Robust Importance Weighting for Covariate Shift

Henry Lam
Columbia University
khl2114@columbia.edu

Fengpei Li
Columbia University
Email fl2412@columbia.edu

Siddharth Prusty
Columbia University
siddharth.prusty@columbia.edu

7 Appendix

Throughout the proofs, $h(\cdot) \in \mathcal{H}$ is assumed to be an unspecified function in the RKHS. Also, we use $\mathbb{E}_{X}[\cdot]$ to denote expectation over the randomness of X while fixing others and $\mathbb{E}_{\mid X}[\cdot]$ as the conditional expectation $\mathbb{E}[\cdot \mid X]$. Moreover we remark that all results involving $\hat{g}_{\gamma, \text { data }}$ can be interpreted either as a high probability bound or a bound on expectation over $\mathbb{E}_{\text {data }}$ (i.e., if we train $\hat{g}_{\gamma, \boldsymbol{X}_{N R}^{t r}, \boldsymbol{Y}_{N R}^{t r}}$ using $\boldsymbol{X}_{N R}^{t r}, \boldsymbol{Y}_{N R}^{t r}$, then $\mathbb{E}_{\text {data }}$ means $\mathbb{E}_{\boldsymbol{X}_{N R}^{t r}, \boldsymbol{Y}_{N R}^{t r}}$). The same interpretation applies for the results with Big-O notations. Finally, constants C_{2}, C_{2}^{\prime}, C_{3}, C_{3}^{\prime} and $C_{3}^{\prime \prime}$ as well as similar constants introduced later which depend on $R, g(\cdot)$ or δ (for $1-\delta$ high probability bound) will sometimes be denoted by a common C during the proofs for ease of presentation.

7.1 Preliminaries

Lemma 1. Under Assumption 3, for any $f \in \mathcal{H}$, we have

$$
\begin{equation*}
\|f\|_{\infty}=\sup _{x \in \mathcal{X}}\left|\langle f(\cdot), \Phi(\cdot, x)\rangle_{\mathcal{H}}\right| \leq R\|f\|_{\mathcal{H}} . \tag{1}
\end{equation*}
$$

and consequently $\|f\|_{\mathscr{L}_{P_{t r}}^{2}} \leq R\|f\|_{\mathcal{H}}$ as well.
Lemma 2 (Azuma-Hoeffding). Let X_{1}, \ldots, X_{n} be independent and identically distributed random variables with $0 \leq X \leq B$, then

$$
\begin{equation*}
P\left(\left|\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i}-\mathbb{E}[X]\right|>\epsilon\right) \leq 2 e^{-\frac{2 n \epsilon^{2}}{B^{2}}} \tag{2}
\end{equation*}
$$

Corollary 2. Under the same assumption of Lemma 2, with probability at least $1-\delta$,

$$
\begin{equation*}
\left|\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i}-\mathbb{E}[X]\right| \leq B \sqrt{\frac{1}{2 n} \log \frac{2}{\delta}} \tag{3}
\end{equation*}
$$

Moreover, an important $(1-\delta)$-probability bound we shall use later for $\hat{L}\left(\boldsymbol{\beta}_{\mid \boldsymbol{x}_{1}^{t r}, \ldots, \boldsymbol{x}_{n_{t r}}^{t r}}\right)$) follows from Yu and Szepesvári, 2012 (see also Gretton et al., 2009] and Pinelis et al., 1994):

$$
\begin{align*}
\left.\hat{L}\left(\boldsymbol{\beta}_{\mid \boldsymbol{x}_{1}^{t r}, \ldots, \boldsymbol{x}_{n t r}^{t r}}\right)\right) & =\left\|\frac{1}{n_{t r}} \sum_{j=1}^{n_{t r}} \beta\left(\boldsymbol{x}_{j}^{t r}\right) \Phi\left(\boldsymbol{x}_{j}^{t r}\right)-\frac{1}{n_{t e}} \sum_{i=1}^{n_{t e}} \Phi\left(\boldsymbol{x}_{i}^{t e}\right)\right\|_{\mathcal{H}} \\
& \leq \sqrt{2 \log \frac{2}{\delta}} R \sqrt{\left(\frac{B^{2}}{n_{t r}}+\frac{1}{n_{t e}}\right)} . \tag{4}
\end{align*}
$$

7.2 Learning Theory Estimates

To adopt the more realistic assumption as in Yu and Szepesvári, 2012, Cucker and Zhou, 2007 that the true regression function $g(\cdot) \notin \mathcal{H}$ but rather $g(\cdot) \in \operatorname{Range}\left(\mathcal{T}_{K}^{\frac{\theta}{2 \theta+4}}\right)$, we need results from learning theory.
First, define $\zeta \triangleq \frac{\theta}{2 \theta+4}$ for some $\theta>0$ so that $0<\zeta<1 / 2$. Given $g(\cdot) \in \operatorname{Range}\left(\mathcal{T}_{K}^{\zeta}\right)$ and m training sample $\left\{\left(\boldsymbol{x}_{j}, y_{j}\right)\right\}_{j=1}^{m}\left(\right.$ sampled from $\left.\left.P_{t r}\right)\right)$, we define $g_{\gamma}(\cdot) \in \mathcal{H}: \mathcal{X} \rightarrow \mathbb{R}$ to be

$$
\begin{equation*}
g_{\gamma}(\cdot)=\underset{f \in \mathcal{H}}{\operatorname{argmin}}\left\{\|f-g\|_{\mathscr{L}_{P_{t r}}^{2}}^{2}+\gamma\|f\|_{\mathcal{H}}^{2}\right\} \tag{5}
\end{equation*}
$$

where $\|f-g\|_{\mathscr{L}_{P_{t r r}}^{2}}=\sqrt{\mathbb{E}_{\boldsymbol{x} \sim P_{t r}}(f(\boldsymbol{x})-g(\boldsymbol{x}))^{2}}$ denotes the \mathscr{L}^{2} norm under $P_{t r}$. On the other hand, $\hat{g}_{\gamma, \text { data }}(\cdot) \in$ \mathcal{H} is defined in (3)

$$
\hat{g}_{\gamma, \text { data }}(\cdot)=\underset{f \in \mathcal{H}}{\operatorname{argmin}}\left\{\frac{1}{m} \sum_{j=1}^{m}\left(f\left(\boldsymbol{x}_{j}\right)-y_{j}\right)^{2}+\gamma\|f\|_{\mathcal{H}}^{2}\right\} .
$$

Moreover, following the notations in Section 4.5 of Cucker and Zhou, 2007], given Banach space $\left(\mathscr{L}_{P_{t r}}^{2}, \|\right.$. $\left.\|_{\mathscr{L}_{P_{t r}}^{2}}\right)$ and our kernel-induced Hilbert subspace $\left(\mathcal{H},\|\cdot\|_{\mathcal{H}}\right)$, we define a \mathbb{K}-functional: $\mathscr{L}_{P_{t r}}^{2} \times(0, \infty) \rightarrow \mathbb{R}$ to be

$$
\tilde{\mathbb{K}}(l, \gamma) \triangleq \inf _{f \in \mathcal{H}}\left\{\|l-f\|_{\mathscr{L}_{P_{t r}}^{2}}+\gamma\|f\|_{\mathcal{H}}\right\}
$$

for $l(\cdot) \in \mathscr{L}_{P_{t r}}^{2}$ and $t>0$. For $0<r<1$, the interpolation space $\left(\mathscr{L}_{P_{t r}}^{2}, \mathcal{H}\right)_{r}$ consists of all the elements $l(\cdot) \in \mathscr{L}_{P_{t r}}^{2}$ such that

$$
\begin{equation*}
\|l\|_{r} \triangleq \sup _{\gamma>0} \frac{\tilde{\mathbb{K}}(l, \gamma)}{\gamma^{r}}<\infty \tag{6}
\end{equation*}
$$

Lemma 3. Define $\mathbb{K}: \mathscr{L}_{P_{t r}}^{2} \times(0, \infty) \rightarrow \mathbb{R}$ to be

$$
\begin{equation*}
\mathbb{K}(l, \gamma) \triangleq \inf _{f \in \mathcal{H}}\left\{\|l-f\|_{\mathscr{L}_{P_{t r}}^{2}}^{2}+\gamma\|f\|_{\mathcal{H}}^{2}\right\} \tag{7}
\end{equation*}
$$

Then for any $l(\cdot) \in\left(\mathscr{L}_{P_{t r}}^{2}, \mathcal{H}\right)_{r}$, we have

$$
\begin{equation*}
\sup _{\gamma>0} \frac{\mathbb{K}(l, \gamma)}{\gamma^{r}} \leq\left(\sup _{\gamma>0} \frac{\tilde{\mathbb{K}}(l, \sqrt{\gamma})}{(\sqrt{\gamma})^{r}}\right)^{2}=\|l\|_{r}^{2}<\infty \tag{8}
\end{equation*}
$$

Proof. It follows from $\sqrt{a+b} \leq \sqrt{a}+\sqrt{b}, \quad \forall a, b \geq 0$ that

$$
\begin{equation*}
\sqrt{\mathbb{K}(l, \gamma)} \leq \tilde{\mathbb{K}}(l, \sqrt{\gamma}) \tag{9}
\end{equation*}
$$

Thus, for any $l(\cdot) \in\left(\mathscr{L}_{P_{t r}}^{2}, \mathcal{H}\right)_{r}$, we have

$$
\begin{equation*}
\sup _{\gamma>0} \frac{\mathbb{K}(l, \gamma)}{\gamma^{r}} \leq\left(\sup _{\gamma>0} \frac{\tilde{\mathbb{K}}(l, \sqrt{\gamma})}{(\sqrt{\gamma})^{r}}\right)^{2}=\|l\|_{r}^{2}<\infty \tag{10}
\end{equation*}
$$

On the other hand, assuming $g(\cdot) \in \operatorname{Range}\left(\mathcal{T}_{K}^{\frac{\theta}{2 \theta+4}}\right)$, it follows from the proof of Theorem 4.1 in Cucker and Zhou, 2007 that

$$
\begin{equation*}
g(\cdot) \in\left(\mathscr{L}_{P_{t r}}^{2}, \mathcal{H}^{+}\right)_{\frac{\theta}{\theta+2}} \tag{11}
\end{equation*}
$$

where \mathcal{H}^{+}is a closed subspace of \mathcal{H} spanned by eigenfunctions of the kernel K (e.g., $\mathcal{H}^{+}=\mathcal{H}$ when $P_{\text {tr }}$ is non-degenerate, see Remark 4.18 of Cucker and Zhou, 2007]). Indeed, the next lemma shows we can measure smoothness through interpolation space just 2 as range space.

Lemma 4. Assuming $P_{t r}$ is non-degenerate on \mathcal{X}. Then if $g \in \operatorname{Range}\left(\mathcal{T}_{K}^{\frac{\theta}{2 \theta+4}}\right)$, we have $g \in\left(\mathscr{L}_{P_{t r}}^{2}, \mathcal{H}\right)_{\frac{\theta}{\theta+2}}$. On the other hand, if $g \in\left(\mathscr{L}_{P_{t r}}^{2}, \mathcal{H}\right)_{\frac{\theta}{\theta+2}}$, then $g \in \operatorname{Range}\left(\mathcal{T}_{K}^{\frac{\theta}{2 \theta+4}-\epsilon}\right)$ for all $\epsilon>0$.

Proof. The proof follows from Theorem 4.1, Corollary 4.17 and Remark 4.18 of Cucker and Zhou, 2007.

Now we are ready to adopt some common assumptions and theoretical results from learning theory in RKHS. They can be found in Cucker and Zhou, 2007, Sun and Wu, 2009, Smale and Zhou, 2007, Yu and Szepesvári, 2012. First, given $g(\cdot) \in \operatorname{Range}\left(\mathcal{T}_{K}^{\zeta}\right)$ and m training sample $\left\{\left(\boldsymbol{x}_{j}, y_{j}\right)\right\}_{j=1}^{m}$ (sampled from $\left.P_{t r}\right)$), it follows from Lemma 3 of [Smale and Zhou, 2007] (see as well Remark 3.3 and Corollary 3.2 in [Sun and Wu, 2009]) that

$$
\begin{equation*}
\left\|g_{\gamma}-g\right\|_{\mathscr{L}_{P_{t r}}^{2}} \leq C_{2} \gamma^{\zeta} \tag{12}
\end{equation*}
$$

Second, it follows from Theorem 3.1 in Sun and Wu, 2009 as well as Smale and Zhou, 2007, Sun and Wu, 2010 that

$$
\begin{equation*}
\left\|g_{\gamma}-\hat{g}_{\gamma, \text { data }}\right\|_{\mathscr{L}_{P_{t r}}^{2}} \leq C_{2}^{\prime}\left(\gamma^{-1 / 2} m^{-1 / 2}+\gamma^{-1} m^{-3 / 4}\right) \tag{13}
\end{equation*}
$$

and, by the triangle inequality,

$$
\begin{equation*}
\left\|g-\hat{g}_{\gamma, \text { data }}\right\|_{\mathscr{L}_{P_{t r}}^{2}} \leq C_{3}\left(\gamma^{\zeta}+\gamma^{-1 / 2} m^{-1 / 2}+\gamma^{-1} m^{-3 / 4}\right) \tag{14}
\end{equation*}
$$

Notice here that by choosing $\gamma=m^{-\frac{3}{4(1+\zeta)}}$, we recover Corollary 3.2 of Sun and $\mathrm{Wu}, 2009$. Finally it follows from Theorem 1 of Smale and Zhou, 2007, we have

$$
\begin{equation*}
\left\|g_{\gamma}-\hat{g}_{\gamma, \text { data }}\right\|_{\mathcal{H}} \leq C_{3}^{\prime} \gamma^{-1} m^{-1 / 2} \tag{15}
\end{equation*}
$$

with $C_{3}^{\prime}=6 R \log \frac{2}{\delta}$. In fact, if we define $\sigma^{2} \triangleq \mathbb{E}_{\boldsymbol{x} \sim P_{t r}} \mathbb{E}_{Y \mid \boldsymbol{x}}(g(\boldsymbol{x})-Y)^{2}$, then Theorem 3 of Smale and Zhou, 2007 stated that

$$
\begin{equation*}
\left\|g_{\gamma}-\hat{g}_{\gamma, \text { data }}\right\|_{\mathcal{H}} \leq C_{3}^{\prime \prime}\left(\left(\sqrt{\sigma^{2}}+\left\|g_{\gamma}-g\right\|_{\mathscr{L}_{P_{t r}}^{2}}\right) \gamma^{-1} m^{-1 / 2}+\gamma^{-1} m^{-1}\right) \tag{16}
\end{equation*}
$$

7.3 Main Proofs

Proof of Theorem 1 and Corollary 1. If $g \in \operatorname{Range}\left(\mathcal{T}_{K}^{\frac{\theta}{2 \theta+4}}\right)$ (i.e. $\left.\zeta=\frac{\theta}{2 \theta+4}\right)$ and we set $h(\cdot)=g_{\gamma}(\cdot)$ and $\hat{g}=\hat{g}_{\gamma, \boldsymbol{X}_{N R}^{t r}, \boldsymbol{Y}_{N R}^{t r}}$ for some $\gamma>0$, then

$$
\begin{align*}
& V_{R}(\rho)-\nu \\
= & \frac{1}{\left\lfloor\rho n_{t r}\right\rfloor} \sum_{j=1}^{\left\lfloor\rho n_{t r}\right\rfloor} \hat{\beta}\left(\boldsymbol{x}_{j}^{t r}\right)\left(y_{j}^{t r}-g\left(\boldsymbol{x}_{j}^{t r}\right)\right)+\frac{1}{\left\lfloor\rho n_{t r}\right\rfloor} \sum_{j=1}^{\left\lfloor\rho n_{t r}\right\rfloor}\left(\hat{\beta}\left(\boldsymbol{x}_{j}^{t r}\right)-\beta\left(\boldsymbol{x}_{j}^{t r}\right)\right)\left(g\left(\boldsymbol{x}_{j}^{t r}\right)-h\left(\boldsymbol{x}_{j}^{t r}\right)\right) \\
& +\frac{1}{\left\lfloor\rho n_{t r}\right\rfloor} \sum_{j=1}^{\left\lfloor\rho n_{t r}\right\rfloor}\left(\hat{\beta}\left(\boldsymbol{x}_{j}^{t r}\right)-\beta\left(\boldsymbol{x}_{j}^{t r}\right)\right)\left(h\left(\boldsymbol{x}_{j}^{t r}\right)-\hat{g}\left(\boldsymbol{x}_{j}^{t r}\right)\right) \\
& +\frac{1}{\left\lfloor\rho n_{t r}\right\rfloor} \sum_{j=1}^{\left\lfloor\rho n_{t r}\right\rfloor} \beta\left(\boldsymbol{x}_{j}^{t r}\right)\left(g\left(\boldsymbol{x}_{j}^{t r}\right)-\hat{g}\left(\boldsymbol{x}_{j}^{t r}\right)\right)+\frac{1}{n_{t e}} \sum_{i=1}^{n_{t e}} \hat{g}\left(\boldsymbol{x}_{i}^{t e}\right)-\nu . \tag{17}
\end{align*}
$$

To bound terms in (17), we first use Corollary 2 to conclude that with probability at least $1-\delta$,

$$
\begin{equation*}
\left|\frac{1}{\left\lfloor\rho n_{t r}\right\rfloor} \sum_{j=1}^{\left\lfloor\rho n_{t r}\right\rfloor} \hat{\beta}\left(\boldsymbol{x}_{j}^{t r}\right)\left(y_{j}^{t r}-g\left(\boldsymbol{x}_{j}^{t r}\right)\right)\right| \leq B \sqrt{\frac{1}{\left\lfloor\rho n_{t r}\right\rfloor} \log \frac{2}{\delta}}=\mathcal{O}\left(n_{t r}^{-1 / 2}\right) \tag{18}
\end{equation*}
$$

We hold on our discussion for the second term. For the third term, since $h, \hat{g} \in \mathcal{H}$,

$$
\begin{align*}
&\left|\frac{1}{\left\lfloor\rho n_{t r}\right\rfloor} \sum_{j=1}^{\left\lfloor\rho n_{t r}\right\rfloor}\left(\hat{\beta}\left(\boldsymbol{x}_{j}^{t r}\right)-\beta\left(\boldsymbol{x}_{j}^{t r}\right)\right)\left(h\left(\boldsymbol{x}_{j}^{t r}\right)-\hat{g}\left(\boldsymbol{x}_{j}^{t r}\right)\right)\right| \\
&=\left|\frac{1}{\left\lfloor\rho n_{t r}\right\rfloor} \sum_{j=1}^{\left\lfloor\rho n_{t r}\right\rfloor}\left(\hat{\beta}\left(\boldsymbol{x}_{j}^{t r}\right)-\beta\left(\boldsymbol{x}_{j}^{t r}\right)\right)\left\langle h-\hat{g}, \Phi\left(\boldsymbol{x}_{j}^{t r}\right)\right\rangle_{\mathcal{H}}\right| \\
&=\left|\left\langle h-\hat{g}, \frac{1}{\left\lfloor\rho n_{t r}\right\rfloor} \sum_{j=1}^{\left\lfloor\rho n_{t r}\right\rfloor}\left(\hat{\beta}\left(\boldsymbol{x}_{j}^{t r}\right)-\beta\left(\boldsymbol{x}_{j}^{t r}\right)\right) \Phi\left(\boldsymbol{x}_{j}^{t r}\right)\right\rangle_{\mathcal{H}}\right| \\
& \leq\|h-\hat{g}\|_{\mathcal{H}}\left(\hat{L}(\hat{\boldsymbol{\beta}})+\hat{L}\left(\boldsymbol{\beta}_{\mid \boldsymbol{x}_{1}^{t r}, \ldots, \boldsymbol{x}_{\text {Lpntr }}^{t r}}\right)\right) \leq 2\|h-\hat{g}\|_{\mathcal{H}} \hat{L}\left(\boldsymbol{\beta}_{\left.\mid \boldsymbol{x}_{1}^{t r}, \ldots, \boldsymbol{x}_{\text {tontr }}^{t r}\right\rfloor}\right), \tag{19}
\end{align*}
$$

by definition of (1). Thus, when taking $h=g_{\gamma}$ and $\hat{g}=\hat{g}_{\gamma, \boldsymbol{X}_{N R}^{t r}, \boldsymbol{Y}_{N R}^{t r}}^{t_{r}}$ for some γ, we can combine (4) and (15) to guarantee, with probability $1-2 \delta$,

$$
\begin{align*}
& \left|\frac{1}{\left\lfloor\rho n_{t r}\right\rfloor} \sum_{j=1}^{\left\lfloor\rho n_{t r}\right\rfloor}\left(\hat{\beta}\left(\boldsymbol{x}_{j}^{t r}\right)-\beta\left(\boldsymbol{x}_{j}^{t r}\right)\right)\left(h\left(\boldsymbol{x}_{j}^{t r}\right)-\hat{g}\left(\boldsymbol{x}_{j}^{t r}\right)\right)\right| \\
& \leq \sqrt{8 \log \frac{2}{\delta}} R C(1-\rho)^{-1 / 2}\left(\gamma^{-1} n_{t r}^{-1 / 2}\right) \cdot \sqrt{\left(\frac{B^{2}}{n_{t r}}+\frac{1}{n_{t e}}\right)} \\
= & \mathcal{O}\left(\gamma^{-1} n_{t r}^{-1 / 2}\left(n_{t r}^{-1}+n_{t e}^{-1}\right)^{\frac{1}{2}}\right) . \tag{20}
\end{align*}
$$

For the last term $\tau \triangleq \frac{1}{\left\lfloor\rho n_{t r}\right\rfloor} \sum_{j=1}^{\left\lfloor\rho n_{t r}\right\rfloor} \beta\left(\boldsymbol{x}_{j}^{t r}\right)\left(g\left(\boldsymbol{x}_{j}^{t r}\right)-\hat{g}\left(\boldsymbol{x}_{j}^{t r}\right)\right)+\frac{1}{n_{t e}} \sum_{i=1}^{n_{t e}} \hat{g}\left(\boldsymbol{x}_{i}^{t e}\right)-\nu$, the analysis relies the splitting of data, as we notice that

$$
\begin{align*}
& \mathbb{E}_{\mid \boldsymbol{X}_{N R}^{t r}, \boldsymbol{Y}_{N R}^{t r}}\left[\frac{1}{\left\lfloor\rho n_{t r}\right\rfloor} \sum_{j=1}^{\left\lfloor\rho n_{t r}\right\rfloor} \beta\left(\boldsymbol{x}_{j}^{t r}\right)\left(g\left(\boldsymbol{x}_{j}^{t r}\right)-\hat{g}\left(\boldsymbol{x}_{j}^{t r}\right)\right)+\frac{1}{n_{t e}} \sum_{i=1}^{n_{t e}} \hat{g}\left(X_{i}^{t e}\right)-\nu\right] \\
= & \mathbb{E}_{\boldsymbol{x} \sim P_{t r}}[\beta(\boldsymbol{x}) g(\boldsymbol{x})]-\nu-\mathbb{E}_{\boldsymbol{x} \sim P_{t r}}[\beta(\boldsymbol{x}) \hat{g}(\boldsymbol{x})]+\mathbb{E}_{\boldsymbol{x} \sim P_{t e}}[\hat{g}(\boldsymbol{x})] \\
= & \mathbb{E}_{\boldsymbol{x} \sim P_{t e}}[g(\boldsymbol{x})]-\nu-\mathbb{E}_{\boldsymbol{x} \sim P_{t e}}[\hat{g}(\boldsymbol{x})]+\mathbb{E}_{\boldsymbol{x} \sim P_{t e}}[\hat{g}(\boldsymbol{x})] \\
= & 0 . \tag{21}
\end{align*}
$$

Notice the second line follows since $\hat{g}(\cdot)$ is determined by $\left\{\boldsymbol{X}_{N R}^{t r}, \boldsymbol{Y}_{N R}^{t r}\right\}$ and thus is independent of $\left\{\boldsymbol{X}_{K M M}^{t r}, \boldsymbol{Y}_{K M M}^{t r}\right\}$ or $\left\{\boldsymbol{X}^{t e}\right\}$. Thus, we have

$$
\begin{align*}
\operatorname{Var}(\tau) & =\operatorname{Var}\left(\mathbb{E}_{\mid \boldsymbol{X}_{N R}^{t r}}, \boldsymbol{Y}_{N R}^{t r}(\tau)\right)+\mathbb{E}\left[\operatorname{Var}_{\mid \boldsymbol{X}_{N R}^{t r}}^{t r}, \boldsymbol{Y}_{N R}^{t r}(\tau)\right] \\
& =\mathbb{E}\left[\operatorname{Var}_{\mid \boldsymbol{X}_{N R}^{t r}, \boldsymbol{Y}_{N R}^{t r}}(\tau)\right] \\
& =\frac{1}{\left\lfloor\rho n_{t r}\right\rfloor} \mathbb{E}\left[\operatorname{Var}_{\boldsymbol{x} \sim P_{t r} \mid \boldsymbol{X}_{N R}^{t r}, \boldsymbol{Y}_{N R}^{t r}}(\beta(\boldsymbol{x})(g(\boldsymbol{x})-\hat{g}(\boldsymbol{x})))\right]+\frac{1}{n_{t e}} \mathbb{E}\left[\operatorname{Var}_{\boldsymbol{x} \sim P_{t e} \mid \boldsymbol{X}_{N R}^{t r}, \boldsymbol{Y}_{N R}^{t r}}(\hat{g}(\boldsymbol{x}))\right] \\
& \leq \frac{B^{2}}{\left\lfloor\rho n_{t r}\right\rfloor} \mathbb{E}_{\boldsymbol{X}_{N R}^{t r}, \boldsymbol{Y}_{N R}^{t r}}\|g-\hat{g}\|_{\mathscr{L}_{P_{t r}}^{2}}^{2}+\frac{1}{n_{t e}} \mathbb{E}_{\boldsymbol{X}_{N R}^{t r}, \boldsymbol{Y}_{N R}^{t r}}\|\hat{g}\|_{\mathscr{L}_{P_{t e}}^{2}}^{2} \\
& \leq \frac{B^{2}}{\left\lfloor\rho n_{t r}\right\rfloor} \mathbb{E}_{\boldsymbol{X}_{N R}^{t r}, \boldsymbol{Y}_{N R}^{t r}}\|g-\hat{g}\|_{\mathscr{L}_{P_{t r}}^{2}}^{2}+\frac{B}{n_{t e}} \mathbb{E}_{\boldsymbol{X}_{N R}^{t r}, \boldsymbol{Y}_{N R}^{t r}}\|\hat{g}\|_{\mathscr{L}_{P_{t r}}^{2}}^{2}, \tag{22}
\end{align*}
$$

and we can use the Chebyshev inequality and Lemma 1 to conclude, with probability at least $1-\delta$,

$$
\begin{equation*}
|\tau| \leq \sqrt{\frac{1}{\delta}} \sqrt{\frac{B^{2}}{\left\lfloor\rho n_{t r}\right\rfloor} \mathbb{E}_{\boldsymbol{X}_{N R}^{t r}, \boldsymbol{Y}_{N R}^{t r}}^{t r}\|g-\hat{g}\|_{\mathscr{L}_{P_{t r}}^{2}}^{2}+\frac{B R^{2}}{n_{t e}}} \tag{23}
\end{equation*}
$$

which becomes, by 14 , with probability $1-2 \delta$,

$$
\begin{align*}
|\tau| & \leq \sqrt{\frac{1}{\delta}} \sqrt{\frac{B^{2}}{\left\lfloor\rho n_{t r}\right\rfloor} C(1-\rho)^{-3 / 4}\left(\gamma^{\zeta}+\gamma^{-1 / 2} n_{t r}^{-1 / 2}+\gamma^{-1} n_{t r}^{-3 / 4}\right)+\frac{B R^{2}}{n_{t e}}} \\
& =\mathcal{O}\left(\left(\gamma^{\zeta}+\gamma^{-1 / 2} n_{t r}^{-1 / 2}+\gamma^{-1} n_{t r}^{-3 / 4}\right) n_{t r}^{-1 / 2}+n_{t e}^{-1 / 2}\right) \tag{24}
\end{align*}
$$

with $\zeta=\frac{\theta}{2 \theta+4}$. Now, to bound the second term $\frac{1}{\left\lfloor\rho n_{t r}\right\rfloor} \sum_{j=1}^{\left\lfloor\rho n_{t r}\right\rfloor}\left(\hat{\beta}\left(\boldsymbol{x}_{j}^{t r}\right)-\beta\left(\boldsymbol{x}_{j}^{t r}\right)\right)\left(g\left(\boldsymbol{x}_{j}^{t r}\right)-h\left(\boldsymbol{x}_{j}^{t r}\right)\right)$, we have

$$
\begin{align*}
& \frac{1}{\left\lfloor\rho n_{t r}\right\rfloor} \sum_{j=1}^{\left\lfloor\rho n_{t r}\right\rfloor}\left|\left(\hat{\beta}\left(\boldsymbol{x}_{j}^{t r}\right)-\beta\left(\boldsymbol{x}_{j}^{t r}\right)\right)\left(g\left(\boldsymbol{x}_{j}^{t r}\right)-g_{\gamma}\left(\boldsymbol{x}_{j}^{t r}\right)\right)\right| \\
& \leq \frac{B}{\left\lfloor\rho n_{t r}\right\rfloor} \sum_{j=1}^{\left\lfloor\rho n_{t r}\right\rfloor}\left|g\left(\boldsymbol{x}_{j}^{t r}\right)-g_{\gamma}\left(\boldsymbol{x}_{j}^{t r}\right)\right| \\
& \leq\left|\frac{B}{\left\lfloor\rho n_{t r}\right\rfloor} \sum_{j=1}^{\left\lfloor\rho n_{t r}\right\rfloor}\right| g\left(\boldsymbol{x}_{j}^{t r}\right)-g_{\gamma}\left(\boldsymbol{x}_{j}^{t r}\right)\left|-B\left\|g-g_{\gamma}\right\|_{\mathscr{L}_{P_{t r}}^{1}}\right|+B\left\|g-g_{\gamma}\right\|_{\mathscr{L}_{P_{t r}}^{1}} \\
& \leq \sqrt{\frac{1}{\delta}} \sqrt{\frac{B^{2}}{\rho n_{t r}}\left\|g-g_{\gamma}\right\|_{\mathscr{L}_{P_{t r}}^{2}}^{2}}+B\left\|g-g_{\gamma}\right\|_{\mathscr{L}_{P_{t r}}^{2}} \\
& \leq \sqrt{\frac{1}{\delta}} B C \gamma^{\zeta} \sqrt{\frac{1}{\rho n_{t r}}}+C \gamma^{\zeta}=\mathcal{O}\left(\gamma^{\zeta}\right)=\mathcal{O}\left(\gamma^{\frac{\theta}{2+4}}\right) . \tag{25}
\end{align*}
$$

where $\mathscr{L}_{P_{t r}}^{1}$ denotes the 1-norm $\mathbb{E}_{\boldsymbol{x} \sim P_{t r}}\left|g(\boldsymbol{x})-g_{\gamma}(\boldsymbol{x})\right|$. Notice the second-to-last line follows from the Chebyshev inequality, the Cauchy-Schwarz inequality, and the last line from (12).

Thus, when taking $h=g_{\gamma}$ and $\hat{g}=\hat{g}_{\gamma, \boldsymbol{X}_{N R}^{t r}, \boldsymbol{Y}_{N R}^{t r}}$ for some $\gamma>0$, we can combine (18, 20, ,24) and (25) to have

$$
\begin{align*}
\left|V_{R}(\rho)-\nu\right|= & \mathcal{O}\left(n_{t r}^{-\frac{1}{2}}\right)+\mathcal{O}\left(\gamma^{\frac{\theta}{2 \theta+4}}\right)+\mathcal{O}\left(\gamma^{-1} n_{t r}^{-1 / 2}\left(n_{t r}^{-1}+n_{t e}^{-1}\right)^{\frac{1}{2}}\right) \\
& +\mathcal{O}\left(\left(\gamma^{\frac{\theta}{2 \theta+4}}+\gamma^{-1 / 2} n_{t r}^{-1 / 2}+\gamma^{-1} n_{t r}^{-3 / 4}\right) n_{t r}^{-1 / 2}+n_{t e}^{-1 / 2}\right) \\
= & \mathcal{O}\left(n_{t r}^{-\frac{1}{2}}+n_{t e}^{-\frac{1}{2}}+\gamma^{\frac{\theta}{2 \theta+4}}+\gamma^{-\frac{1}{2}} n_{t r}^{-1}+\gamma^{-\frac{1}{2}} n_{t r}^{-\frac{1}{2}} n_{t e}^{-\frac{1}{2}}\right) \tag{26}
\end{align*}
$$

after simplification. Now, if we take $\gamma=n^{-\frac{\theta+2}{\theta+1}}$ where $n \triangleq \min \left(n_{t r}, n_{t e}\right)$, then 26 becomes

$$
\begin{align*}
& \left|V_{R}(\rho)-\nu\right| \\
= & \mathcal{O}\left(n^{-\frac{1}{2}}+n^{-\frac{\theta}{2(\theta+1)}}+n^{\frac{\theta+2}{2(\theta+1)}} n^{-1}\right)=\mathcal{O}\left(n^{-\frac{\theta}{2 \theta+2}}\right)=\mathcal{O}\left(n_{t r}^{-\frac{\theta}{(2 \theta+2)}}+n_{t e}^{-\frac{\theta}{(2 \theta+2)}}\right), \tag{27}
\end{align*}
$$

which is the statement of the theorem. However, note that if we choose $\gamma=n^{-1}$, we would achieve the convergence rate of $V_{K M M}$ as $\mathcal{O}\left(n_{t r}^{-\frac{\theta}{(2 \theta+4)}}+n_{t e}^{-\frac{\theta}{(2 \theta+4)}}\right)$. Moreover if $\lim _{n \rightarrow \infty} n_{t e}^{\frac{6 \theta+8}{3 \theta+6}} / n_{t r} \rightarrow 0$ and we choose $\gamma=n_{t r}^{-1}$, then the rate becomes $\mathcal{O}\left(n_{t r}^{-\frac{\theta}{2 \theta+4}}+n_{t e}^{-\frac{1}{2}}\right)$.

Proof of Proposition 1. Fixing $\gamma>0$, if $g \in \mathcal{H}$ (i.e., $g \in \operatorname{Range}\left(\mathcal{T}_{K}^{\frac{\theta}{2 \theta+4}}\right)$ with $\left.\theta \rightarrow \infty\right)$, then by definition of g_{γ} we would have

$$
\begin{equation*}
\left\|g_{\gamma}\right\|_{\mathcal{H}}^{2} \leq \frac{\left\|g_{\gamma}-g\right\|_{\mathscr{L}_{P_{t r}}^{2}}^{2}+\gamma\left\|g_{\gamma}\right\|_{\mathcal{H}}^{2}}{\gamma} \leq \frac{\|g-g\|_{\mathscr{L}_{P_{t r}}^{2}}^{2}+\gamma\|g\|_{\mathcal{H}}^{2}}{\gamma}=\|g\|_{\mathcal{H}}^{2} \tag{28}
\end{equation*}
$$

or equivalently $\left\|g_{\gamma}\right\|_{\mathcal{H}}=\mathcal{O}(1)$ since the fixed true regression function $\|g\|_{\mathcal{H}}=\mathcal{O}(1)$. Thus, a simplified analysis shows

$$
\begin{align*}
V_{R}(\rho)-\nu= & \frac{1}{\left\lfloor\rho n_{t r}\right\rfloor} \sum_{j=1}^{\left\lfloor\rho n_{t r}\right\rfloor} \hat{\beta}\left(\boldsymbol{x}_{j}^{t r}\right) Y_{j}^{t r}-\nu \\
& +\frac{1}{\left\lfloor\rho n_{t r}\right\rfloor} \sum_{j=1}^{\left\lfloor\rho n_{t r}\right\rfloor} \hat{\beta}\left(\boldsymbol{x}_{j}^{t r}\right) \hat{g}\left(\boldsymbol{x}_{j}^{t r}\right)-\frac{1}{n_{t e}} \sum_{i=1}^{n_{t e}} \hat{g}\left(\boldsymbol{x}_{i}^{t e}\right) \tag{29}
\end{align*}
$$

Note that the first term on the right is nothing but the $V_{K M M}$ estimator with $100 \times \rho$ percent of the training data and we shall denote it as $V_{K M M}(\rho)$ without ambiguity. For the second term, assuming $\hat{g}=\hat{g}_{\gamma, \boldsymbol{X}_{N R}^{t r}, \boldsymbol{Y}_{N R}^{t r}}^{t r_{r}}$, is bounded by

$$
\begin{align*}
& \frac{1}{\left\lfloor\rho n_{t r}\right\rfloor} \sum_{j=1}^{\left\lfloor\rho n_{t r}\right\rfloor} \hat{\beta}\left(\boldsymbol{x}_{j}^{t r}\right) \hat{g}\left(\boldsymbol{x}_{j}^{t r}\right)-\frac{1}{n_{t e}} \sum_{i=1}^{n_{t e}} \hat{g}\left(\boldsymbol{x}_{i}^{t e}\right) \\
= & \frac{1}{\left\lfloor\rho n_{t r}\right\rfloor} \sum_{j=1}^{\left\lfloor\rho n_{t r}\right\rfloor} \hat{\beta}\left(\boldsymbol{x}_{j}^{t r}\right)\left\langle\hat{g}, \Phi\left(\boldsymbol{x}_{j}^{t r}\right)\right\rangle_{\mathcal{H}}-\frac{1}{n_{t e}} \sum_{i=1}^{n_{t e}}\left\langle\hat{g}, \Phi\left(\boldsymbol{x}_{i}^{n_{t e}}\right)\right\rangle_{\mathcal{H}} \\
= & \left\langle\hat{g}, \frac{1}{\left\lfloor\rho n_{t r}\right\rfloor} \sum_{i=1}^{\left\lfloor\rho n_{t r}\right\rfloor} \hat{\beta}\left(\boldsymbol{x}_{j}^{t r}\right) \Phi\left(\boldsymbol{x}_{j}^{t r}\right)-\frac{1}{n_{t e}} \sum_{i=1}^{n_{t e}} \Phi\left(\boldsymbol{x}_{i}^{t e}\right)\right\rangle_{\mathcal{H}} \leq\left\|\hat{g}_{\gamma, \boldsymbol{X}_{N R}^{t r}, \boldsymbol{Y}_{N R}^{t r}}\right\|_{\mathcal{H}} \hat{L}(\hat{\boldsymbol{\beta}}), \tag{30}
\end{align*}
$$

Then, by (29) and (30), we have

$$
\begin{align*}
\left|V_{R}(\rho)-\nu\right| & \leq\left|V_{K M M}(\rho)-\nu\right|+\hat{L}(\hat{\boldsymbol{\beta}})\left(\left\|g_{\gamma}-\hat{g}_{\gamma, \boldsymbol{X}_{N R}{ }^{\text {tr }}, \boldsymbol{Y}_{N R}^{t r}}\right\|_{\mathcal{H}}+\left\|g_{\gamma}\right\|_{\mathcal{H}}\right) \\
& =\mathcal{O}\left(n_{t r}^{-\frac{1}{2}}+n_{t e}^{-\frac{1}{2}}\right), \tag{31}
\end{align*}
$$

following (28), 15) and Theorem 1 of Yu and Szepesvári, 2012.
Proof of Proposition 2. If the function g only satisfies the condition $\mathcal{A}_{\infty}(g, F) \triangleq \inf _{\|f\|_{\mathcal{H}} \leq F}\|g-f\| \leq$ $C(\log F)^{-s}$ for some $C, s>0$, then we again follow the analysis in the proof of Proposition 1 and arrive at the decomposition in 29

$$
\left.\begin{array}{rl}
\left|V_{R}(\rho)-\nu\right| & \leq\left|V_{K M M}(\rho)-\nu\right|+\hat{L}(\hat{\boldsymbol{\beta}})\left(\| g_{\gamma}-\hat{g}_{\gamma, \boldsymbol{X}} \boldsymbol{X}_{N R}^{t r}, \boldsymbol{Y}_{N R}^{t r}\right.
\end{array}\left\|_{\mathcal{H}}+\right\| g_{\gamma} \|_{\mathcal{H}}\right), ~\left(\frac{n_{t r} n_{t e}}{n_{t r}+n_{t e}}\right)^{-s},
$$

which is the rate of $V_{K M M}$ by Theorem 3 of Yu and Szepesvári, 2012.
Proof of Theorem 2. Define $\epsilon \triangleq \sup _{\theta \in \mathcal{D}} \mid V_{R}(\theta)-\mathbb{E}\left[l^{\prime}\left(X^{t e}, Y^{t e} ; \theta\right)\right]$. We have

$$
\begin{equation*}
\mathbb{E}\left[l^{\prime}\left(X_{t e}, Y_{t e} ; \hat{\theta}_{R}\right)\right]-\epsilon \leq V_{R}\left(\hat{\theta}_{R}\right) \leq V_{R}\left(\theta^{\star}\right) \leq \mathbb{E}\left[l^{\prime}\left(X_{t e}, Y_{t e} ; \theta^{\star}\right)\right]+\epsilon . \tag{33}
\end{equation*}
$$

On the other hand, we know by the triangle inequality that ϵ is bounded by

$$
\begin{aligned}
& \sup _{\theta \in \mathcal{D}}\left|\frac{1}{\left\lfloor\rho n_{t r}\right\rfloor} \sum_{j=1}^{\left\lfloor\rho n_{t r}\right\rfloor} \hat{\beta}\left(\boldsymbol{x}_{j}^{t r}\right) l^{\prime}\left(\boldsymbol{x}_{j}^{t r}, y_{j}^{t r} ; \theta\right)-\frac{1}{n_{t e}} \sum_{i=1}^{n_{t e}} l\left(\boldsymbol{x}_{i}^{t e} ; \theta\right)\right| \\
+ & \left.\sup _{\theta \in \mathcal{D}}\left|\frac{1}{\left\lfloor\rho n_{t r}\right\rfloor} \sum_{j=1}^{\left\lfloor\rho n_{t r\rfloor}\right\rfloor} \hat{\beta}\left(\boldsymbol{x}_{j}^{t r}\right) \hat{l}\left(\boldsymbol{x}_{j}^{t r} ; \theta\right)-\frac{1}{n_{t e}} \sum_{i=1}^{n_{t e}} \hat{l}\left(\boldsymbol{x}_{i}^{t e} ; \theta\right)\right|+\sup _{\theta \in \mathcal{D}} \right\rvert\, \frac{1}{n_{t e}} \sum_{i=1}^{n_{t e}} l\left(\boldsymbol{x}_{i}^{t e} ; \theta\right)-\mathbb{E}\left[l\left(X_{t e} ; \theta\right)\right],
\end{aligned}
$$

where the first term is bounded by $\mathcal{O}\left(n_{t r}^{-\frac{1}{2}}+n_{t e}^{-\frac{1}{2}}\right)$ following Corollary 8.9 in Gretton et al., 2009. Moreover, the second term is also $\mathcal{O}\left(n_{t r}^{-\frac{1}{2}}+n_{t e}^{-\frac{1}{2}}\right)$ as in (30) or Lemma 8.7 in Gretton et al., 2009. For the last term, due to the Lipschitz and compact assumption, it follows from Theorem 19.5 of Van der Vaart, 2000 (see also Example 19.7 of Van der Vaart, 2000]) that function class \mathcal{G} is $P_{t e}$-Donsker, which means that

$$
\mathbb{G}_{n}(\theta) \triangleq \sqrt{n_{t e}}\left(\frac{1}{n_{t e}} \sum_{i=1}^{n_{t e}} l\left(\boldsymbol{x}_{i}^{t e} ; \theta\right)-\mathbb{E}_{\boldsymbol{x} \sim P_{t e}}[l(\boldsymbol{x} ; \theta)]\right)
$$

converges in distribution to a Gaussian Process \mathbb{G}_{∞} with zero mean and covariance function $\operatorname{Cov}\left(\mathbb{G}_{\infty}\left(\theta_{1}\right), \mathbb{G}_{\infty}\left(\theta_{2}\right)\right)=\mathbb{E}_{\boldsymbol{x} \sim P_{t e}}\left(l\left(\boldsymbol{x} ; \theta_{1}\right) l\left(\boldsymbol{x} ; \theta_{2}\right)\right)-\mathbb{E}_{\boldsymbol{x} \sim P_{t e}} l\left(\boldsymbol{x} ; \theta_{1}\right) \mathbb{E}_{\boldsymbol{x} \sim P_{t e}} l\left(\boldsymbol{x} ; \theta_{2}\right)$. Notice \mathbb{G}_{∞} can be viewed as random function in $C(\mathcal{D})$, the space of continuous and bounded function on θ. Since for any $z \in C(\mathcal{D})$, the mapping $z \rightarrow\|z\|_{\infty} \triangleq \sup _{\theta \in \mathcal{D}} z(\theta)$ is continuous with respect to the supremum norm, it follows from the continuous-mapping theorem that $n_{t e}^{\frac{1}{2}} \sup _{\theta \in \mathcal{D}}\left|\frac{1}{n_{t e}} \sum_{i=1}^{n_{t e}} l\left(\boldsymbol{x}_{i}^{t e} ; \theta\right)-\mathbb{E}\left[l\left(X_{t e} ; \theta\right)\right]\right|$ converges in distribution to $\left\|\mathbb{G}_{\infty}\right\|_{\infty}$ which has finite expectations based on the assumptions on \mathcal{G} (see, e.g., Section 14, Theorem 1 of Lifshits, 2013). Thus, by definition of convergence in distribution, for any $\delta>0$, we can find some constant D^{\prime} that

$$
\begin{equation*}
P\left(\left\|\mathbb{G}_{n}\right\|_{\infty}>D^{\prime}\right)=P\left(\left\|\mathbb{G}_{\infty}\right\|_{\infty}>D^{\prime}\right)+o(1) \leq \delta+o(1) \tag{34}
\end{equation*}
$$

which means, we can find some N such that when $n_{t e}>N$,

$$
P_{t e}\left(\sup _{\theta \in \mathcal{D}}\left|\frac{1}{n_{t e}} \sum_{i=1}^{n_{t e}} l\left(\boldsymbol{x}_{i}^{t e} ; \theta\right)-\mathbb{E}\left[l\left(X_{t e} ; \theta\right)\right]\right|>n_{t e}^{-\frac{1}{2}} D^{\prime}\right)=P_{t e}\left(\left\|\mathbb{G}_{n}\right\|_{\infty}>D^{\prime}\right) \leq 2 \delta,
$$

and consequently, with probability $1-2 \delta$, we have

$$
\sup _{\theta \in \mathcal{D}}\left|\frac{1}{n_{t e}} \sum_{i=1}^{n_{t e}} l\left(\boldsymbol{x}_{i}^{t e} ; \theta\right)-\mathbb{E}\left[l\left(X_{t e} ; \theta\right)\right]\right| \leq n_{t e}^{-\frac{1}{2}} D^{\prime}
$$

In other words, we also have

$$
\sup _{\theta \in \mathcal{D}}\left|\frac{1}{n_{t e}} \sum_{i=1}^{n_{t e}} l\left(\boldsymbol{x}_{i}^{t e} ; \theta\right)-\mathbb{E}\left[l\left(X_{t e} ; \theta\right)\right]\right|=\mathcal{O}\left(n_{t e}^{-\frac{1}{2}}\right)
$$

which concludes our proof.

References

[Bickel et al., 2007] Bickel, S., Brückner, M., and Scheffer, T. (2007). Discriminative learning for differing training and test distributions. In Proceedings of the 24th international conference on Machine learning, pages 81-88. ACM.
[Blanchet and Lam, 2012] Blanchet, J. and Lam, H. (2012). State-dependent importance sampling for rareevent simulation: An overview and recent advances. Surveys in Operations Research and Management Science, 17(1):38-59.
[Blitzer et al., 2006] Blitzer, J., McDonald, R., and Pereira, F. (2006). Domain adaptation with structural correspondence learning. In Proceedings of the 2006 conference on empirical methods in natural language processing, pages 120-128. Association for Computational Linguistics.
[Borgwardt et al., 2006] Borgwardt, K. M., Gretton, A., Rasch, M. J., Kriegel, H.-P., Schölkopf, B., and Smola, A. J. (2006). Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics, 22(14):e49-e57.
[Cortes et al., 2008] Cortes, C., Mohri, M., Riley, M., and Rostamizadeh, A. (2008). Sample selection bias correction theory. In International conference on algorithmic learning theory, pages 38-53. Springer.
[Cucker and Zhou, 2007] Cucker, F. and Zhou, D. X. (2007). Learning theory: an approximation theory viewpoint, volume 24. Cambridge University Press.
[Evgeniou et al., 2000] Evgeniou, T., Pontil, M., and Poggio, T. (2000). Regularization networks and support vector machines. Advances in computational mathematics, 13(1):1.
[Glynn and Szechtman, 2002] Glynn, P. W. and Szechtman, R. (2002). Some new perspectives on the method of control variates. In Monte Carlo and Quasi-Monte Carlo Methods 2000, pages 27-49. Springer.
[Gretton et al., 2009] Gretton, A., Smola, A., Huang, J., Schmittfull, M., Borgwardt, K., and Schölkopf, B. (2009). Covariate shift by kernel mean matching. Dataset shift in machine learning, 3(4):5.
[Hachiya et al., 2008] Hachiya, H., Akiyama, T., Sugiyama, M., and Peters, J. (2008). Adaptive importance sampling with automatic model selection in value function approximation. In $A A A I$, pages 1351-1356.
[Heckman, 1979] Heckman, J. J. (1979). Sample selection bias as a specification error. Econometrica: Journal of the econometric society, pages 153-161.
[Huang et al., 2007] Huang, J., Gretton, A., Borgwardt, K., Schölkopf, B., and Smola, A. J. (2007). Correcting sample selection bias by unlabeled data. In Advances in neural information processing systems, pages 601-608.
[Jiang and Zhai, 2007] Jiang, J. and Zhai, C. (2007). Instance weighting for domain adaptation in nlp. In Proceedings of the 45th annual meeting of the association of computational linguistics, pages 264-271.
[Kanamori et al., 2012] Kanamori, T., Suzuki, T., and Sugiyama, M. (2012). Statistical analysis of kernelbased least-squares density-ratio estimation. Machine Learning, 86(3):335-367.
[Kennedy et al., 2017] Kennedy, E. H., Ma, Z., McHugh, M. D., and Small, D. S. (2017). Non-parametric methods for doubly robust estimation of continuous treatment effects. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(4):1229-1245.
[Lifshits, 2013] Lifshits, M. A. (2013). Gaussian random functions, volume 322. Springer Science \& Business Media.
[Nelson, 1990] Nelson, B. L. (1990). Control variate remedies. Operations Research, 38(6):974-992.
[Pan and Yang, 2009] Pan, S. J. and Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on knowledge and data engineering, 22(10):1345-1359. 8
[Pardoe and Stone, 2010] Pardoe, D. and Stone, P. (2010). Boosting for regression transfer. In Proceedings of the 27th International Conference on International Conference on Machine Learning, pages 863-870. Omnipress.
[Pinelis et al., 1994] Pinelis, I. et al. (1994). Optimum bounds for the distributions of martingales in banach spaces. The Annals of Probability, 22(4):1679-1706.
[Quionero-Candela et al., 2009] Quionero-Candela, J., Sugiyama, M., Schwaighofer, A., and Lawrence, N. D. (2009). Dataset shift in machine learning. The MIT Press.
[Schölkopf et al., 2001] Schölkopf, B., Herbrich, R., and Smola, A. J. (2001). A generalized representer theorem. In International conference on computational learning theory, pages 416-426. Springer.
[Schölkopf et al., 2002] Schölkopf, B., Smola, A. J., Bach, F., et al. (2002). Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press.
[Shimodaira, 2000] Shimodaira, H. (2000). Improving predictive inference under covariate shift by weighting the log-likelihood function. Journal of statistical planning and inference, 90(2):227-244.
[Smale and Zhou, 2007] Smale, S. and Zhou, D.-X. (2007). Learning theory estimates via integral operators and their approximations. Constructive approximation, 26(2):153-172.
[Sugiyama and Kawanabe, 2012] Sugiyama, M. and Kawanabe, M. (2012). Machine learning in nonstationary environments: Introduction to covariate shift adaptation. MIT press.
[Sugiyama et al., 2007] Sugiyama, M., Krauledat, M., and MÃžller, K.-R. (2007). Covariate shift adaptation by importance weighted cross validation. Journal of Machine Learning Research, 8(May):985-1005.
[Sugiyama et al., 2008a] Sugiyama, M., Nakajima, S., Kashima, H., Buenau, P. V., and Kawanabe, M. (2008a). Direct importance estimation with model selection and its application to covariate shift adaptation. In Advances in neural information processing systems, pages 1433-1440.
[Sugiyama et al., 2008b] Sugiyama, M., Suzuki, T., Nakajima, S., Kashima, H., von Bünau, P., and Kawanabe, M. (2008b). Direct importance estimation for covariate shift adaptation. Annals of the Institute of Statistical Mathematics, 60(4):699-746.
[Sun and Wu, 2009] Sun, H. and Wu, Q. (2009). A note on application of integral operator in learning theory. Applied and Computational Harmonic Analysis, 26(3):416-421.
[Sun and Wu, 2010] Sun, H. and Wu, Q. (2010). Regularized least square regression with dependent samples. Advances in Computational Mathematics, 32(2):175-189.
[Tzeng et al., 2017] Tzeng, E., Hoffman, J., Saenko, K., and Darrell, T. (2017). Adversarial discriminative domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 7167-7176.
[Van der Vaart, 2000] Van der Vaart, A. W. (2000). Asymptotic statistics, volume 3. Cambridge university press.
[Wen et al., 2014] Wen, J., Yu, C.-N., and Greiner, R. (2014). Robust learning under uncertain test distributions: Relating covariate shift to model misspecification. In ICML, pages 631-639.
[Yao and Doretto, 2010] Yao, Y. and Doretto, G. (2010). Boosting for transfer learning with multiple sources. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 18551862. IEEE.
[Yu and Szepesvári, 2012] Yu, Y. L. and Szepesvári, C. (2012). Analysis of kernel mean matching under covariate shift. In $I C M L$, pages 1147-1154. Omnipress.
[Zadrozny, 2004] Zadrozny, B. (2004). Learning and evaluating classifiers under sample selection bias. In Proceedings of the twenty-first international conference on Machine learning, page 114. ACM.

