_{t_{1}: t}\right]-\left\|\nabla F\left(\mathbf{x}_{t_{1}+1}\right)-\nabla F\left(\mathbf{x}_{t_{1}}\right)\right\|^{2} .
$$

Then taking expectation w.r.t. \mathcal{F}_{t-1} and expanding $\mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t-1}\right)-\mathbf{v}_{t-1}\right\|^{2}\right]$ in (12), the proof is completed.
Proof of Lemma 4: The implication of this Lemma 3 is that law of total probability [Gubner, 2006] holds. Specifically, for a random variable C_{t} that happens in iteration t, the following equation holds

$$
\begin{equation*}
\mathbb{E}\left[C_{t}\right]=\sum_{t_{1}=0}^{t} \mathbb{E}\left[C_{t} \mid N_{t_{1}: t}\right] \mathbb{P}\left\{N_{t_{1}: t}\right\} \tag{13}
\end{equation*}
$$

Now we turn to prove Lemma 4. To start with, consider that when $t_{1} \neq t$

$$
\begin{aligned}
& \mathbb{E}\left[\left\|\mathbf{v}_{t}\right\|^{2} \mid \mathcal{F}_{t-1}, N_{t_{1}: t}\right]=\mathbb{E}\left[\left\|\mathbf{v}_{t}-\mathbf{v}_{t-1}+\mathbf{v}_{t-1}\right\|^{2} \mid \mathcal{F}_{t-1}, N_{t_{1}: t}\right] \\
&=\left\|\mathbf{v}_{t-1}\right\|^{2}+\mathbb{E}\left[\left\|\mathbf{v}_{t}-\mathbf{v}_{t-1}\right\|^{2} \mid \mathcal{F}_{t-1}, N_{t_{1}: t}\right]+2 \mathbb{E}\left[\left\langle\mathbf{v}_{t-1}, \mathbf{v}_{t}-\mathbf{v}_{t-1}\right\rangle \mid \mathcal{F}_{t-1}, N_{t_{1}: t}\right] \\
& \stackrel{(a)}{=}\left\|\mathbf{v}_{t-1}\right\|^{2}+\mathbb{E}\left[\left.\left\|\mathbf{v}_{t}-\mathbf{v}_{t-1}\right\|^{2}+\frac{2}{\eta}\left\langle\mathbf{x}_{t-1}-\mathbf{x}_{t}, \nabla f_{i_{t}}\left(\mathbf{x}_{t}\right)-\nabla f_{i_{t}}\left(\mathbf{x}_{t-1}\right)\right\rangle \right\rvert\, \mathcal{F}_{t-1}, N_{t_{1}: t}\right] \\
& \stackrel{(b)}{\leq}\left\|\mathbf{v}_{t-1}\right\|^{2}+\mathbb{E}\left[\left.\left\|\mathbf{v}_{t}-\mathbf{v}_{t-1}\right\|^{2}-\frac{2}{\eta L}\left\|\nabla f_{i_{t}}\left(\mathbf{x}_{t}\right)-\nabla f_{i_{t}}\left(\mathbf{x}_{t-1}\right)\right\|^{2} \right\rvert\, \mathcal{F}_{t-1}, N_{t_{1}: t}\right] \\
&=\left\|\mathbf{v}_{t-1}\right\|^{2}+\mathbb{E}\left[\left.\left\|\mathbf{v}_{t}-\mathbf{v}_{t-1}\right\|^{2}-\frac{2}{\eta L}\left\|\mathbf{v}_{t}-\mathbf{v}_{t-1}\right\|^{2} \right\rvert\, \mathcal{F}_{t-1}, N_{t_{1}: t}\right] \\
&=\left\|\mathbf{v}_{t-1}\right\|^{2}+\mathbb{E}\left[\left.\left(1-\frac{2}{\eta L}\right)\left\|\mathbf{v}_{t}-\mathbf{v}_{t-1}\right\|^{2} \right\rvert\, \mathcal{F}_{t-1}, N_{t_{1}: t}\right]
\end{aligned}
$$

where (a) follows from (2) and the update $\mathbf{x}_{t}=\mathbf{x}_{t-1}-\eta \mathbf{v}_{t-1}$; and (b) is the result of (9c). Then by choosing η such that $1-\frac{2}{\eta L}<0$, i.e., $\eta<2 / L$, we have

$$
\begin{equation*}
\mathbb{E}\left[\left\|\mathbf{v}_{t}-\mathbf{v}_{t-1}\right\|^{2} \mid \mathcal{F}_{t-1}, N_{t_{1}: t}\right] \leq \frac{\eta L}{2-\eta L}\left(\left\|\mathbf{v}_{t-1}\right\|^{2}-\mathbb{E}\left[\left\|\mathbf{v}_{t}\right\|^{2} \mid \mathcal{F}_{t-1}, N_{t_{1}: t}\right]\right) \tag{14}
\end{equation*}
$$

Plugging (14) into Lemma 9, we have

$$
\begin{aligned}
& \mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{v}_{t}\right\|^{2} \mid \mathcal{F}_{t_{1}-1}, N_{t_{1}: t}\right] \leq \sum_{\tau=t_{1}+1}^{t} \mathbb{E}\left[\left\|\mathbf{v}_{\tau}-\mathbf{v}_{\tau-1}\right\|^{2} \mid \mathcal{F}_{t_{1}-1}, N_{t_{1}: t}\right] \\
&=\frac{\eta L}{2-\eta L} \mathbb{E}\left[\left\|\mathbf{v}_{t_{1}}\right\|^{2} \mid \mathcal{F}_{t_{1}-1}, N_{t_{1}: t}\right]=\frac{\eta L}{2-\eta L}\left\|\nabla F\left(\mathbf{x}_{t_{1}}\right)\right\|^{2}
\end{aligned}
$$

where the last equation is because conditioning on $N_{t_{1}: t}, \mathbf{v}_{t_{1}}=\nabla F\left(\mathbf{x}_{t_{1}}\right)$. Note that when $t_{1}=t$, this inequality automatically holds since the LHS equals to 0 . Because the randomness of $\nabla F\left(\mathbf{x}_{t_{1}}\right)$ is irrelevant to $B_{t_{1}}$ (thus $N_{t_{1}: t}$), after taking expectation w.r.t. $\mathcal{F}_{t_{1}-1}$, we have

$$
\mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{v}_{t}\right\|^{2} \mid N_{t_{1}: t}\right] \leq \frac{\eta L}{2-\eta L} \mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t_{1}}\right)\right\|^{2} \mid N_{t_{1}: t}\right]=\frac{\eta L}{2-\eta L} \mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t_{1}}\right)\right\|^{2}\right]
$$

which proves the first part of Lemma 4.
For the second part of Lemma 4, by calculating the probability of $N_{t_{1}: t}$ as in (11), we have

$$
\begin{aligned}
\mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{v}_{t}\right\|^{2}\right] & \stackrel{(c)}{=} \sum_{t_{1}=0}^{t-1} \mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{v}_{t}\right\|^{2} \mid N_{t_{1}: t}\right] \mathbb{P}\left\{N_{t_{1}: t}\right\} \\
& \leq \sum_{t_{1}=0}^{t-1} \frac{\eta L}{2-\eta L} \mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t_{1}}\right)\right\|^{2}\right] \mathbb{P}\left\{N_{t_{1}: t}\right\} \\
& =\frac{\eta L}{2-\eta L}\left[\frac{1}{m} \sum_{\tau=1}^{t-1}\left(1-\frac{1}{m}\right)^{t-\tau} \mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{\tau}\right)\right\|^{2}\right]+\left(1-\frac{1}{m}\right)^{t}\left\|\nabla F\left(\mathbf{x}_{0}\right)\right\|^{2}\right]
\end{aligned}
$$

where (c) uses (13), and $\mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{v}_{t}\right\|^{2} \mid N_{t: t}\right]=0$. The proof is thus completed.

B. 2 Proof of Theorem 1

Following Assumption 1, we have

$$
\begin{align*}
F\left(\mathbf{x}_{t+1}\right)-F\left(\mathbf{x}_{t}\right) & \leq\left\langle\nabla F\left(\mathbf{x}_{t}\right), \mathbf{x}_{t+1}-\mathbf{x}_{t}\right\rangle+\frac{L}{2}\left\|\mathbf{x}_{t+1}-\mathbf{x}_{t}\right\|^{2} \\
& =-\eta\left\langle\nabla F\left(\mathbf{x}_{t}\right), \mathbf{v}_{t}\right\rangle+\frac{\eta^{2} L}{2}\left\|\mathbf{v}_{t}\right\|^{2} \\
& =-\frac{\eta}{2}\left[\left\|\nabla F\left(\mathbf{x}_{t}\right)\right\|^{2}+\left\|\mathbf{v}_{t}\right\|^{2}-\left\|\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{v}_{t}\right\|^{2}\right]+\frac{\eta^{2} L}{2}\left\|\mathbf{v}_{t}\right\|^{2} \tag{15}
\end{align*}
$$

where the last equation is because $\langle\mathbf{a}, \mathbf{b}\rangle=\frac{1}{2}\left[\|\mathbf{a}\|^{2}+\|\mathbf{b}\|^{2}-\|\mathbf{a}-\mathbf{b}\|^{2}\right]$. Rearranging the terms, we arrive at

$$
\begin{aligned}
\left\|\nabla F\left(\mathbf{x}_{t}\right)\right\|^{2} & \leq \frac{2\left[F\left(\mathbf{x}_{t}\right)-F\left(\mathbf{x}_{t+1}\right)\right]}{\eta}+\left\|\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{v}_{t}\right\|^{2}-(1-\eta L)\left\|\mathbf{v}_{t}\right\|^{2} \\
& \leq \frac{2\left[F\left(\mathbf{x}_{t}\right)-F\left(\mathbf{x}_{t+1}\right)\right]}{\eta}+\left\|\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{v}_{t}\right\|^{2}
\end{aligned}
$$

where the last inequality holds since $\eta<1 / L$. Taking expectation and summing over $t=1, \ldots, T$, we have

$$
\begin{aligned}
& \sum_{t=1}^{T} \mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t}\right)\right\|^{2}\right] \leq \frac{2\left[F\left(\mathbf{x}_{1}\right)-F\left(\mathbf{x}_{T+1}\right)\right]}{\eta}+\sum_{t=1}^{T} \mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{v}_{t}\right\|^{2}\right] \\
& \begin{aligned}
&(a) \\
& \leq \frac{2\left[F\left(\mathbf{x}_{1}\right)-F\left(\mathbf{x}_{T+1}\right)\right]}{\eta}+\frac{\eta L}{2-\eta L} \frac{1}{m} \sum_{t=1}^{T} \sum_{\tau=1}^{t-1}\left(1-\frac{1}{m}\right)^{t-\tau} \mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{\tau}\right)\right\|^{2}\right] \\
&+\frac{\eta L}{2-\eta L} \sum_{t=1}^{T}\left(1-\frac{1}{m}\right)^{t}\left\|\nabla F\left(\mathbf{x}_{0}\right)\right\|^{2} \\
& \stackrel{(b)}{\leq} \frac{2\left[F\left(\mathbf{x}_{1}\right)-F\left(\mathbf{x}_{T+1}\right)\right]}{\eta}+\frac{\eta L}{2-\eta L} \frac{1}{m} \sum_{t=1}^{T-1}\left[\sum_{\tau=1}^{T-t}\left(1-\frac{1}{m}\right)^{\tau}\right] \mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t}\right)\right\|^{2}\right] \\
&+\frac{m \eta L}{2-\eta L}\left\|\nabla F\left(\mathbf{x}_{0}\right)\right\|^{2} \\
& \eta \frac{\eta L}{2-\eta L} \sum_{t=1}^{T} \mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t}\right)\right\|^{2}\right]+\frac{m \eta L}{2-\eta L}\left\|\nabla F\left(\mathbf{x}_{0}\right)\right\|^{2}
\end{aligned}
\end{aligned}
$$

where (a) is the result of Lemma 4; (b) is by changing the order of summation, and $\sum_{t=1}^{T}\left(1-\frac{1}{m}\right)^{t} \leq m$; and, (c) is again by $\sum_{\tau=1}^{T-t}\left(1-\frac{1}{m}\right)^{\tau} \leq m$. Rearranging the terms and dividing both sides by T, we have

$$
\begin{align*}
\left(1-\frac{\eta L}{2-\eta L}\right) \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t}\right)\right\|^{2}\right] & \leq \frac{2\left[F\left(\mathbf{x}_{1}\right)-F\left(\mathbf{x}_{T+1}\right)\right]}{\eta T}+\frac{\eta L}{2-\eta L} \frac{m}{T}\left\|\nabla F\left(\mathbf{x}_{0}\right)\right\|^{2} \\
& \leq \frac{2\left[F\left(\mathbf{x}_{1}\right)-F\left(\mathbf{x}^{*}\right)\right]}{\eta T}+\frac{\eta L}{2-\eta L} \frac{m}{T}\left\|\nabla F\left(\mathbf{x}_{0}\right)\right\|^{2} \tag{16}
\end{align*}
$$

Finally, since $\mathbf{v}_{0}=\nabla F\left(\mathbf{x}_{0}\right)$, we have

$$
\begin{align*}
F\left(\mathbf{x}_{1}\right)-F\left(\mathbf{x}_{0}\right) & \leq\left\langle\nabla F\left(\mathbf{x}_{0}\right), \mathbf{x}_{1}-\mathbf{x}_{0}\right\rangle+\frac{L}{2}\left\|\mathbf{x}_{1}-\mathbf{x}_{0}\right\|^{2} \\
& =-\eta\left\|\nabla F\left(\mathbf{x}_{0}\right)\right\|^{2}+\frac{\eta^{2} L}{2}\left\|\nabla F\left(\mathbf{x}_{0}\right)\right\|^{2} \leq 0 \tag{17}
\end{align*}
$$

where the last inequality follows from $\eta<1 / L$. Hence we have $F\left(\mathbf{x}_{1}\right) \leq F\left(\mathbf{x}_{0}\right)$, which is applied to (16) to have

$$
\left(1-\frac{\eta L}{2-\eta L}\right) \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t}\right)\right\|^{2}\right] \leq \frac{2\left[F\left(\mathbf{x}_{0}\right)-F\left(\mathbf{x}^{*}\right)\right]}{\eta T}+\frac{\eta L}{2-\eta L} \frac{m}{T}\left\|\nabla F\left(\mathbf{x}_{0}\right)\right\|^{2}
$$

Now if we choose $\eta<1 / L$ such that $1-\frac{\eta L}{2-\eta L} \geq C_{\eta}$ with C_{η} being a positive constant, then we have

$$
\mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{a}\right)\right\|^{2}\right]=\frac{1}{T} \sum_{t=1}^{T} \mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t}\right)\right\|^{2}\right]=\mathcal{O}\left(\frac{F\left(\mathbf{x}_{0}\right)-F\left(\mathbf{x}^{*}\right)}{\eta T C_{\eta}}+\frac{m \eta L\left\|\nabla F\left(\mathbf{x}_{0}\right)\right\|^{2}}{T C_{\eta}}\right)
$$

B. 3 Proof of Corollaries 1 and 2

From Theorem 1, it is clear that upon choosing $\eta=\mathcal{O}(1 / L)$, we have $\mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{a}\right)\right\|^{2}\right]=\mathcal{O}(m / T)$. This means that $T=\mathcal{O}(m / \epsilon)$ iterations are needed to guarantee $\mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{a}\right)\right\|^{2}\right]=\epsilon$.
Per iteration requires $\frac{n}{m}+2\left(1-\frac{1}{m}\right)$ IFO calls in expectation. And n IFO calls are required when computing \mathbf{v}_{0}.
Combining these facts together, we have that $\mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{a}\right)\right\|^{2}\right]=\mathcal{O}(\sqrt{n} / T)$ if $m=\Theta(\sqrt{n})$. And the IFO complexity is $n+\left[\frac{n}{m}+2\left(1-\frac{1}{m}\right)\right] T=\mathcal{O}(n+n / \epsilon)$.
Similarly, if $m=\Theta(n)$, we have $\mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{a}\right)\right\|^{2}\right]=\mathcal{O}(n / T)$. And the IFO complexity in this case becomes $\mathcal{O}(n+n / \epsilon)$.

B. 4 Proof of Corollary 3

From Theorem 1, it is clear that with a large m, choosing $\eta=\mathcal{O}(1 / \sqrt{m} L)$ leads to $C_{\eta} \geq 0.5$. Thus we have $\mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{a}\right)\right\|^{2}\right]=\mathcal{O}(\sqrt{m} / T)$. This translates to the need of $T=\mathcal{O}(\sqrt{m} / \epsilon)$ iterations to guarantee $\mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{a}\right)\right\|^{2}\right]=\epsilon$. Choosing $m=\Theta(n)$, we have $\mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{a}\right)\right\|^{2}\right]=\mathcal{O}(\sqrt{n} / T)$. And the number of IFO calls is $n+\left[\frac{n}{m}+2\left(1-\frac{1}{m}\right)\right] T=$ $\mathcal{O}(n+\sqrt{n} / \epsilon)$.

C Technical Proofs in Section 3.2

Using the Bernoulli random variable B_{t} introduced in (4), L2S (Alg. 2) can be rewritten in an equivalent form as Alg. 4.

```
Algorithm 4 L2S Equivalent Form
    Initialize: \(\mathbf{x}_{0}, \eta, m, T\)
    Compute \(\mathbf{v}_{0}=\nabla F\left(\mathbf{x}_{0}\right)\)
    \(\mathbf{x}_{1}=\mathbf{x}_{0}-\eta \mathbf{v}_{0}\)
    for \(t=1,2, \ldots, T\) do
        Randomly generate \(B_{t}: B_{t}=1\) w.p. \(\frac{1}{m}\), and \(B_{t}=0\) w.p. \(1-\frac{1}{m}\)
        if \(B_{t}=1\) then,
            \(\mathbf{v}_{t}=\nabla F\left(\mathbf{x}_{t}\right)\)
        else
            \(\mathbf{v}_{t}=\nabla f_{i_{t}}\left(\mathbf{x}_{t}\right)-\nabla f_{i_{t}}\left(\mathbf{x}_{t-1}\right)+\mathbf{v}_{t-1}\)
        end if
        \(\mathbf{x}_{t+1}=\mathbf{x}_{t}-\eta \mathbf{v}_{t}\)
    end for
    Output: randomly chosen from \(\left\{\mathbf{x}_{t}\right\}_{t=1}^{T}\)
```

Recall that a known $N_{t_{1}: t}$ is equivalent to $B_{t_{1}}=1, B_{t_{1}+1}=0, \cdots, B_{t}=0$. Now we are ready to prove Lemma 5.

C. 1 Proof of Lemma 5

It can be seen that Lemma 9 still holds for nonconvex problems, thus we have

$$
\begin{align*}
\mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{v}_{t}\right\|^{2} \mid N_{t_{1}: t}\right] & \leq \sum_{\tau=t_{1}+1}^{t} \mathbb{E}\left[\left\|\mathbf{v}_{\tau}-\mathbf{v}_{\tau-1}\right\|^{2} \mid N_{t_{1}: t}\right] \\
& =\sum_{\tau=t_{1}+1}^{t} \mathbb{E}\left[\left\|\nabla f_{i_{\tau}}\left(\mathbf{x}_{\tau}\right)-\nabla f_{i_{\tau}}\left(\mathbf{x}_{\tau-1}\right)\right\|^{2} \mid N_{t_{1}: t}\right] \\
& \leq \eta^{2} L^{2} \sum_{\tau=t_{1}+1}^{t} \mathbb{E}\left[\left\|\mathbf{v}_{\tau-1}\right\|^{2} \mid N_{t_{1}: t}\right]=\eta^{2} L^{2} \sum_{\tau=t_{1}}^{t-1} \mathbb{E}\left[\left\|\mathbf{v}_{\tau}\right\|^{2} \mid N_{t_{1}: t}\right] \tag{18}
\end{align*}
$$

where the last inequality follows from Assumption 1 and $\mathbf{x}_{\tau}=\mathbf{x}_{\tau-1}-\eta \mathbf{v}_{\tau-1}$. The first part of this lemma is thus proved. Next, we have

$$
\begin{aligned}
& \mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{v}_{t}\right\|^{2}\right] \stackrel{(a)}{=} \sum_{t_{1}=0}^{t-1} \mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{v}_{t}\right\|^{2} \mid N_{t_{1}: t}\right] \mathbb{P}\left\{N_{t_{1}: t}\right\} \\
& \stackrel{(b)}{\leq} \eta^{2} L^{2} \sum_{t_{1}=0}^{t-1} \sum_{\tau=t_{1}}^{t-1} \mathbb{E}\left[\left\|\mathbf{v}_{\tau}\right\|^{2} \mid N_{t_{1}: t}\right] \mathbb{P}\left\{N_{t_{1}: t}\right\} \stackrel{(c)}{=} \eta^{2} L^{2} \sum_{\tau=0}^{t-1}\left[\sum_{t_{1}=0}^{\tau} \mathbb{E}\left[\left\|\mathbf{v}_{\tau}\right\|^{2} \mid N_{t_{1}: t}\right] \mathbb{P}\left\{N_{t_{1}: t}\right\}\right] \\
& \stackrel{(d)}{=} \eta^{2} L^{2} \sum_{\tau=0}^{t-1}\left[\mathbb{E}\left[\left\|\mathbf{v}_{\tau}\right\|^{2}\right]-\sum_{t_{1}=\tau+1}^{t} \mathbb{E}\left[\left\|\mathbf{v}_{\tau}\right\|^{2} \mid N_{t_{1}: t}\right] \mathbb{P}\left\{N_{t_{1}: t}\right\}\right] \\
& \stackrel{(e)}{=} \eta^{2} L^{2} \sum_{\tau=0}^{t-1}\left[\mathbb{E}\left[\left\|\mathbf{v}_{\tau}\right\|^{2}\right]-\sum_{t_{1}=\tau+1}^{t} \mathbb{E}\left[\left\|\mathbf{v}_{\tau}\right\|^{2}\right] \mathbb{P}\left\{N_{t_{1}: t}\right\}\right] \\
&= \eta^{2} L^{2} \sum_{\tau=0}^{t-1}\left[\sum_{t_{1}=0}^{\tau} \mathbb{P}\left\{N_{t_{1}: t}\right\}\right] \mathbb{E}\left[\left\|\mathbf{v}_{\tau}\right\|^{2}\right]=\eta^{2} L^{2} \sum_{\tau=0}^{t-1}\left(1-\frac{1}{m}\right)^{t-\tau} \mathbb{E}\left[\left\|\mathbf{v}_{\tau}\right\|^{2}\right]
\end{aligned}
$$

where (a) is by Lemma 3 (or law of total probability) and $\mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{v}_{t}\right\|^{2} \mid N_{t: t}\right]=0$; (b) is obtained by plugging (18) in; (c) is established by changing the order of summation; (d) is again by Lemma 3 (or law of total probability); and (e) is because of the independence of \mathbf{v}_{τ} and $N_{t_{1}: t}$ when $t_{1}>\tau$, that is, $\mathbb{E}\left[\left\|\mathbf{v}_{\tau}\right\|^{2} \mid N_{t_{1}: t}\right]=\mathbb{E}\left[\left\|\mathbf{v}_{\tau}\right\|^{2} \mid B_{t_{1}}=1, B_{t_{1}+1}=\right.$ $\left.0, \ldots, B_{t}=0\right]=\mathbb{E}\left[\left\|\mathbf{v}_{\tau}\right\|^{2}\right]$. To be more precise, given $t_{1}>\tau$, the randomness of \mathbf{v}_{τ} comes from $B_{1}, B_{2}, \ldots B_{\tau}$ and $i_{1}, i_{2}, \cdots, i_{\tau}$, thus is independent with $B_{t_{1}}, B_{t_{1}+1}, \ldots, B_{t}$.

C. 2 Proof of Theorem 2

Following the same steps of (15) in Theorem 1, we have

$$
\left\|\nabla F\left(\mathbf{x}_{t}\right)\right\|^{2} \leq \frac{2\left[F\left(\mathbf{x}_{t}\right)-F\left(\mathbf{x}_{t+1}\right)\right]}{\eta}+\left\|\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{v}_{t}\right\|^{2}-(1-\eta L)\left\|\mathbf{v}_{t}\right\|^{2}
$$

Taking expectation and summing over t, we have

$$
\begin{align*}
& \sum_{t=1}^{T} \mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t}\right)\right\|^{2}\right] \leq \\
& \stackrel{(a)}{\leq} \frac{2\left[F\left(\mathbf{x}_{1}\right)-F\left(\mathbf{x}_{1}\right)-F\left(\mathbf{x}^{*}\right)\right]}{\eta}+\sum_{t=1}^{T} \mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{v}_{t}\right\|^{2}\right]-(1-\eta L) \sum_{t=1}^{T} \mathbb{E}\left[\left\|\mathbf{v}_{t}\right\|^{2}\right] \\
& \stackrel{(b)}{\leq} \sum_{t=1}^{t-1}\left(1-\frac{1}{m}\right)^{t-\tau} \mathbb{E}\left[\left\|\mathbf{v}_{\tau}\right\|^{2}\right]-(1-\eta L) \sum_{t=1}^{T} \mathbb{E}\left[\left\|\mathbf{x}_{t}\right\|^{2}\right] \\
& \eta\left.F\left(\mathbf{x}^{*}\right)\right] \\
& \eta^{2} L^{2} \sum_{t=1}^{T} \sum_{\tau=0}^{t-1}\left(1-\frac{1}{m}\right)^{t-\tau} \mathbb{E}\left[\left\|\mathbf{v}_{\tau}\right\|^{2}\right]-(1-\eta L) \sum_{t=1}^{T-1} \mathbb{E}\left[\left\|\mathbf{v}_{t}\right\|^{2}\right] \tag{19}\\
&= \frac{2\left[F\left(\mathbf{x}_{1}\right)-F\left(\mathbf{x}^{*}\right)\right]}{\eta}+m \eta^{2} L^{2} \sum_{t=0}^{T-1} \mathbb{E}\left[\left\|\mathbf{v}_{t}\right\|^{2}\right]-(1-\eta L) \sum_{t=1}^{T-1} \mathbb{E}\left[\left\|\mathbf{v}_{t}\right\|^{2}\right] \\
&= \frac{2\left[F\left(\mathbf{x}_{1}\right)-F\left(\mathbf{x}^{*}\right)\right]}{\eta}+m \eta^{2} L^{2}\left\|\mathbf{v}_{0}\right\|^{2}+\left(m \eta^{2} L^{2}+\eta L-1\right) \sum_{t=1}^{T-1} \mathbb{E}\left[\left\|\mathbf{v}_{t}\right\|^{2}\right]
\end{align*}
$$

where (a) is by Lemma 5; (b) holds when $1-\eta L \geq 0$; and (c) is by exchanging the order of summation and $\sum_{t=1}^{T-1}(1-$ $\left.\frac{1}{m}\right)^{t} \leq m$. Upon choosing η such that $m \eta^{2} L^{2}+\eta L-1 \leq 0$, i.e., $\eta \in\left(0, \frac{\sqrt{4 m+1}-1}{2 m L}\right]=\mathcal{O}\left(\frac{1}{L \sqrt{m}}\right)$, we can eliminate the last term in (19). Plugging m in and dividing both sides by T, we arrive at

$$
\begin{aligned}
\mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{a}\right)\right\|^{2}\right] & =\frac{1}{T} \sum_{t=1}^{T} \mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t}\right)\right\|^{2}\right] \leq \frac{2\left[F\left(\mathbf{x}_{1}\right)-F\left(\mathbf{x}^{*}\right)\right]}{\eta T}+\frac{m \eta^{2} L^{2}}{T}\left\|\nabla F\left(\mathbf{x}_{0}\right)\right\|^{2} \\
& \stackrel{(d)}{\leq} \frac{2\left[F\left(\mathbf{x}_{0}\right)-F\left(\mathbf{x}^{*}\right)\right]}{\eta T}+\frac{m \eta^{2} L^{2}}{T}\left\|\nabla F\left(\mathbf{x}_{0}\right)\right\|^{2} \\
& =\mathcal{O}\left(\frac{L \sqrt{m}\left[F\left(\mathbf{x}_{0}\right)-F\left(\mathbf{x}^{*}\right)\right]}{T}+\frac{\left\|\nabla F\left(\mathbf{x}_{0}\right)\right\|^{2}}{T}\right)
\end{aligned}
$$

where (d) is because $F\left(\mathbf{x}_{0}\right) \geq F\left(\mathbf{x}_{1}\right)$ when $\eta \leq 2 / L$, which we have already seen from (17). The proof is thus completed.

C. 3 Proof of Corollary 5

From Theorem 2, choosing $\eta=\mathcal{O}(1 / L \sqrt{m})$, we have $\mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{a}\right)\right\|^{2}\right]=\mathcal{O}(\sqrt{m} / T)$. This means that $T=\mathcal{O}(\sqrt{m} / \epsilon)$ iterations are required to ensure $\mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{a}\right)\right\|^{2}\right]=\epsilon$.
Per iteration it takes in expectation $\frac{n}{m}+2\left(1-\frac{1}{m}\right)$ IFO calls. And n IFO calls are required for computing \mathbf{v}_{0}
Hence choosing $m=\Theta(n)$, the IFO complexity is $n+\left[\frac{n}{m}+2\left(1-\frac{1}{m}\right)\right] T=\mathcal{O}(n+\sqrt{n} / \epsilon)$.

D Technical Proofs in Section 3.3

D. 1 Proof of Lemma 6

We borrow the following lemmas from [Nguyen et al., 2017] and summarize them below.
Lemma 10. [Nguyen et al., 2017, Theorem 1a] Suppose that Assumptions 1-3 hold. Choosing step size $\eta \leq 2 / L$ in SARAH (Alg. 1), then for a particular inner loop s and any $t \geq 1$, we have

$$
\mathbb{E}\left[\left\|\mathbf{v}_{t}^{s}\right\|^{2}\right] \leq\left[1-\left(\frac{2}{\eta L}-1\right) \mu^{2} \eta^{2}\right]^{t} \mathbb{E}\left[\left\|\nabla F\left(\tilde{\mathbf{x}}^{s-1}\right)\right\|^{2}\right]
$$

Lemma 11. [Nguyen et al., 2017, Theorem 1b] Suppose that Assumptions 1 and 4 hold. Choosing step size $\eta<2 /(\mu+L)$ in SARAH (Alg. 1), then for a particular inner loop s and any $t \geq 1$, we have

$$
\mathbb{E}\left[\left\|\mathbf{v}_{t}^{s}\right\|^{2}\right] \leq\left[1-\frac{2 \mu L \eta}{\mu+L}\right]^{t} \mathbb{E}\left[\left\|\nabla F\left(\tilde{\mathbf{x}}^{s-1}\right)\right\|^{2}\right]
$$

Now we are ready to prove Lemma 6.
Case 1: Assumptions 1-3 hold. Following Assumption 1, we have

$$
\begin{equation*}
F\left(\mathbf{x}_{t+1}^{s}\right)-F\left(\mathbf{x}_{t}^{s}\right) \leq-\frac{\eta}{2}\left[\left\|\nabla F\left(\mathbf{x}_{t}^{s}\right)\right\|^{2}+\left\|\mathbf{v}_{t}^{s}\right\|^{2}-\left\|\nabla F\left(\mathbf{x}_{t}^{s}\right)-\mathbf{v}_{t}^{s}\right\|^{2}\right]+\frac{(\eta)^{2} L}{2}\left\|\mathbf{v}_{t}^{s}\right\|^{2} \tag{20}
\end{equation*}
$$

The derivation is exactly the same as (15), so we do not repeat it here. Rearranging the terms and dividing both sides with $\eta / 2$, we have

$$
\begin{aligned}
\left\|\nabla F\left(\mathbf{x}_{t}^{s}\right)\right\|^{2} & \leq \frac{2\left[F\left(\mathbf{x}_{t}^{s}\right)-F\left(\mathbf{x}_{t+1}^{s}\right)\right]}{\eta}+\left\|\nabla F\left(\mathbf{x}_{t}^{s}\right)-\mathbf{v}_{t}^{s}\right\|^{2}-(1-\eta L)\left\|\mathbf{v}_{t}^{s}\right\|^{2} \\
& \stackrel{(a)}{\leq} \frac{2\left\langle\nabla F\left(\mathbf{x}_{t}^{s}\right), \mathbf{x}_{t}^{s}-\mathbf{x}_{t+1}^{s}\right\rangle}{\eta}+\left\|\nabla F\left(\mathbf{x}_{t}^{s}\right)-\mathbf{v}_{t}^{s}\right\|^{2}-(1-\eta L)\left\|\mathbf{v}_{t}^{s}\right\|^{2} \\
& \stackrel{(b)}{\leq} \frac{2}{\eta}\left[\frac{\delta\left\|\nabla F\left(\mathbf{x}_{t}^{s}\right)\right\|^{2}}{2}+\frac{\left\|\mathbf{x}_{t}^{s}-\mathbf{x}_{t+1}^{s}\right\|^{2}}{2 \delta}\right]+\left\|\nabla F\left(\mathbf{x}_{t}^{s}\right)-\mathbf{v}_{t}^{s}\right\|^{2}-(1-\eta L)\left\|\mathbf{v}_{t}^{s}\right\|^{2}
\end{aligned}
$$

where (a) follows from the convexity of F; (b) uses Young's inequality with $\delta>0$ to be specified later. Since $\mathbf{x}_{t+1}^{s}=$ $\mathbf{x}_{t}^{s}-\eta \mathbf{v}_{t}^{s}$, rearranging the terms we have

$$
\left(1-\frac{\delta}{\eta}\right)\left\|\nabla F\left(\mathbf{x}_{t}^{s}\right)\right\|^{2} \leq\left\|\nabla F\left(\mathbf{x}_{t}^{s}\right)-\mathbf{v}_{t}^{s}\right\|^{2}-\left(1-\eta L-\frac{\eta}{\delta}\right)\left\|\mathbf{v}_{t}^{s}\right\|^{2}
$$

Choosing $\delta=0.5 \eta$, we have

$$
\begin{equation*}
\frac{1}{2}\left\|\nabla F\left(\mathbf{x}_{t}^{s}\right)\right\|^{2} \leq\left\|\nabla F\left(\mathbf{x}_{t}^{s}\right)-\mathbf{v}_{t}^{s}\right\|^{2}+(1+\eta L)\left\|\mathbf{v}_{t}^{s}\right\|^{2} \tag{21}
\end{equation*}
$$

Then, taking expectation w.r.t. \mathcal{F}_{t-1}, applying Lemma 1 to $\mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t}^{s}\right)-\mathbf{v}_{t}^{s}\right\|^{2}\right]$ and Lemma 10 to $\mathbb{E}\left[\left\|\mathbf{v}_{t}^{s}\right\|^{2}\right]$, with $t=m$ we have

$$
\frac{1}{2} \mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{m}^{s}\right)\right\|^{2}\right] \leq \frac{\eta L}{2-\eta L}\left\|\nabla F\left(\tilde{\mathbf{x}}^{s-1}\right)\right\|^{2}+(1+\eta L)\left[1-\left(\frac{2}{\eta L}-1\right) \mu^{2} \eta^{2}\right]^{m} \mathbb{E}\left[\left\|\nabla F\left(\tilde{\mathbf{x}}^{s-1}\right)\right\|^{2}\right]
$$

Multiplying both sides by 2 completes the proof.
Case 2: Assumptions 1 and 4 hold. Using exactly same arguments as Case 1 we can arrive at (21). Now applying Lemma 11, we have

$$
\begin{aligned}
\frac{1}{2} \mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{m}^{s}\right)\right\|^{2}\right] & \leq \frac{\eta L}{2-\eta L}\left\|\nabla F\left(\tilde{\mathbf{x}}^{s-1}\right)\right\|^{2}+(1+\eta L)\left(1-\frac{2 \mu L \eta}{\mu+L}\right)^{m} \mathbb{E}\left[\left\|\nabla F\left(\tilde{\mathbf{x}}^{s-1}\right)\right\|^{2}\right] \\
& =\frac{\eta L}{2-\eta L}\left\|\nabla F\left(\tilde{\mathbf{x}}^{s-1}\right)\right\|^{2}+(1+\eta L)\left(1-\frac{2 L \eta}{1+\kappa}\right)^{m} \mathbb{E}\left[\left\|\nabla F\left(\tilde{\mathbf{x}}^{s-1}\right)\right\|^{2}\right]
\end{aligned}
$$

Multiplying both sides by 2 completes the proof.

D. 2 Proof of Theorem 3

We will only analyze case 1 where Assumptions $1-3$ hold. The other case where Assumptions 1 and 4 are true can be analyzed in the same manner.

For analysis, let sequence $\left\{0, t_{1}, t_{2}, \ldots, t_{N}\right\}$, be the iteration indices where $B_{t_{i}}=1$ (0 is automatically contained since at the beginning of L2S-SC, \mathbf{v}_{0} is calculated). For a given sequence $\left\{0, t_{1}, t_{2}, \ldots, t_{S}\right\}$, it can be seen that due to the step
back in Line 7 of Alg. 3, $\mathbf{x}_{t_{i}-1}$ plays the role of the starting point of an inner loop of SARAH; while $\mathbf{x}_{t_{i+1}-1}$ is analogous to \mathbf{x}_{m}^{s} of SARAH's inner loop. Define $\mathbf{x}_{-1}=\mathbf{x}_{0}$ and

$$
\begin{equation*}
\lambda_{i+1}:=\left\{\frac{2 \eta L}{2-\eta L}+(2+2 \eta L)\left[1-\left(\frac{2}{\eta L}-1\right) \mu^{2} \eta^{2}\right]^{t_{i+1}-t_{i}}\right\} . \tag{22}
\end{equation*}
$$

Using similar arguments of Lemma 6 , when $\eta \leq 2 /(3 L)$, it is guaranteed to have

$$
\begin{align*}
\mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t_{S}-1}\right)\right\|^{2} \mid\left\{0, t_{1}, t_{2}, \ldots, t_{S}\right\}\right] & \leq \lambda_{S} \mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t_{S-1}}\right)\right\|^{2} \mid\left\{0, t_{1}, t_{2}, \ldots, t_{S}\right\}\right] \\
& =\lambda_{S} \mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t_{S-1}-1}\right)\right\|^{2} \mid\left\{0, t_{1}, t_{2}, \ldots, t_{S}\right\}\right] \\
& \leq \lambda_{S} \lambda_{S-1} \ldots \lambda_{1}\left\|\nabla F\left(\mathbf{x}_{0}\right)\right\|^{2} \tag{23}
\end{align*}
$$

For convenience, let us define

$$
\theta:=1-\left(\frac{2}{\eta L}-1\right) \mu^{2} \eta^{2}
$$

Note that choosing η properly we can have $\theta<1$. Now it can be seen that

$$
\mathbb{E}\left[\theta^{t_{i+1}-t_{i}} \mid t_{i}\right] \leq \sum_{j=1}^{\infty} \frac{1}{m}\left(1-\frac{1}{m}\right)^{j-1} \theta^{j} \leq \frac{1}{m-1} \frac{\theta\left(1-\frac{1}{m}\right)}{1-\theta\left(1-\frac{1}{m}\right)}
$$

Note that this inequality is irrelevant with t_{i}. Thus if we further take expectation w.r.t. t_{i}, we arrive at

$$
\begin{equation*}
\mathbb{E}\left[\theta^{t_{i+1}-t_{i}}\right] \leq \frac{1}{m-1} \frac{\theta\left(1-\frac{1}{m}\right)}{1-\theta\left(1-\frac{1}{m}\right)} \tag{24}
\end{equation*}
$$

Plugging (24) into (22) we have

$$
\mathbb{E}\left[\lambda_{i}\right] \leq \frac{2 \eta L}{2-\eta L}+\frac{2+2 \eta L}{m-1} \frac{\theta\left(1-\frac{1}{m}\right)}{1-\theta\left(1-\frac{1}{m}\right)}:=\lambda, \forall i
$$

Note that the randomness of λ_{i+1} comes from $t_{i+1}-t_{i}$, which is the length of the interval between the calculation of two snapshot gradient. Since $\mathbb{P}\left\{t_{i+1}-t_{i}=u, t_{i+2}-t_{i+1}=v\right\}=\mathbb{P}\left\{t_{i+1}-t_{i}=u\right\} \mathbb{P}\left\{t_{i+2}-t_{i+1}=v\right\}$ for positive integers u and v, it can be seen $\left\{t_{i+1}-t_{i}\right\}$ are mutually independent, which further leads to the mutual independence of $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{S}$. Therefore, taking expectation w.r.t. $\left\{0, t_{1}, t_{2}, \ldots, t_{S}\right\}$ on both sides of (23), we have

$$
\mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t_{S}-1}\right)\right\|^{2}\right]=\mathbb{E}\left[\lambda_{S} \lambda_{S-1} \ldots \lambda_{1}\right]\left\|\nabla F\left(\mathbf{x}_{0}\right)\right\|^{2} \leq \lambda^{S}\left\|\nabla F\left(\mathbf{x}_{0}\right)\right\|^{2}
$$

which completes the proof.

D. 3 When to Use An n-dependent Step Size in Convex Problems

Figure 4: Performances of n-dependent step size and n-independent step size under on subsample datasets $r c v 1$ and $a 9 a$.

We perform SVRG and SARAH with n-dependent/independent step sizes to solve logistic regression problems on subsampled $r c v 1$ and $a 9 a$. The results can be found in Fig. 4. It can be seen that n-independent step sizes perform better than those of n-dependent step sizes in all the tests. In addition, as n increases, i) the gradient norm of solutions obtained via n-dependent step sizes becomes smaller; and ii) the performance gap between n-dependent and n-independent step sizes reduces. These observations suggest n-dependent step sizes can reveal their merits when n is extremely large (at least it should be larger than the size of $a 9 a$, which is $n=32561$).

E Boosting the Practical Merits of SARAH

```
Algorithm 5 D2S
    Initialize: \(\tilde{\mathbf{x}}_{0}, \eta, m, S\)
    for \(s=1,2, \ldots, S\) do
        \(\mathbf{x}_{0}^{s}=\tilde{\mathbf{x}}^{s-1}\)
        \(\mathbf{v}_{0}^{s}=\nabla F\left(\mathbf{x}_{0}^{s}\right)\)
        \(\mathbf{x}_{1}^{s}=\mathbf{x}_{0}^{s}-\eta \mathbf{v}_{0}^{s}\)
        for \(t=1,2, \ldots, m\) do
            Sample \(i_{t}\) according to \(\mathbf{p}_{t}^{s}\) in (26)
            Compute \(\mathbf{v}_{t}^{s}\) via (27)
            \(\mathbf{x}_{t+1}^{s}=\mathbf{x}_{t}^{s}-\eta \mathbf{v}_{t}^{s}\)
        end for
        \(\tilde{\mathbf{x}}^{s}\) uniformly rnd. chosen from \(\left\{\mathbf{x}_{t}^{s}\right\}_{t=0}^{m}\)
    end for
    Output: \(\tilde{\mathbf{x}}^{S}\)
```

Assumption 5. Each $f_{i}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ has L_{i}-Lipchitz gradient, and F has L_{F}-Lipchitz gradient; that is, $\| \nabla f_{i}(\mathbf{x})-$ $\nabla f_{i}(\mathbf{y})\left\|\leq L_{i}\right\| \mathbf{x}-\mathbf{y} \|$, and $\|\nabla F(\mathbf{x})-\nabla F(\mathbf{y})\| \leq L_{F}\|\mathbf{x}-\mathbf{y}\|, \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}$.

This section presents a simple yet effective variant of SARAH to enable a larger step size. The improvement stems from making use of the data dependent L_{i} in Assumption 5. The resultant algorithm that we term Data Dependent SARAH (D2S) is summarized in Alg. 5. For simplicity D2S is developed based on SARAH, but it generalizes to L2S as well.

Intuitively, each f_{i} provides a distinct gradient to be used in the updates. The insight here is that if one could quantify the "importance" of f_{i} (or the gradient it provides), those more important ones should be used more frequently. Formally, our idea is to draw i_{t} of outer loop s according to a probability mass vector $\mathbf{p}_{t}^{s} \in \Delta_{n}$, where $\Delta_{n}:=\left\{\mathbf{p} \in \mathbb{R}_{+}^{n} \mid\langle\mathbf{1}, \mathbf{p}\rangle=1\right\}$. With $\mathbf{p}_{t}^{s}=1 / n$, D2S boils down to SARAH.
Ideally, finding \mathbf{p}_{t}^{s} should rely on the estimation error as optimality crietrion. Specifically, we wish to minimize $\mathbb{E}\left[\| \mathbf{v}_{t}^{s}-\right.$ $\left.\nabla F\left(\mathbf{x}_{t}^{s}\right) \|^{2} \mid \mathcal{F}_{t-1}\right]$ in Lemma 1. Writing the expectation explicitly, the problem can be posed as

$$
\begin{equation*}
\min _{\mathbf{p}_{t}^{s} \in \Delta_{n}} \frac{1}{n^{2}} \sum_{i \in[n]} \frac{\left\|\nabla f_{i}\left(\mathbf{x}_{t}^{s}\right)-\nabla f_{i}\left(\mathbf{x}_{t-1}^{s}\right)\right\|^{2}}{p_{t, i}^{s}} \Rightarrow\left(p_{t, i}^{s}\right)^{*}=\frac{\left\|\nabla f_{i}\left(\mathbf{x}_{t}^{s}\right)-\nabla f_{i}\left(\mathbf{x}_{t-1}^{s}\right)\right\|}{\sum_{j \in[n]}\left\|\nabla f_{j}\left(\mathbf{x}_{t}^{s}\right)-\nabla f_{j}\left(\mathbf{x}_{t-1}^{s}\right)\right\|} \tag{25}
\end{equation*}
$$

where the $\left(p_{t, i}^{s}\right)^{*}$ denotes the optimal solution. Though finding out \mathbf{p}_{t}^{s} via (25) is optimal, it is intractable to implement because $\nabla f_{i}\left(\mathbf{x}_{t-1}^{s}\right)$ and $\nabla f_{i}\left(\mathbf{x}_{t}^{s}\right)$ for all $i \in[n]$ must be computed, which is even more expensive than computing $\nabla F\left(\mathbf{x}_{t}^{s}\right)$ itself. However, (25) implies that a larger probability should be assigned to those $\left\{f_{i}\right\}$ whose gradients on \mathbf{x}_{t}^{s} and \mathbf{x}_{t-1}^{s} change drastically. The intuition behind this observation is that a more abrupt change of the gradient suggests a larger residual to be optimized. Thus, $\left\|\nabla f_{i}\left(\mathbf{x}_{t}^{s}\right)-\nabla f_{i}\left(\mathbf{x}_{t-1}^{s}\right)\right\|^{2}$ in (25) can be approximated by its upper bound $L_{i}^{2}\left\|\mathbf{x}_{t}^{s}-\mathbf{x}_{t-1}^{s}\right\|^{2}$, which inaccurately captures gradient changes. The resultant problem and its optimal solution are

$$
\begin{equation*}
\min _{\mathbf{p}_{t}^{s} \in \Delta_{n}} \frac{1}{n^{2}} \sum_{i \in[n]} \frac{L_{i}^{2}\left\|\mathbf{x}_{t}^{s}-\mathbf{x}_{t-1}^{s}\right\|^{2}}{p_{t, i}^{s}} \Rightarrow\left(p_{t, i}^{s}\right)^{*}=\frac{L_{i}}{\sum_{j \in[n]} L_{j}}, \forall t, \forall s \tag{26}
\end{equation*}
$$

Choosing \mathbf{p}_{t}^{s} according to (26) is computationally attractive not only because it eliminates the need to compute gradients, but also because L_{i} is usually cheap to obtain in practice (at least for linear and logistic regression losses). Knowing
$L=\max _{i \in[n]} L_{i}$ is critical for SARAH [Nguyen et al., 2017]; hence, finding \mathbf{p}_{t}^{s} only introduces negligible overhead compared to SARAH. Accounting for \mathbf{p}_{t}^{s}, the gradient estimator \mathbf{v}_{t}^{s} is also modified to an importance sampling based one to compensate for those less frequently sampled $\left\{f_{i}\right\}$

$$
\begin{equation*}
\mathbf{v}_{t}^{s}=\frac{\nabla f_{i_{t}}\left(\mathbf{x}_{t}^{s}\right)-\nabla f_{i_{t}}\left(\mathbf{x}_{t-1}^{s}\right)}{n p_{t, i_{t}}^{s}}+\mathbf{v}_{t-1}^{s} \tag{27}
\end{equation*}
$$

Note that \mathbf{v}_{t}^{s} is still biased, since $\mathbb{E}\left[\mathbf{v}_{t}^{s} \mid \mathcal{F}_{t-1}\right]=\nabla F\left(\mathbf{x}_{t}^{s}\right)-\nabla F\left(\mathbf{x}_{t-1}^{s}\right)+\mathbf{v}_{t-1}^{s} \neq \nabla F\left(\mathbf{x}_{t}^{s}\right)$. As asserted next, with \mathbf{p}_{t}^{s} as in (26) and \mathbf{v}_{t}^{s} computed via (27), D2S indeed improves SARAH's convergence rate.

Theorem 4. If Assumptions 5, 2, and 3 hold, upon choosing $\eta<1 / \bar{L}$ and a large enough m such that $\sigma_{m}:=\frac{1}{\mu \eta(m+1)}+$ $\frac{\eta \bar{L}}{2-\eta \bar{L}}<1$, D2S convergences linearly; that is,

$$
\mathbb{E}\left[\left\|\nabla F\left(\tilde{\mathbf{x}}_{s}\right)\right\|^{2}\right] \leq\left(\sigma_{m}\right)^{s}\left\|\nabla F\left(\tilde{\mathbf{x}}_{0}\right)\right\|^{2}, \forall s
$$

Compared with SARAH's linear convergence rate $\tilde{\sigma}_{m}=\frac{1}{\mu \eta(m+1)}+\frac{\eta L}{2-\eta L}$ [Nguyen et al., 2017], the improvement on the convergence constant σ_{m} is twofold: i) if η and m are chosen the same in D2S and SARAH, it always holds that $\sigma_{m} \leq \tilde{\sigma}_{m}$, which implies D2S converges faster than SARAH; and ii) the step size can be chosen more aggressively with $\eta<1 / \bar{L}$, while the standard SARAH step size has to be less than $1 / L$. The improvements are further corroborated in terms of the number of IFO calls, especially for ERM problems that are ill-conditioned.
Corollary 7. If Assumptions 5, 2, and 3 hold, to find $\tilde{\mathbf{x}}^{s}$ such that $\mathbb{E}\left[\left\|\nabla F\left(\tilde{\mathbf{x}}^{s}\right)\right\|^{2}\right] \leq \epsilon$, D2S requires $\mathcal{O}((n+\bar{\kappa}) \ln (1 / \epsilon))$ IFO calls, where $\bar{\kappa}:=\bar{L} / \mu$.

E. 1 Optimal Solution of (25)

The optimal solution of (25) can be directly obtained from the partial Lagrangian

$$
\mathcal{L}\left(\mathbf{p}_{t}^{s}, \lambda\right)=\frac{1}{n^{2}} \sum_{i \in[n]} \frac{\left\|\nabla f_{i}\left(\mathbf{x}_{t}^{s}\right)-\nabla f_{i}\left(\mathbf{x}_{t-1}^{s}\right)\right\|^{2}}{p_{t, i}^{s}}+\lambda \sum_{i \in[n]} p_{t, i}^{s}-\lambda
$$

Taking derivative w.r.t. \mathbf{p}_{t}^{s} and set it to $\mathbf{0}$, we have

$$
p_{t, i}^{s}=\frac{\left\|\nabla f_{i}\left(\mathbf{x}_{t}^{s}\right)-\nabla f_{i}\left(\mathbf{x}_{t-1}^{s}\right)\right\|}{\sqrt{\lambda} n} .
$$

Note that if $\lambda>0$, it automatically satisfies $p_{t, i}^{s} \geq 0$. Then let $\sum_{i \in[n]} p_{t, i}^{s}=1$, it is not hard to find the value of λ and obtain (25). The solution of (26) can be derived in a similar manner.

E. 2 Proof of Theorem 4

The proof generalizes the original proof of SARAH for strongly convex problems [Nguyen et al., 2017, Theorem 2]. Notice that the importance sampling based gradient estimator enables the fact $\mathbb{E}_{i_{t}}\left[\mathbf{v}_{t}^{s} \mid \mathcal{F}_{t-1}\right]=\nabla F\left(\mathbf{x}_{t}^{s}\right)-\nabla F\left(\mathbf{x}_{t-1}^{s}\right)+\mathbf{v}_{t-1}^{s}$. By exploring this fact, it is not hard to see that the following lemmas hold. The proof has almost the same steps as those in [Nguyen et al., 2017], except for the expectation now is w.r.t. a nonuniform distribution \mathbf{p}_{t}^{s}.
Lemma 12. [Nguyen et al., 2017, Lemma 1] In any outer loop s, if $\eta \leq 1 / L_{F}$, we have

$$
\sum_{t=0}^{m} \mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t}^{s}\right)\right\|^{2}\right] \leq \frac{2}{\eta} \mathbb{E}\left[F\left(\mathbf{x}_{0}^{s}\right)-F\left(\mathbf{x}^{*}\right)\right]+\sum_{t=0}^{m} \mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t}^{s}\right)-\mathbf{v}_{t}^{s}\right\|\right]
$$

Lemma 13. The following equation is true

$$
\mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t}^{s}\right)-\mathbf{v}_{t}^{s}\right\|^{2}\right]=\sum_{\tau=1}^{t} \mathbb{E}\left[\left\|\mathbf{v}_{\tau}^{s}-\mathbf{v}_{\tau-1}^{s}\right\|^{2}\right]-\sum_{\tau=1}^{t} \mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{\tau}^{s}\right)-\nabla F\left(\mathbf{x}_{\tau-1}^{s}\right)\right\|^{2}\right]
$$

Lemma 14. In any outer loop s, if η is chosen to satisfy $1-\frac{2}{\eta \bar{L}}<0$, we have

$$
\mathbb{E}\left[\left\|\mathbf{v}_{t}^{s}-\mathbf{v}_{t-1}^{s}\right\|^{2} \mid \mathcal{F}_{t-1}\right] \leq \frac{\eta \bar{L}}{2-\eta \bar{L}}\left(\left\|\mathbf{v}_{t-1}^{s}\right\|^{2}-\mathbb{E}\left[\left\|\mathbf{v}_{t}^{s}\right\|^{2} \mid \mathcal{F}_{t-1}\right]\right), \forall t \geq 1
$$

Proof. Consider that for any $t \geq 1$

$$
\begin{aligned}
& \mathbb{E}_{i_{t}}\left[\left\|\mathbf{v}_{t}^{s}\right\|^{2} \mid \mathcal{F}_{t-1}\right]=\mathbb{E}_{i_{t}}\left[\left\|\mathbf{v}_{t}^{s}-\mathbf{v}_{t-1}^{s}+\mathbf{v}_{t-1}^{s}\right\|^{2} \mid \mathcal{F}_{t-1}\right] \\
&=\left\|\mathbf{v}_{t-1}^{s}\right\|^{2}+\mathbb{E}\left[\left\|\mathbf{v}_{t}^{s}-\mathbf{v}_{t-1}^{s}\right\|^{2} \mid \mathcal{F}_{t-1}\right]+2 \mathbb{E}\left[\left\langle\mathbf{v}_{t-1}^{s}, \mathbf{v}_{t}^{s}-\mathbf{v}_{t-1}^{s}\right\rangle \mid \mathcal{F}_{t-1}\right] \\
& \stackrel{(a)}{=}\left\|\mathbf{v}_{t-1}^{s}\right\|^{2}+\mathbb{E}\left[\left.\left\|\mathbf{v}_{t}^{s}-\mathbf{v}_{t-1}^{s}\right\|^{2}+\frac{2}{\eta}\left\langle\mathbf{x}_{t-1}^{s}-\mathbf{x}_{t}^{s}, \frac{\nabla f_{i_{t}}\left(\mathbf{x}_{t}^{s}\right)-\nabla f_{i_{t}}\left(\mathbf{x}_{t-1}^{s}\right)}{n p_{t, i_{t}}^{s}}\right\rangle \right\rvert\, \mathcal{F}_{t-1}\right] \\
& \stackrel{(b)}{\leq}\left\|\mathbf{v}_{t-1}^{s}\right\|^{2}+\mathbb{E}\left[\left.\left\|\mathbf{v}_{t}^{s}-\mathbf{v}_{t-1}^{s}\right\|^{2}-\frac{2}{\eta L_{i_{t}} n p_{t, i_{t}}^{s}}\left\|\nabla f_{i_{t}}\left(\mathbf{x}_{t}^{s}\right)-\nabla f_{i_{t}}\left(\mathbf{x}_{t-1}^{s}\right)\right\|^{2} \right\rvert\, \mathcal{F}_{t-1}\right] \\
& \stackrel{(c)}{=}\left\|\mathbf{v}_{t-1}^{s}\right\|^{2}+\mathbb{E}\left[\left.\left\|\mathbf{v}_{t}^{s}-\mathbf{v}_{t-1}^{s}\right\|^{2}-\frac{2 n p_{t, i_{t}}^{s}}{\eta L_{i_{t}}}\left\|\mathbf{v}_{t}^{s}-\mathbf{v}_{t-1}^{s}\right\|^{2} \right\rvert\, \mathcal{F}_{t-1}\right] \\
& \stackrel{(d)}{=}\left\|\mathbf{v}_{t-1}^{s}\right\|^{2}+\mathbb{E}\left[\left.\left(1-\frac{2}{\eta \bar{L}}\right)\left\|\mathbf{v}_{t}^{s}-\mathbf{v}_{t-1}^{s}\right\|^{2} \right\rvert\, \mathcal{F}_{t-1}\right]
\end{aligned}
$$

where (a) follows from (27) and the update $\mathbf{x}_{t}^{s}=\mathbf{x}_{t-1}^{s}-\eta \mathbf{v}_{t}^{s}$; (b) is the result of (9c); (c) is by the definition of \mathbf{v}_{t}^{s}; and (d) is by plugging (26) in. By choosing η such that $1-\frac{2}{\eta \bar{L}}<0$, we have

$$
\mathbb{E}\left[\left\|\mathbf{v}_{t}^{s}-\mathbf{v}_{t-1}^{s}\right\|^{2} \mid \mathcal{F}_{t-1}\right] \leq \frac{\eta \bar{L}}{2-\eta \bar{L}}\left(\left\|\mathbf{v}_{t-1}^{s}\right\|^{2}-\mathbb{E}\left[\left\|\mathbf{v}_{t}^{s}\right\|^{2} \mid \mathcal{F}_{t-1}\right]\right)
$$

which concludes the proof.
Proof of Theorem 4: Using Lemmas 13 and 14 we have

$$
\begin{align*}
\mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t}^{s}\right)-\mathbf{v}_{t}^{s}\right\|^{2}\right] & =\sum_{\tau=1}^{t} \mathbb{E}\left[\left\|\mathbf{v}_{\tau}^{s}-\mathbf{v}_{\tau-1}^{s}\right\|^{2}\right]-\sum_{\tau=1}^{t} \mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{\tau}^{s}\right)-\nabla F\left(\mathbf{x}_{\tau-1}^{s}\right)\right\|^{2}\right] \\
& \leq \frac{\eta \bar{L}}{2-\eta \bar{L}} \mathbb{E}\left[\left\|\mathbf{v}_{0}^{s}\right\|^{2}\right] \tag{28}
\end{align*}
$$

If we further let $\eta \leq 1 / L_{F}$, plugging (28) into Lemma 12 , we have

$$
\sum_{t=0}^{m} \mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t}^{s}\right)\right\|^{2}\right] \leq \frac{2}{\eta} \mathbb{E}\left[F\left(\mathbf{x}_{0}^{s}\right)-F\left(\mathbf{x}^{*}\right)\right]+\frac{(m+1) \eta \bar{L}}{2-\eta \bar{L}} \mathbb{E}\left[\left\|\mathbf{v}_{0}^{s}\right\|^{2}\right]
$$

Since $\tilde{\mathbf{x}}^{s}$ is uniformly randomized chosen from $\left\{\mathbf{x}_{t}^{s}\right\}_{t=0}^{m}$, by exploiting the fact $\mathbf{v}_{0}^{s}=\nabla F\left(\tilde{\mathbf{x}}^{s-1}\right)$ and $\mathbf{x}_{0}^{s}=\tilde{\mathbf{x}}^{s-1}$, we have that

$$
\begin{align*}
\mathbb{E}\left[\left\|\nabla F\left(\tilde{\mathbf{x}}^{s}\right)\right\|^{2}\right] & \leq \frac{2}{\eta(m+1)} \mathbb{E}\left[F\left(\tilde{\mathbf{x}}^{s-1}\right)-F\left(\mathbf{x}^{*}\right)\right]+\frac{\eta \bar{L}}{2-\eta \bar{L}} \mathbb{E}\left[\left\|\nabla F\left(\tilde{\mathbf{x}}^{s-1}\right)\right\|^{2}\right] \\
& \leq\left(\frac{2}{\mu \eta(m+1)}+\frac{\eta \bar{L}}{2-\eta \bar{L}}\right) \mathbb{E}\left[\left\|\nabla F\left(\tilde{\mathbf{x}}^{s-1}\right)\right\|^{2}\right] \tag{29}
\end{align*}
$$

where the last inequality follows from (10a). Unrolling $\mathbb{E}\left[\left\|\nabla F\left(\tilde{\mathbf{x}}^{s-1}\right)\right\|^{2}\right]$ in (29), Theorem 4 can be proved.

E. 3 Proof of Corollary 7

The proof is modified from [Nguyen et al., 2017, Corollary 3]. By choosing $\eta=0.5 /(\bar{L})$ and $m=4.5 \bar{\kappa}$, we have σ_{m} in Theorem 4 bounded by

$$
\sigma_{m}=\frac{1}{\frac{1}{2 \bar{\kappa}}(4.5 \bar{\kappa}+1)}+\frac{0.5}{1.5}<\frac{7}{9} .
$$

Then by Theorem 4, by choosing S as

$$
S \geq \frac{\ln \left(\left\|\nabla F\left(\tilde{\mathbf{x}}^{0}\right)\right\|^{2} / \epsilon\right)}{\ln (9 / 7)} \geq \log _{7 / 9}\left(\left\|\nabla F\left(\tilde{\mathbf{x}}^{0}\right)\right\|^{2} / \epsilon\right)
$$

we have $\mathbb{E}\left[\left\|\nabla F\left(\tilde{\mathbf{x}}^{S}\right)\right\|^{2}\right] \leq\left(\sigma_{m}\right)^{2}\left\|\nabla F\left(\tilde{\mathbf{x}}^{0}\right)\right\|^{2} \leq \epsilon$. Thus the number of IFO calls is

$$
(n+2 m) S=\mathcal{O}((n+\bar{\kappa}) \ln (1 / \epsilon))
$$

Table 1: A summary of datasets used in numerical tests

Dataset	d	n (train)	density	n (test)	L	λ
$a 9 a$	123	32,561	11.28%	16,281	3.4672	0.0005
$r c v 1$	47,236	20,242	0.157%	677,399	0.25	0.0001
$w 7 a$	300	24,692	3.89%	25,057	2.917	0.005

F Numerical Experiments

Experiments for (strongly) convex cases are performed using python 3.7 on an Intel i7-4790CPU @ 3.60 GHz (32 GB RAM) desktop. The details of the used datasets are summarized in Table 1. The smoothness parameter L_{i} can be calculated via $L_{i}=\left\|\mathbf{a}_{i}\right\|^{2} / 4$ by checking the Hessian matrix.

L2S. Since we are considering the convex case, we set $\lambda=0$ in (8). SVRG, SARAH and SGD are chosen as benchmarks, where SGD is modified with step size $\eta_{k}=1 /(\bar{L}(k+1))$ on the k-th epoch. For both SARAH and SVRG, the length of inner loop is chosen as $m=n$. For a fair comparison, we use the same m for L2S [cf. (3)]. The step sizes of SARAH and SVRG are selected from $\{0.01 / \bar{L}, 0.1 / \bar{L}, 0.2 / \bar{L}, 0.3 / \bar{L}, 0.4 / \bar{L}, 0.5 / \bar{L}, 0.6 / \bar{L}, 0.7 / \bar{L}, 0.8 / \bar{L}, 0.9 / \bar{L}, 0.95 / \bar{L}\}$ and those with best performances are reported. Note that the SVRG theory only effects when $\eta<0.25 / \bar{L}$. The step size of L2S is the same as that of SARAH for fairness.

L2S-SC. The parameters are chosen in the same manner as the test of L2S.
L2S for on Nononvex Problems We perform classification on MNIST dataset using a $784 \times 128 \times 10$ feedforward neural network through Pytorch. The activation function used in hidden layer is sigmoid. SGD, SVRG, and SARAH are adopted as benchmarks. In all tested algorithms the batch sizes are $b=32$. The step size of SGD is $\mathcal{O}(\sqrt{b} /(k+1))$, where k is the index of epoch; the step size is chosen as $b /\left(L n^{2 / 3}\right)$ for SVRG [Reddi et al., 2016a]; and the step sizes are $\sqrt{b} /(2 \sqrt{n} L)$ for SARAH [Nguyen et al., 2019] and L2S. The inner loop lengths are selected to be $m=n / b$ for SVRG and SARAH, while the same m is used for L2S.

